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Abstract. It is shown that ambipolar diffusion as a useful model
for nonlinearity leads to similar behaviour of large scale turbu-
lent dynamos as full MHD. This is demonstrated using both
direct simulations in a periodic box and a closure model for
the magnetic correlation functions applicable to infinite space.
Large scale fields develop via a nonlocal inverse cascade as de-
scribed by theα-effect. However, magnetic helicity can only
change on a resistive timescale, so the time it takes to organize
the field into large scales increases with magnetic Reynolds
number.
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1. Ambipolar diffusion as a toy nonlinearity

In this Letter we test and exploit the idea that the exact type of
nonlinearity in the MHD equations is unessential as far as the
nature of large scale field generation is concerned. At first glance
this may seem rather surprising, especially if one pictures large
scale field generation as the result of an inverse cascade process
(Frisch et al.1975, Pouquet et al.1976). Like the direct cascade
in Kolmogorov turbulence, the inverse cascade is accomplished
by nonlinear interactions, suggesting that nonlinearity is impor-
tant. However, a special type of inverse cascade is the strongly
nonlocal inverse cascade process, which is usually referred to
as the ‘alpha-effect’; see Moffatt (1978) and Krause & Rädler
(1980). This effect exists already in linear (kinematic) theory.

Until recently it was unclear which, if any, of the two effects
(inverse cascade in the local sense or theα-effect) played the
dominant role in large scale field generation as seen in simula-
tions (e.g. Glatzmaier & Roberts 1995, Brandenburg et al.1995,
Ziegler & Rüdiger 2000) or in astrophysical bodies (stars, galax-
ies, accretion discs). A strong indication that it is actually theα-
effect (i.e. the strongly nonlocal inverse cascade) that is respon-
sible for large scale field generation, comes from detailed anal-
ysis of recent three-dimensional simulations of forced isotropic
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non-mirror symmetric turbulence (Brandenburg 2000, hereafter
B2000). In those simulations a strong and nearly force-free mag-
netic field was produced, and most of the energy supply to this
field was found to come from the forcing scale of the turbulence.

In the absence of nonlinearity, however, the field seen in
the simulations of B2000 became quickly swamped by mag-
netic fields at smaller scales. In that sensea purely kinematic
large scale turbulent dynamo is impossible! Any hope for an-
alytic progress is therefore slim. However, the model of Sub-
ramanian (1997, 1999) is an exception. Subramanian (1997;
hereafter S97) extended the kinematic models of of Kazantsev
(1968) and Vainshtein & Kitchatinov (1986) by including am-
bipolar diffusion (in the strong coupling approximation) as a
nonlinearity. Under the common assumption that the velocity is
delta-correlated in time, S97 derived a nonlinear equation for
the evolution of the correlation functions of magnetic field and
magnetic helicity. Although the models of Kazantsev (1968)
and Novikov et al.(1983) are usually known to describe small-
scale field generation, Subramanian (1999; hereafter S99) found
that in the presence of fluid helicity there is the possibility of
tunnelling of bound-states corresponding to small scales to un-
bounded states corresponding to large scale fields, which are
force-free.

In this Letter we present numerical solutions to the closure
model of S99. We stress that we donotadvocate ambipolar dif-
fusion (AD) as being dominant over the usual feedback from
the Lorentz force in the momentum equation. Instead, our mo-
tivation is to establish a usefultoy modelto study effects of
nonlinearity in dynamos. Our numerical solutions may provide
guidance for further analytic treatment of these equations in pa-
rameter regimes otherwise inaccessible. We begin however by
considering first solutions of the fully three-dimensional MHD
equations in a periodic box using AD as the only nonlinearity.

2. Box simulations for a finite system

In this section we adopt the MHD equations for an isothermal
compressible gas, driven by a given body forcef , in the presence
of AD, but ignoring the Lorentz force
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Fig. 1. Images ofBy andJy in an arbitrarily chosenxy plane.1203

meshpoints,t = 400. Note the systematic variation ofBy in the x-
direction and the presence of current filaments elongated preferentially
in they-direction.

D ln ρ

D t
= −∇ · u, (1)

D u

D t
= −c2
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3∇∇ · u) + f , (2)

∂A

∂t
= (u + uD) × B − ηµ0J , (3)

where D/Dt = ∂/∂t + u · ∇ is the advective derivative,
B = ∇ × A is the magnetic field,J = ∇ × B/µ0 is the
current density, andf is the random forcing function as speci-
fied in B2000. The nonlinear drift velocityuD due to AD can
be written asuD = aJ × B. We use nondimensional units
wherecs = k1 = ρ0 = µ0 = 1. Here,cs is the sound speed,
k1 the smallest wavenumber of the box (so its size is2π), ρ0 is
the mean density, andµ0 is the vacuum permeability. Since AD
is the only nonlinearity in Eq. (3) we can always normalizeB
such thata = 1.

The model presented here is similar to Run 3 of B2000,
whereµ = η = 2 × 10−3 and the forcing wavenumberkf is 5.
With a rms velocity of around 0.3 the magnetic Reynolds num-
ber based on the forcing scale isR

(kf )
m = 200. In Fig. 1 we show

a grey scale representation of a slice of the magnetic field and
the current density att = 400. Note the presence of a large scale
magnetic field that varies in thex-direction with wavenumber
k = 1. In Fig. 2 we show the spectra of magnetic and kinetic
energies. The peak of magnetic energy atk = 1 shows the de-
velopment of large scale magnetic fields. Further, the current
density is concentrated into narrow filamentary structures, typ-
ical of AD (see Brandenburg & Zweibel 1994).

Unfortunately, the severity of the (empirical) diffusive
timestep limit,δt ≤ 0.16δx2/ηAD, whereηAD = aB2, pre-
vented us from running much longer at high resolution (1203

meshpoints). For603 meshpoints this limit is unimportant, and
so we were able to run untilt = 900, a time when the large
scale field was much more clearly defined. In the inset of Fig. 2,
we show the evolution for such a case, but with a forcing at
kf = 10 (giving larger scale separation). Note again the peak of
EM at k = 1 and also the suppression of magnetic field at the
next smaller scale, corresponding tok ≥ 2. Both these features

Fig. 2. Spectra of magnetic energy (solid lines), kinetic energy (dash-
dotted line), magnetic helicity (normalized byk/2; dashed line) for the
run shown in Fig. 1. The inset shows spectra of a run with forcing at
k = 10 and603 meshpoints for different times tillt = 900.

are similar to the case with full Lorentz force and without AD
(Figs. 3 and 17 of B2000).

Our main conclusion from these results is first of all that
large scale field generation works in spite of AD, contrary to
earlier suggestions that AD might suppress the large scale dy-
namo process (Kulsrud & Anderson 1992). Secondly, AD pro-
vides a nonlinear saturation mechanism for the magnetic field
at all scales, except for the scale of the box, where a force-free
field develops for whichuD vanishes. Like in the simulations
of B2000 this provides a ‘self-cleaning’ mechanism, without
which the field would be dominated by contributions from small
scales.

Having established the close similarity between models with
AD versus full Lorentz force as nonlinearity, we now move on
to discuss the nonlinear closure model of S99 with AD as a ‘toy’
nonlinearity.

3. Closure model for an infinite system

Under the assumptions that the velocity is delta-correlated
in time and the magnetic field is a gaussian random field
S97 derived equations for the longitudinal correlation function
M(r, t) and the correlation function for magnetic helicity den-
sity, N(r, t). The velocity is represented by a longitudinal cor-
relation functionT (r) and a correlation function for the kinetic
helicity density,C(r). We change somewhat the notation of S99
and define the operators

D̃(·) =
1
r4

∂

∂r

(
r4·) , D(·) =

∂

∂r
(·), (4)

so the closure equations can be written as

Ṁ = 2D̃(ηTDM) + 2GM + 4αH, (5)

Ṅ = −2ηTH + αM, (6)

whereH = −D̃DN is the correlation function of the current
helicity, G = −D̃DT is the effective induction,

α = α0(r) + 4aH(0, t) (7)

ηT = η + η0(r) + 2aM(0, t) (8)

LE
T

T
E

R



A. Brandenburg & K. Subramanian: Large scale dynamos with ambipolar diffusion nonlinearity L35

are functions resembling the usualα-effect and the total mag-
netic diffusivity. Hereα0(r) = −2[C(0) − C(r)] andη0(r) =
T (0) − T (r). Note that at large scales

α∞ ≡ α(r → ∞) = − 1
3τ〈ω · u〉 + 1

3τAD〈J · B〉/ρ0, (9)

η∞ ≡ ηT(r → ∞) = 1
3τ〈u2〉 + 1

3τAD〈B2〉/µ0ρ0, (10)

where τAD = 2aρ0. Expression (9) is similar to theα-
suppression formula first found by Pouquet et al.(1976). Hereα
andηT are scale dependent (increasing until the forcing scale)
and, in addition, both are affected by AD.

We constructT (r) andC(r) from an analytic approximation
of the kinetic energy and helicity spectra,EK(k) andHK(k),
respectively. Zero velocity at large scales means thatEK(k) ∼
k4 for k → 0. At some wavenumberk = kf the spectrum turns
to ak−5/3 Kolmogorov spectrum, followed by an exponential
cutoff, so we take

EK(k) =
E0 (k/kf)4

1 + (k/kf)17/3 exp(−k/kd). (11)

We use parameters representative of the simulations of B2000,
so E0 = 0.01, kf = 5 and kd = 25, giving R

(kf )
m = 200

for η = 0.002. Like in B2000 we assume the turbulence fully
helical, soHK = 2kEK (e.g. Moffatt 1978). The correlation
functionsT (r) andC(r) are then obtained via

T (r) = 2τ
∫ ∞

0
EK(k)

j1(kr)
kr

dk ≡ I(EK(k)), (12)

andC(r) = I(HK(k))/4, wherej1(x) = (sinx−x cos x)/x2

andτ is the correlation time. (We useτ = 4, representative of
the kinematic stage of Run 3 of B2000.)

We solve Eqs. (5) and (6) using second order finite dif-
ferences and a third order time step on a uniform mesh in
0 < x < L with up to 10,000 meshpoints andL = 10π, which
is large enough so that the outer boundary does not matter. In
the absence of helicity,C = 0, and without nonlinearity,a = 0,
we recover the model of Novikov et al.(1983). Thecritical mag-
netic Reynolds number based on the forcing scale is around 60.
With helicity this critical Reynolds number decreases, confirm-
ing the general result that helicity also promotes small scale
dynamo action (cf. Kim & Hughes 1997, S99). In our model
with nonlinearity the exponential growth of the magnetic field
terminates when its energy becomes comparable to the kinetic
energy (fora = 1). After that point the magnetic energy con-
tinues however to increase nearly linearly. Unlike the case of
the periodic box (Sect. 2) the magnetic field can here extend to
larger and larger scales; see Fig. 3. The corresponding magnetic
energy spectra,

EM(k, t) =
1
π

∫ L

0
M(r, t) (kr)3 j1(kr) dk, (13)

are shown in Fig. 4.
The resulting magnetic field is strongly helical and the mag-

netic helicity spectra (not shown) satisfy|HM| <∼ (2/k)EM.
The development of a helicity wave travelling towards smaller

Fig. 3. Evolution of magnetic correlation functions for different times.
The correlation function of the magnetic helicity is shown in the inset.
η = 10−3.

Fig. 4. Evolution of magnetic energy spectra. Note the propagation of
magnetic helicity and energy to progressively larger scales. Thek−2

slope is given for orientation.

and smallerk, as seen in Fig. 4, is in agreement with the closure
model of Pouquet et al.(1976). In the following we shall address
the question of whether or not the growth of this large scale field
(which is nearly force-free) depends on the magnetic Reynolds
number (as in B2000). We have checked that to a very good
approximation the wavenumber of the peak is given by

kpeak(t) ≈ α∞(t)/η∞(t). (14)

This result is familiar from mean-field dynamo theory (see also
S99) and is consistent with simulations (B2000, Sect. 3.5). Note
that herekpeak decreases with time becauseα∞ tends to a fi-
nite limit andη∞ increases. (This is not the case in the box
calculations wherekpeak ≥ 2π/L.)
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Fig. 5. aEvolution of〈J ·B〉 for different values ofη. The correspond-
ing value ofα∞ is shown on the right hand side of the plot.b Evolution
of magnetic energy for the same values ofη.

4. Resistively limited growth on large scales

In an unbounded system the magnetic helicity,〈A · B〉 =
6N(0, t), can only change if there is microscopic magnetic dif-
fusion and finite current helicity,〈J · B〉 = 6H(0, t),

d〈A · B〉/dt = −2η〈J · B〉. (15)

The closure model of S97 and S99 also satisfies this constraint.
(Note that ambipolar and/or turbulent diffusion do not enter!)
As explained in B2000, this constraint limits the speed at which
the large scale field can grow, but not its final amplitude. One
way to relax this constraint is if there is a flux of helicity through
open boundaries (Blackman & Field 2000, Kleeorin et al.2000),
which may be important in astrophysical bodies with bound-
aries. Here, however, we consider an infinite system.

In Fig. 5 we show that, after some timet = ts, 〈J · B〉
reaches a finite value. This value increases somewhat asη is de-
creased. In all cases, however,〈J ·B〉 stays below〈ω·u〉(2τ/a),
so that|α∞| remains finite; see (9). A constant〈J · B〉 implies
that〈A ·B〉 grows linearly at a rate proportional toη. However,
since the large scale field is helical, and since most of the
magnetic energy is by now (aftert = ts) in the large scales,
the magnetic energy is proportional to〈B2〉 ≈ kpeak〈A · B〉,
and can therefore only continue to grow at a resistively lim-

ited rate, see Fig. 5. We emphasize that this explanation is anal-
ogous to that given in B2000 for the full MHD case; the helicity
constraint is independent of the nature of the feedback!

5. Conclusions

Our results have shown that ambipolar diffusion (AD) provides
a useful model for nonlinearity, enabling analytic (or semi-
analytic) progress to be made in understanding nonlinear dy-
namos. There are two key features that are shared both by this
model and by the full MHD equations: (i) large scale fields are
the result of a nonlocal inverse cascade as described by theα-
effect, and (ii) after some initial saturation phase the large scale
field continues to grow at a rate limited by magnetic diffusion.
We reiterate that in astrophysical bodies the presence of open
boundaries may relax the helicity constraint. Furthermore, the
presence of large scale shear or differential rotation provides
a means of amplifying toroidal magnetic fields quite indepen-
dently of magnetic helicity, but this still requires poloidal fields
for which the above conclusions hold.
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