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Turbulence from localized random expansion waves
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ABSTRACT

In an attempt to determine the outer scale of turbulence driven by localized sources, such as
supernova explosions in the interstellar medium, we consider a forcing function given by the
gradient of Gaussian profiles localized at random positions. Different coherence times of the
forcing function are considered. In order to isolate the effects specific to the nature of the
forcing function, we consider the case of a polytropic equation of state and restrict ourselves to
forcing amplitudes such that the flow remains subsonic. When the coherence time is short, the
outer scale agrees with the half-width of the Gaussian. Longer coherence times can cause extra
power at large scales, but this would not yield power-law behaviour at scales larger than that
of the expansion waves. At scales smaller than the scale of the expansion waves the spectrum
is close to power law with a spectral exponent of −2. The resulting flow is virtually free of
vorticity. Viscous driving of vorticity turns out to be weak and self-amplification through the
non-linear term is found to be insignificant. No evidence for small-scale dynamo action is
found in cases where the magnetic induction equation is solved simultaneously with the other
equations.
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1 I N T RO D U C T I O N

Turbulence plays an important role in many branches of Astro-
physics. During the past decade simulations have been employed to
address fundamental questions in turbulent stellar convection zones
(Spruit, Nordlund & Title 1990), accretion discs (Balbus & Haw-
ley 1998) and interstellar turbulence (Korpi et al. 1999a; Balsara
et al. 2004; Dib, Bell & Burkert 2006). In these three cases the
nature of energy injection is quite different; convective instability,
magnetorotational instability and explicit driving through supernova
explosions, respectively. Nevertheless, important insights into the
nature of astrophysical turbulence have been obtained by studying
turbulence forced on large scales by adding random time-dependent
large-scale perturbations to the velocity. This allows the study of
the turbulent cascade of kinetic energy from large scales to smaller
scales, and eventually down to the dissipative scale (see e.g. Bran-
denburg & Subramanian 2005, for a review). While the scale of
the aforementioned instabilities can indeed be large (comparable
with the system size), this is not so evident in the case of random
forcing by supernova explosions. The energy released by supernova
explosions, and to a lesser extend also by stellar winds and outflows,
suffices to power interstellar turbulence (Vázquez-Semadeni, Passot
& Pouquet 1996). The anticipated outer scale of the turbulence is
around 100 pc (e.g. Beck et al. 1996). This is large compared with
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the size of individual supernova explosion sites. Some supernova
remnants can stay reasonably coherent for scales up to several tens
of parsec. Furthermore, supernova explosions are known to be clus-
tered, forming thereby large expanding patches called superbubbles
(e.g. Norman & Ikeuchi 1989; Ferrière 1992). Their scale is often
larger than the scaleheight of the galactic disc, and they are pri-
marily responsible for driving fountain-like outflows. In any case, it
appears that the localized point-like supernova explosions are able
to act as a driver of the turbulence on a much larger scale.

An obvious question concerns the connection between the artifi-
cial forcing assumed in many computer simulations and any of the
more realistic types of forcing. In the present paper, we consider
the properties of turbulence driven by random, localized expansion
waves, mimicking certain aspects of supernova-driven explosions.
One of the questions we are able to address with such a setup con-
cerns information about the scale of the energy-carrying eddies of
turbulence that is driven by small localized expansion waves. Is it
true that such localized energy injections produce kinetic energy pre-
dominantly at the scale of the original expansion wave, even though
this scale is in general quite small? What are the effects, if any, that
could shift the dominant power to larger scales. Large scales might
plausibly arise if the duration of energy injection at one particular
site becomes comparable to or larger than the turnover time of the
resulting turbulence. This would reinforce the original expansion
wave until it has grown to a larger size. These issues are not di-
rectly connected with compressibility or with the effects of cooling
or the nature of the equation of state of the gas. Thus, although
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interstellar turbulence is certainly highly supersonic, we consider
here the case of subsonic turbulence in order to make the connec-
tion between solenoidal forcing in the form of plane waves and
irrotational forcing driving localized expansion waves.

2 M E T H O D

We solve the compressible Navier–Stokes equations assuming a
polytropic equation of state relating the pressure p to the density
ρ via p = Kργ with γ = 5/3 and polytropic coefficient K =
c2

s0/(γ ρ
γ−1
0 ), where cs0 and ρ 0 are constants. The momentum equa-

tion can then be written in the form

Du

Dt
= −∇h + f + Fvisc, (1)

where

h = ρ0c2
s0

γ − 1

(
ρ

ρ0

)γ−1

(2)

is the enthalpy, D/D t = ∂/∂t + u · ∇ is the advective derivative and
Fvisc = ρ−1∇ · (2ρνS) is the viscous force, where Si j = (1/2)(ui, j

+ u j,i ) − (1/3) δ i j ∇ · u is the traceless rate of strain tensor. The
density obeys the continuity equation,

D ln ρ

Dt
= −∇ · u. (3)

We adopt a Gaussian potential forcing function f of the form

f (x, t) = ∇φ (4)

with

φ(x, t) = N exp
{

[x − xf(t)]2/R2
}

, (5)

where x = (x , y, z) is the position vector, xf(t) is the random forcing
position, R is the radius of the Gaussian and N is a normalization
factor. We consider two forms for the time dependence of xf. First,
we take xf such that the forcing is δ correlated in time. Second, we
include a forcing time δtforce that defines the interval during which
xf remains constant. On dimensional grounds the normalization is
chosen to be N = cs0

√
cs0 R/�t , where

�t = max (δt, δtforce) (6)

is the length of the time-step, δt, in the δ-correlated case or equal to
the mean interval δtforce during which the force remains unchanged,
depending on which is longer. We begin by considering the na-
ture of flows generated in each case in the absence of a magnetic
field. We use the PENCIL code,1 which is a non-conservative, high-
order, finite-difference code (sixth order in space and third order in
time) for solving the compressible hydrodynamic and hydromag-
netic equations. We adopt non-dimensional variables by measuring
speed in units of the sound speed, cs0, and length in units of 1/k1,
where k1 is the smallest wavenumber in the periodic domain. This
implies that the non-dimensional size of the domain is (2π)3.

3 R E S U LT S

3.1 Delta-correlated forcing function

We begin with the case where δt force = 0, so the forcing function
is δ correlated in time. In Figs 1 and 2, we show the resulting time
averaged energy spectra for two different resolutions. The results

1 http://www.nordita.dk/software/pencil-code

Figure 1. Time averaged energy spectra for R = 0.2 (dotted line), 0.5
(dashed line) and 1 (solid line). The durations of the runs are N turn =
333, 224 and 81 turnover times, respectively. 1283 mesh points, ν = 10−3

and δ-correlated forcing. The vertical arrows indicate the effective forcing
wavenumber, as obtained from equation (8).

Figure 2. Same as Fig. 1, but for 2563 mesh points, ν = 5 × 10−4, for
R = 0.2 (dotted line), 0.5 (dashed line) and 1 (solid line). The durations of
the runs are N turn = 120, 64 and 29 turnover times, respectively.

are relatively robust with respect to changes in the resolution. Also,
the spectra are found to converge quite quickly after only about five–
seven turnover times, suggesting that there are no strong transients.
For the results presented below, the durations of the runs, T run, is
given in terms of the turnover time,

Nturn = urmskpeakTrun, (7)

where kpeak is the effective forcing wavenumber which, in turn,
depends on the radius of the initial expansion wave, R. Indeed,
the energy spectra show maximum power at the wavenumber kpeak,
which is approximately inversely proportional to R, with

kpeak R ≈ 2. (8)

The wavenumber kpeak agrees with the width of the Fourier-
transformed forcing function. [Note that the Fourier transform of
exp (−x2/R2) is exp (− k2R2/4).] This result is therefore not surpris-
ing, but it confirms quite clearly that a δ-correlated forcing function
consisting of localized expansion waves produces maximum energy
injections at the scale of the expansion wave itself. This would there-
fore not explain the energy spectrum seen for example in simula-
tions of supersonic turbulence (Porter, Woodward & Pouquet 1998;
Padoan & Nordlund 1999; Haugen, Brandenburg & Mee 2004) or
those inferred for interstellar turbulence (Han, Ferriere & Manch-
ester 2004), where energy injection is assumed to occur at the scale
of the domain.

The energy spectrum shows a distinct k−2 subrange. Such a slope
is predicted for shock turbulence (Kadomtsev & Petviashvili 1973),
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Figure 3. Time averaged energy spectra for R = 0.2 for δt force = 1 (St =
0.08, dashed line), δt force = 0.2 (St = 0.05, solid line) and δt force = 0 (i.e. δ
correlated, St = 0, dotted line). The durations of the runs are N turn = 16, 64
and 333 turnover times, respectively, and the rms velocities are 0.008, 0.027
and 0.058, respectively. 1283 mesh points, ν = 10−3.

although here the flow is subsonic and without shocks. However,
it may be interesting to note that a k−2 spectrum has also been
seen in the irrotational component of transonic turbulence (Porter
et al. 1998). Energetically, the irrotational component is subdomi-
nant compared with the solenoidal components (Porter et al. 1998;
Padoan & Nordlund 1999; Haugen et al. 2004). In the present simu-
lations, however, there is hardly any vorticity and the flow is entirely
dominated by the irrotational component. This, in turn, is a conse-
quence of the irrotational nature of the forcing function combined
with the fact that the viscosity is low, so that very little vorticity is
produced. We consider vorticity production in more detail in Sec-
tion 3.3.

3.2 Forcing function with memory

Next we look at the case where the expansion wave persists for a
certain amount of time, δtforce. In Fig. 3, we show time averaged
spectra for different values of δtforce. This time interval is conve-
niently expressed in non-dimensional form as a Strouhal number
(Krause & Rädler 1980; Landau & Lifshitz 1987),

St = δtforceurmskpeak. (9)

Note that for larger values of δtforce the spectrum consists of sepa-
rated bumps, but the overall power appears to be shifted to larger
scales and smaller wavenumbers. The presence of bumps is sug-
gestive of an acoustic resonance or standing wave pattern that may
be excited in the simulation box. Such a phenomenon is unfamil-
iar in the context of mostly vortical turbulence. It is plausible, and
indeed compatible with our as yet limited results, that these bumps
can only occur if there is sufficient scale separation between kpeak

and k1. Furthermore, bumps in the spectrum seem to be possible
only when the memory time is not too short, i.e. when the effects of
temporal randomness are limited.

In Figs 4 and 5, we demonstrate that decreasing viscosity and
increasing resolution produces more power at small scales, gradually
building up a k−2 power law between the forcing scale and the
dissipative cut-off scale when the resolution is sufficient for those
scales to be resolved.

Visualizations of the density (Fig. 6) show how the initially highly
ordered expansion waves turn rapidly into a complicated pattern.2

2 Animations of the density can be found at http://www.nordita.dk/brandenb/
movies/gaussianpot

Figure 4. Dependence on viscosity. Time averaged energy spectra for ν = 2
× 10−4 (solid line), ν = 5 × 10−4 (dashed line), ν = 10−3 (dotted line). The
durations of the runs are N turn = 28, 17 and 138 turnover times, respectively,
and the values of the St are 0.23, 0.19 and 0.17, respectively. δt force = 1,
R = 0.2, 1283 mesh points.

Figure 5. Dependence on resolution. Time averaged energy spectra for
R = 0.2, using 5123 mesh points (solid line, ν = 5 × 10−5), 2563 mesh
points (dashed line, ν = 10−4) and 1283 mesh points (dotted line, ν = 2 ×
10−4). The durations of the runs are N turn = 22, 59 and 28 turnover times,
respectively, and the values of St are 0.25, 0.24 and 0.23, respectively. The
insets shows the evolution of urms and ωrms for the run with 5123 mesh
points.

By the time t = 50 the velocity has reached a statistically steady
state and the flow has ceased to bear any resemblance to the initial
expansion wave.

3.3 Vorticity production

One of the main differences between the present forcing function
and those used in some previous papers (Eswaran & Pope 1988;
Porter et al. 1998; Padoan & Nordlund 2002; Haugen et al. 2004)
is that here the forcing is completely irrotational, i.e. ∇ × f = 0
and ∇ · f �= 0. Therefore, unlike previous cases where instead ∇
× f �= 0 and ∇ · f = 0, and where vorticity (ω = ∇ × u) was
immediately produced, here vorticity can only be produced through
viscous interactions. This can be seen by writing the viscous force
in the form

Fvisc = −ν∇ × ∇ × u + 4

3
ν∇∇ · u + νG, (10)

where G i = Si j ∇ j ln ρ is a term that could drive vorticity even
with zero vorticity initially. Indeed, the vorticity equation, obtained
by taking the curl of equation (1), can then be written as

∂ω

∂t
= ∇ × (u × ω) + ν∇2ω + ν∇ × G. (11)
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Figure 6. Visualization of ln ρ on the periphery of the box at different times, for k 1 R = 0.2, Re = 50, St = 0.25, ν = 5 × 10−5 and 5123 mesh points. Note
that in the fully developed state individual expansion waves can hardly be recognized.

Figure 7. Kinetic and magnetic energy spectra, E(k) and M(k), respectively,
at three different times, separated by �t = 20δt force, with for R = 0.2, Rm

= u rms/(ηk peak) = 250, Re = 50 and 5123 mesh points. The duration of the
run is N turn = 22 turnover times. ν = 5 × 10−5, η = 5 × 10−5.

Note the absence of the baroclinic term, i.e. the cross product of
temperature and specific entropy gradients. This is because we have
restricted ourselves to a gas with an isothermal equation of state.
The baroclinic term is known to produce vorticity (e.g. Korpi et al.
1999b). The non-linear term, ∇ × (u × ω), could in principle lead
to exponential amplification of an initial seed vorticity – much like
a term in the small-scale dynamo problem, discussed in the next
section. However, no evidence for such an effect has been found
in the present simulations. Thus, the only remaining term is ∇ ×
G which is due to viscosity. One might therefore expect that as we
decrease the Reynolds number, defined here in terms of kpeak as

Re = urms/(νkpeak), (12)

the amount of vorticity production decreases. The numerical simu-
lations yield values for the normalized vorticity,

normalized vorticity = ωrms/(urmskpeak), (13)

that are essentially within the ‘noise’. Indeed, the data shown in
Table 1 are well below unity and do not give a clear trend as a
function of resolution or Reynolds number. For all these runs the
Strouhal number is St ≈ 0.25.

In conclusion, the amount of vorticity production depends mostly
on the numerical resolution, suggesting that no measurable vorticity
is produced by physical effects.

3.4 Dynamo action?

In view of the formal analogy between the vorticity and induction
equations (Batchelor 1950), it appears that dynamo action should

Table 1. Results for the normalized vorticity, ωrms/(u rms k peak), as a func-
tion of Re and resolution. The durations of the runs vary between N turn =
16 and 250 turnover times, and ν varies between 10−3 and 5 × 10−5. For
the high resolution run with 5123 mesh points and ν = 5 × 10−5, we have
N turn = 59 turnover times.

Re 5123 2563 1283

50 1.4 + ×10−3 8.7 × 10−3

25 1.1 × 10−2 2.9 × 10−3

12 1.6 × 10−2 2.0 × 10−3

4 7.6 × 10−3 1.5 × 10−3

be as difficult to achieve as the amplification of vorticity by the non-
linear term, ∇ × (u ×ω). In order to address this problem, we solve
the induction equation for the magnetic field B,

∂B

∂t
= ∇ × (u × B) + η∇2 B, (14)

simultaneously with the other equations. Equation (1) gains a term
– the Lorentz force per unit mass, J × B/ρ – but this effect would
only become important once the magnetic field becomes strong.
(Here, J = ∇ × B/μ0 is the current density and μ0 is the vacuum
permeability.) As initial condition, we adopt a magnetic vector po-
tential that is δ correlated in space. This results in a magnetic energy
spectrum proportional to k4.

In all the cases that we have investigated so far, we have not
found evidence of field amplification, i.e. there is no dynamo ac-
tion. Our highest resolution run has 5123 mesh points and a mag-
netic Reynolds number, Rm = u rms/(ηk peak), of 250 and Re =
50. Kinetic and magnetic energy spectra are shown in Fig. 7. For
this run the magnetic decay rate, λ = − dln B rms/dt , is about
30 times the ohmic decay rate, ηk2

peak. This is approximately equal
to the scale separation ratio between kpeak and the dissipative cut-off
wavenumber. Such a rapid decay rate suggests that this type of flow
has a highly destructive effect on the magnetic field. Energy spectra
of the magnetic field confirm that the spectral energy decays at small
scales, while it stays unchanged at large scales.

The absence of any dynamo action agrees with earlier results for
purely irrotational turbulence (Brooks 1999). On the other hand,
earlier analytic considerations suggested that dynamo action should
be possible for irrotational flows and that the growth rate should in-
crease with increasing Mach number to the fourth power (Kazantsev,
Ruzmaikin & Sokoloff 1985; Moss & Shukurov 1996). Subsequent
work by Haugen et al. (2004) did not discuss growth rates, but crit-
ical magnetic Reynolds numbers which shows that the small-scale
(non-helical) dynamo becomes about twice as hard to excite when
the Mach number exceeds unity. This was explained by the presence
of an additional irrotational contribution in the supersonic case. This
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contribution remained however subdominant and did not contribute
to the dynamo. This is consistent with the present result that up
to the largest magnetic Reynolds numbers accessible today, purely
irrotational turbulence does not produce dynamo action.

4 C O N C L U S I O N

The localized expansion waves used as forcing functions in the
present paper resemble in some ways the driving by supernova ex-
plosions. An obvious difference is that the supernova driving pro-
duces highly supersonic flows. This may be important in connection
with understanding the amount of vorticity production in irrotation-
ally forced flows. Indeed, Korpi et al. (1999b) found that the main
driver of vorticity production in their supernova driven turbulence
simulations is the baroclinic term.

The present work suggests that the turbulence would indeed be
peaked primarily at small scales. Memory effects (i.e. finite values
of δtforce) contribute somewhat to enhancing power at larger scales,
but, because of the dip in power at intermediate scales, the resulting
energy spectrum is still very different from the power-law spectra
obtained with forcing directly at large scales. The main difference
is the absence of vorticity in the present simulations. Since vorticity
is mainly driven by the baroclinic term, we may expect that it is also
this term that would primarily contribute to enhanced power at low
wavenumbers, corresponding to scales larger than the radius of the
original expansion waves.
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