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Abstract
Aspects of turbulence in protostellar accretion discs are being reviewed. The emergence of
dead zones due to poor ionization and alternatives to the magneto-rotational instability are
discussed. The coupling between dust and gas in protostellar accretion discs is explained and
the turbulent drag is compared with laminar drag in the Stokes and Epstein regimes. Finally,
the significance of magnetic-field generation in turbulent discs is emphasized in connection
with driving outflows and with star–disc coupling.

PACS numbers: 97.82.−j, 97.82.Fs, 97.82.Jw

(Some figures in this article are in colour only in the electronic version.)

1. Introduction

One of the amazing properties of the accretion disc theory is
the fact that it is applicable over a vast range of scales, from
discs around supermassive black holes to those around stellar
mass black holes and around neutron stars, to young stellar
objects and possibly even protoplanets. This is mainly because
the equations of hydrodynamics and magnetohydrodynamics
are scale-invariant over broad ranges. In all cases, accretion is
caused by the action of the Reynolds and Maxwell stresses.
The stress is assumed to be expressible in terms of the
radial angular-velocity gradient multiplied by some turbulent
viscosity coefficient. However, a major problem is that in
protostellar discs the temperatures are rather low, so the
degree of ionization depends significantly on the cosmic-ray
ionization. At a radial distance of about 1 AU, the regions
near the midplane are strongly shielded, which implies the
possibility of ‘dead zones’ (Gammie 1996), where magnetic
effects cannot play a role. This leads to our first topic.

Accretion is necessary for accumulating the mass of the
central object, which is in this case a protostar. This accretion
is presumably of a turbulent origin, because the molecular
viscosity is obviously far too small. Nevertheless, the
molecular or microscopic viscosity together with microscopic
magnetic diffusion are crucial, and they are, in fact, the main
processes that can heat the disc—in addition to irradiation
from the central star onto the outer surface of the disc.
However, it is still unclear whether in a turbulent disc, planet
formation occurs because of turbulence or in spite of it. This
will be our second topic.

Finally, we address the issue of outflows from the star
and the disc. The occurrence of collimated outflows in star-
forming regions has always been associated with magnetic
fields. Given that magnetic fields can also be produced within
the disc from which such outflows emanate, the question
emerges whether the field necessary for collimation has to be
an external interstellar field, or whether the disc field suffices.
In addition, there will be the stellar field and its coupling to
the ambient magnetic disc. This is thought to be critical for
spinning up the protostar during its formation and spinning
it down later during its evolution. This is the final topic
discussed in this review. We start, however, with a discussion
of the mean accretion stress, its definition and how it is used.

2. The mean accretion stress

In order to get an idea about the nature of turbulence in
accretion discs, it is useful to consider simulations in a local
cartesian geometry with shearing sheet-boundary conditions
in the radial direction. An important output parameter of such
simulations is the Shakura–Sunyaev viscosity parameter, αSS,
which is a nondimensional measure of the turbulent viscosity
νt, in terms of the sound speed cs and the disc scale height H ,
i.e.

νt = αSScs H. (1)

This coefficient is used analogously to the molecular
viscosity and hence is used to multiply the velocity gradient
to get the accretion stress. The main difference is, however,
that the turbulent viscosity multiplies the gradient of the mean
velocity whereas the actual viscosity multiplies the actual
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Figure 1. Time series of the Shakura–Sunyaev viscosity alpha,
αSS(t) (dotted line), compared with a fit of the form equation (6) in
terms of the instantaneous magnetic field strength (solid line). Time
is normalized in terms of the orbital time, Trot = 2π/�, where � is
the local angular velocity. Note that αSS fluctuates strongly in time
about an average value of around 0.007. (Adapted from
Brandenburg (1998).)

turbulent velocity gradients, which can be much higher locally
on very small scales. In the mean field description, the mean
stress is written as

τ̄$φ = −ρνt$
∂�̄

∂$
, (2)

where $ is the cylindrical radius, ρ is the density, �̄ is the
mean angular velocity, and τ̄$φ is the total ‘horizontal’ stress.
This component of the stress tensor enters the conservation
equation for the mean angular momentum,

∂

∂t

(
ρ$ 2�̄

)
+ ∇ ·

(
ρ Ū Ūφ + $̂τ̄$φ

)
= 0. (3)

Here, $̂ = (1, 0, 0)T is the unit vector in a direction away
from the axis, and the overbars denote mean quantities
that are obtained by averaging over the azimuthal
direction. The velocity is then written as U = Ū +u,
and fluctuations of the density ρ are ignored. Also,
for simplicity, we have ignored the vertical component
of the stress, τ̄zφ . Roughly, the two terms under
the divergence balance, so a positive stress, τ̄$φ >0,
causes a negative (inward) accretion velocity, Ū$ < 0.

In a theory that works with mean velocities, Ū , as
opposed to the actual one, U , one needs to calculate the
contributions of small-scale velocities and magnetic fields on
the mean flow through the sum of the mean Reynolds and
Maxwell stresses,

τ̄$φ = −b$ bφ/µ0 + ρu$ uφ, (4)

where b and u denote the fluctuating components of
the magnetic and velocity fields, and µ0 is the vacuum
permeability. The first term, i.e. the magnetic stress, is
usually the largest term. The time-dependence of the resulting
stress determined from a simulation, and expressed in
nondimensional form as

αSS(t) = τ̄$φ/
(
ρcs H 3

2�
)
, (5)

is shown in figure 1. The simulation domain covers only the
upper disc plane. The instantaneous time-dependence follows
closely that of the instantaneous magnetic field strength and
can be described by a fit of the form

αSS(t) ≈ α
(0)
SS + α

(B)
SS

〈B〉
2

B2
0

, (6)

where 〈B〉 is the mean magnetic field averaged over the
entire upper disc plane, and B0 =

√
µ0ρcs is the thermal

equipartition field strength, with cs being the sound speed,
and fit parameters α

(0)
SS ≈ 0.002 and α

(B)
SS ≈ 0.06 (Brandenburg

1998). Blackman et al (2008) have shown that a similar
relationship, albeit without the α

(0)
SS term, can be established

for a number of other simulations published in the literature.
Simulations based on the magneto-rotational instability

(MRI) (Balbus and Hawley 1991, 1998) show that the average
value of αSS(t) is small (around 0.007; see Brandenburg
et al 1995, 1996, Hawley et al 1995, 1996, Stone et al 1996).
Larger values of αSS are obtained with an externally imposed
vertical or axial magnetic field (e.g. Hawley et al 1995,
Torkelsson et al 1996), as is also predicted from equation (6).
However, αSS may well be smaller, depending on simulation
details1. Indeed, there is still an open issue regarding the
convergence of the numerical results (see e.g. Fromang and
Papaloizou 2007, Fromang et al 2007).

The variation of αSS(t) shows a typical timescale of
around 15 orbits. In a simulation with vertical density
stratification, this can be a consequence of the emergence of
cyclic, large-scale dynamo action. The magnetic field reverses
between two maxima, so the actual period is around 30 orbits.
Physically, this timescale is related to the turbulent diffusion
time. This is now reasonably well understood and the details
of the large-scale dynamo magnetic field depend obviously on
boundary conditions. Such cycles are not expected in global
geometry, as can be demonstrated by corresponding mean
field calculations (Bardou et al 2001).

Global simulations of accretion disc turbulence have
been studied by various groups since the late 1990s. A
conceptionally simple approach is that of the cylindrical disc
which omits vertical stratification. In such simulations, the
magnetic field is able to develop over large scales and can
be substantially stronger than in local simulations, resulting
therefore also in larger values of αSS; Armitage (1998) found
αSS ≈ 0.1. Similar results were later confirmed with fully
global simulations by Hawley (2000), who found values of
αSS in the range of 0.1–0.2. Simulations of global discs
permeated by a magnetic field from a central star also
obey equation (6), but in the simulations of Steinacker and
Papaloizou (2002) the magnetic field was weaker, resulting
in αSS values of around 0.004. Similar figures have also been
reported by Nelson and Papaloizou (2003) and Fromang and
Nelson (2006) in the context of turbulent protoplanetary discs
with and without planet–disc interaction. Global simulations
have now also been able to produce estimates for the Reynolds
and Maxwell stresses as a function of radius using the
disc-in-a-box approach (Lyra et al 2008). Among other things,
they find that larger Mach numbers result in larger normalized
accretion stresses, as quantified by the Shakura–Sunyaev
viscosity alpha.

1 Here, the scale height has been defined such that ρ ∼ exp(−z2/H2). Later,
we shall define a scale height such that ρ ∼ exp(− 1

2 z2/H̃2). Note that if

H̃ = H/
√

2 were used in the definition of αSS in equation (1), the resulting
value of αSS would be larger by a factor of

√
2. Note also that in some

definitions of αSS, the factor 3/2 from $∂�/∂$ =
3
2 � is neglected, in

which case αSS would be larger by yet another factor of 3/2, so altogether
3
2

√
2 ≈ 2.1.
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3. Dead zones

When the gas is cool, the main source of ionization is not
thermal, but it is the cosmic-ray ionization from the galaxy
and UV ionization from the central star (and possibly other
nearby stars). Research in this direction has been pursued
by Glassgold et al (1997) and Igea et al (1999). Cosmic-ray
ionization usually plays an important role at moderate and
large distances from the central object and away from the
midplane where cosmic rays are shielded. Here, the column
density of the gas is so high that the degree of ionization is
very small, and the MRI cannot grow because of the large
diffusivity of the field. In addition, magnetic fields and a
magnetized wind from the central star have a tendency to
shield the disc from cosmic rays. The resulting region of low
ionization in the disc is therefore referred to as the dead zone
(Gammie 1996).

Recent work of Fleming and Stone (2003) shows that,
although the local Maxwell stress drops to negligible values
in the dead zones, the Reynolds stress remains approximately
independent of height and never drops below approximately
10% of the maximum Maxwell stress, provided the column
density in that zone is less than 10 times the column density
of the active layers. The nondimensional ratio of stress-to-gas
pressure is just the Shakura and Sunyaev (1973) viscosity
parameter, αSS. Fleming and Stone (2003) find typical values
of a few times 10−4 in the dead zones and a few times 10−3

in the MRI-active layers. Similar results have recently been
confirmed by Oishi et al (2007). On the other hand, Inutsuka
and Sano (2005) have questioned the very existence of dead
zones, and proposed that the turbulent dissipation in the disc
provides sufficient energy for the ionization. However, their
calculation assumes a magnetic Reynolds number that is much
smaller than expected from simulations (see Matsumura and
Pudritz 2006).

The radial extent of the dead zone depends primarily on
the disc column density as well as the effects of grains and
radiation chemistry (e.g. Sano et al 2000, Matsumura and
Pudritz 2005). Inside the dead zone, the magnetic Reynolds
number tends to be below a certain critical value that is
somewhere between 1 and 100 (Sano and Stone 2002),
making MRI-driven turbulence impossible. Estimates for
the radial extent of the dead zone range from 0.7–100 AU
(Fromang et al 2002), to 2–20 AU in calculations by
Semenov et al (2004). For smaller radii, thermal and the
UV ionization are mainly responsible for sustaining some
degree of ionization (Glassgold et al 1997, Igea et al 1999).
The significance of the reduced value of αSS in the dead
zones is that it provides a mechanism for stopping the inward
migration of Jupiter-sized planets (Matsumura and Pudritz
2005, 2006). Jets can still be launched from the well-coupled
surface layer above the dead zone (e.g. Li 1996; Campbell
2000).

Although the MRI may be inactive in the bulk of
the disc, there are still alternative mechanisms of angular
momentum transport. In protostellar discs, there are probably
at least two other mechanisms that might contribute to the
accretion torque: density waves (Różyczka and Spruit 1993)
and the interaction with other planets in the disc (Goodman
and Rafikov 2001). An additional mechanism that has been

investigated recently is the so-called streaming instability that
results from the dust trying to move at Keplerian speed relative
to the surrounding gas that rotates slightly at sub-Keplerian
speed due to partial pressure support (Johansen and Youdin
2007, Youdin and Johansen 2007).

Another frequently discussed proposal is the possibility
that the turbulence in the disc might be driven by a nonlinear
finite amplitude instability (Chagelishvili et al 2003). While
Balbus et al (1996) and Hawley et al (1999) have given
general arguments against this possibility, Afshordi et al
(2005) and other groups have continued to investigate
the so-called bypass to turbulence. The basic idea is that
successive strong transients can maintain a turbulent state
in a continuously excited manner. Lesur and Longaretti
(2005) have recently been able to quantify more precisely the
critical Reynolds number required for instability. They have
also highlighted the importance of pressure fluctuations that
demonstrate that a general argument by Balbus et al (1996)
against nonlinear hydrodynamic instabilities is insufficient.

Yet another possibility is to invoke convectively stable
vertical density stratification which may give rise to the
so-called strato-rotational instability (Dubrulle et al 2005).
This instability was recently discovered by Molemaker
et al (2001) and the linear stability regime was analysed by
Shalybkov and Rüdiger (2005). However, the presence of
no-slip radial boundary conditions that are relevant to the
experiments are vital for the mechanism to work. Indeed,
the instability vanishes for an unbounded regime, making it
irrelevant for accretion discs (Umurhan 2006).

4. Dust dynamics in disc turbulence

An important aspect of protostellar discs is their capability
to produce planets. This requires the local accumulation of
dust to produce larger conglomerates that can condense into
rocks and boulders that are big enough to be decoupled from
their ambient gas flow, and that can combine to grow under
the influence of self-gravity.

The dynamics of dust particles depends critically on their
size. Small particles are essentially advected by the gas flow,
whereas larger ones do not significantly interact viscously
with the gas and their dynamics is essentially governed by
the gravitational field leading to Keplerian orbital motion and
to settling toward the midplane. If the dust grains are small,
turbulence will stir up the dust, preventing it from settling.
Particles of radius ap can be considered big if its so-called
stopping time, τs, is long compared with the orbital time. The
stopping time is essentially the time taken by a particle to
decelerate by a factor of 1/e. The precise expression for τs

depends critically on the ratio of the radius of the particle, ap,
to the mean free path of the gas, `. If ap/` � 1, as is the case
for dust particles in the Earth’s atmosphere, one can use the
Stokes formula for the drag force,

F D = −6πρνapup (Stokes drag), (7)

where up is the velocity of the particle. Note that the drag
force is linear in up, so we can write FD as mpup/τs, where m
is the mass of the particle. To get the stopping time, this drag
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force must be balanced by the mass of the particle times its
acceleration, i.e.

m
dup

dt
= −F D ≡ −m

up

τs
. (8)

We see that the particle speed indeed declines exponentially
and that the stopping time is given by τs = mup/FD, where
up = |up|.

In protostellar discs, the mean free path is very long, so
ap/` � 1, and one is in the so-called Epstein regime where
(Seinfeld 1986)

F D ≈ −ρa2
pcsup (Epstein drag). (9)

This basically means that the mean free path in the kinetic gas
formula for the viscosity, ν = 13`cs, is replaced by ap, so the
effective viscosity is given by ∼apcs.

Finally, when the velocity of the particle is so large
that the Reynolds number with respect to the particle radius,
apup/ν, exceeds a certain critical value, the flow around the
body is no longer laminar, but turbulent, and so the drag force
begins to depend quadratically on the velocity of the particle,
i.e.

F D ≈ −ρa2
pupup (turbulent drag). (10)

In the turbulent regime, the viscosity of the Stokes formula
becomes essentially replaced by apup.

Let us now estimate the terminal descent speed of a
particle in the presence of vertical gravity, g = �2z, and let us
consider a height of one pressure scale height. Note also that
in thin discs �H/

√
2 = cs is the sound speed, but in order to

avoid additional factors of
√

2, we prefer to use here H̃ , so that
�H̃ = cs. In the following, we omit the tilde. The terminal
descent speed is obtained by balancing the drag force with
the gravitational force, mg. In the Epstein regime, we have
therefore

up =
mg

ρa2
pcs

(terminal speed). (11)

Writing this in terms of the Mach number, up/cs, and
expressing the mass in terms of radius and density of the solid,
ρp � ρ, via m ≈ ρpa3

p , we have

up

cs
=

ρpa3
p

ρa2
p

g

c2
s

=
ρp

ρ

ap

H

z

H
=

ρp

ρ

ap

`

`

H

z

H
. (12)

The mean free path can be expressed in terms of viscosity by
using a formula from the kinetic gas theory, ν =

1
3 cs`. Thus,

`/H = 3ν/(cs H) ≈ Re−1. Using Re = 109 for the Reynolds
number in protostellar discs at 1 AU (Brandenburg and
Subramanian 2005), together with z ≈ H , and ρp/ρ ≈ 1010

(see Hodgson and Brandenburg 1998), we have
up

cs
≈ 10 ×

ap

`
. (13)

The dependence up/cs versus ap/` is shown in figure 2 both
for laminar flows in the Epstein regime and for turbulent
flows, where the product of up/cs and ap/` exceeds unity. The
stopping time expressed in nondimensional form is given by

�τs = �
mup

FD
=

ρp

ρ

ap

H
. (14)

Using again ρp/ρ ≈ 1010, we find �τs = 1 for metre-sized
particles.

Figure 2. Regimes of applicability of Stokes, Epstein and turbulent
drag formulae as a function of particle radius, ap, and particle speed,
up. The dotted lines gives the terminal descent speed of particles as
a function of ap. Note that in the turbulent regime the slope of the
dotted curve is 1/2, while in the Epstein regime it is 1. For
comparison, ` ≈ 10 m for the solar nebula at 1 AU.

4.1. Particle trapping in vortices

In the following, we discuss why in the size range where
�τs = 1 particles can be trapped by vortices. This possibility
was first suggested by Barge and Sommeria (1995) and
Tanga et al (1996) who proposed that dust particles could be
trapped within turbulent anticyclonic eddies. This mechanism
can be understood by taking the divergence of the evolution
equations for the particle velocity,

∂up

∂t
= g− 2Ω×up + 3�2xp − τ−1

s (up −u), (15)

where u is the velocity of the gas. Taking separately the curl
and the divergence of this equation, we obtain two scalar
equations,

∂

∂t

(
2Ω ·ωp

)
= −4�2 (

∇ ·up
)
− 2Ωτ−1

s · (ωp −ω), (16)

∂

∂t

(
∇ ·up

)
= 2Ω ·ωp + 2�2

− τ−1
s (∇ ·up), (17)

where ω = ∇ ×u and ωp = ∇ ×up are the vorticities of
gas and particles, respectively, and we have assumed that
the gas is solenoidal, i.e. ∇ ·u, and that only horizontal
velocity components enter. Eliminating 2Ω ·ωp from these
two equations yields (Hodgson and Brandenburg 1998)[

(2Ωτs)
2 + (1 + τs∂t )

2] (
∇ ·up

)
= 2Ωτs · (ω +Ω) . (18)

This equation shows that there will be a trend toward
a negative divergence (i.e. a positive convergence) of the
particle velocity, if

2Ω · (ω +Ω) < 0. (19)

Thus, for particle accumulation, i.e. ∇ ·up < 0, not only does
the vorticity have to be anticyclonic, but also the vorticity
has to be sufficiently anticyclonic so that the above condition
is satisfied. Looking at histograms of vorticity, it is clear
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Figure 3. Gas and dust in the mid-plane after one orbit. Gas density and velocity field for the three values of �τs are indistinguishable, so
only �τs = 1 is shown. The other three plots show dust density and dust velocity field after one orbit for �τs = 0.1, 1 and 10, respectively.
The dust velocity field of �τs = 0.1 is very similar to that of the gas, due to the short stopping time. For �τs = 1, there is a strong
convergence towards the interior of the vortex, whereas for �τs = 10 only a slight density increase in a narrow region that extends from the
vortex along the shear is seen. Courtesy of Johansen et al (2004).

Figure 4. Simulations of Johansen et al (2007) showing the total column density (gas plus all particle sizes) in the horizontal plane. The
insets show the column density in logarithmic scale centred around the most massive cluster in the simulation. Time is given in terms of the
number of orbits after turning on self-gravity. Courtesy of Johansen et al (2007).

that this condition is only satisfied in the very tail of the
distribution of the axial component of the vorticity (see
figure 2 of Hodgson and Brandenburg 1998). The trapping of
gas by anticyclonic vortices has been studied by a number of
people (Barge and Sommeria 1995, Chavanis 2000, Johansen
et al 2004, Tanga et al 1996, Klahr and Henning 1997).
In figure 3, we reproduce the result of a simulation by
Johansen et al (2004), where density and velocity of the gas
are compared with density and velocity of the dust for an
anticyclonic vortex with three values of �τs.

4.2. Planetesimal formation with self-gravity

A number of new simulations have emerged in recent years. A
major step was made in a paper by Johansen et al (2007), who
combined the dust dynamics with self-gravity in the shearing
box approximation (see figure 4). One of the remarkable
results they find is a rapid formation of Ceres-sized bodies
from boulders. Even though the mass of what one might call
protoplanet is growing, this body is also shedding mass during
encounters with ambient material as it flows by. One might
speculate that what is missing is the effect of radiative cooling
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Figure 5. General structure of the outflows typically obtained in the
model of von Rekowski et al (2003), where the cool, dense disc
emits a thermally driven wind and a magneto-centrifugally driven
outflow in a conical shell. (Adapted from von Rekowski et al
(2003).)

of the protoplanet. This would allow the newly accreted
material to lose entropy, become denser, and hence fall deeper
into its potential well.

5. Outflows from protostellar discs

Finally, we discuss the phenomenon of outflows and
collimated jets from protostellar discs. A common approach to
modelling jets is by treating the disc as a boundary condition
where a poloidal magnetic field is wound up by Keplerian
rotation in the disc. A particularly useful set-up has been
discussed and studied in the papers by Ouyed and Pudritz
(1997a, b) and Fendt and Elstner (1999).

By modelling the disc as a boundary condition, it
is impossible to account for the generation and evolution
of magnetic fields that are responsible for the centrifugal
acceleration of outflows via the Blandford and Payne (1982)
mechanism. This was the reason why von Rekowski et al
(2003) proposed a mean field dynamo model that allows
for outflows. We briefly summarize some of the main
findings.

5.1. Models without magnetized central star

A mean field dynamo model with piece-wise polytropic
hydrodynamics was proposed by von Rekowski et al (2003).
Like Ouyed and Pudritz (1997a, b) they start with an
equilibrium corona, where they assume constant entropy and
hydrostatic equilibrium according to cpT (r) = G M∗/r , i.e.
enthalpy equals the negative gravitational potential. In order
to make the disc cooler, a geometrical region for the disc
is prescribed (see figure 5). The entropy contrast between
the disc and corona is chosen such that the initial disc
temperature is about 3 × 103 K in the bulk of the disc. The
low disc temperature corresponds to a high disc density
of about 10−10 . . . 10−9 g cm−3. For the disc dynamo, the
most important parameter is the dynamo coefficient αdyn in
the mean field induction equation. The dynamo α effect
is antisymmetric about the midplane and restricted to the
disc.

The upper panel of figure 6 illustrates that an outflow
develops that has a well-pronounced structure. Within a
conical shell originating from the inner edge of the disc, the
terminal outflow speed exceeds 500 km s−1 and temperature
and density are lower than elsewhere. The inner cone around
the axis is the hottest and densest region, where the stellar
wind speed reaches about 150 km s−1. The wind that develops
from the outer parts of the disc has intermediate values of the
speed.

The structured outflow is driven by a combination
of different processes. A significant amount of angular
momentum is transported outwards from the disc into
the wind along the magnetic field, especially along the
concentrated lines within the conical shell (see the lower panel
of figure 6). The magnetic field geometry is such that the
angle between the rotational axis and the field lines threading
the disc exceeds 30◦ at the disc surface, which is favourable
for magneto-centrifugal acceleration (Blandford and Payne
1982). However, the Alfvén surface is so close to the disc
surface at the outer parts of the disc that acceleration there
is mainly due to the gas-pressure gradient. In the conical
shell, however, the outflow is highly supersonic and yet
sub-Alfvénic, with the Alfvén radius a few times larger than
the radius at the footpoint of the field lines at the disc surface.
The lever arm of about 3 is sufficient for magneto-centrifugal
acceleration to dominate in the conical shell (cf Krasnopolsky
et al 1999).

5.2. Star–disc coupling

We now discuss the interaction of a stellar magnetic field
with a circumstellar accretion disc and its magnetic field. This
problem was originally studied in connection with accretion
discs around neutron stars (Ghosh and Lamb 1979), but it was
later also applied to protostellar magnetospheres (Cameron
and Campbell 1993, Königl 1991, Shu et al 1994). Most of
the work is based on the assumption that the field in the disc
is constantly being dragged into the inner parts of the disc
from large radii. The underlying idea is that a magnetized
molecular cloud collapses, in which case the field in the
central star and that in the disc are aligned. This scenario was
studied numerically by Hirose et al (1997) and Miller and
Stone (1997). In the configurations they had considered, there
is an X-point in the equatorial plane (see left-hand panel of
figure 7), which can lead to a strong funnel flow.

However, the opposite relative orientation is, in principle,
also possible and has been explored by Lovelace et al (1995),
where the magnetic field of the star has been flipped and
is now anti-parallel with the field in the disc, so that the
field in the equatorial plane points in the same direction
and has no X-point. However, current sheets develop above
and below the disc plane (see right-hand panel of figure 7).
This configuration is also referred to as the X-wind model.
Ironically, this is the field configuration without an X-point.

Simulations of such a field configuration by Hayashi
et al (1996) confirm the idea by Lovelace et al (1995) that
closed magnetic loops connecting the star with the disc
are twisted by differential rotation between the star and
disc, and then inflate to form open stellar and disc field
lines (see also Agapitou and Papaloizou 2000,
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Figure 6. Left: poloidal velocity vectors and poloidal magnetic field lines (white) superimposed on a colour scale representation of log h.
Specific enthalpy h is directly proportional to temperature T , and log h = (−2, −1, 0, 1) corresponds to T ≈ (3 × 103, 3 × 104, 3 × 105,
3 × 106) K. The black dashed line shows the fast magnetosonic surface. The disc boundary is shown with a thin black line, the stellar
surface is marked in red. The dynamo αdyn coefficient is negative in the upper disc half, resulting in roughly dipolar magnetic symmetry.
Right: colour scale representation of the specific angular momentum, normalized by the maximum angular momentum in the disc, with
poloidal magnetic field lines superimposed (white). The black solid line shows the Alfvén surface, the white dashed line the sonic surface.
Same model as in the left-hand panel and averaged over same times. (Adapted from von Rekowski and Brandenburg (2004).)

Figure 7. Sketch showing the formation of an X-point when the
disc field is aligned with the dipole (on the left) and the formation of
current sheets with no X-point if they are anti-aligned (on the right).
The two current sheets are shown as thick lines. In the present
paper, the second of the two configurations emerges in all our
models, i.e. with current sheets and no X-point. (Adapted from von
Rekowski and Brandenburg (2004).)

Bardou 1999, Uzdensky et al 2002). Goodson et al
(1997, 1999) and Goodson and Winglee (1999) find that
for sufficiently low resistivity, an accretion process develops
that is unsteady and proceeds in an oscillatory fashion.
Similar results have also been obtained by von Rekowski
and Brandenburg (2004). In their case, the resulting field
geometry is always the one in the second panel of figure 7, i.e.
the one with current sheets and no X-point. It is seen that the
inflating magnetosphere expands to larger radii where matter
can be loaded onto the field lines and be ejected as stellar
and disc winds. Furthermore, reconnection of magnetic field
lines allows matter to flow along them and accrete onto the
protostar, in the form of a funnel flow (Romanova et al 2004).

6. Conclusions

Protostellar discs are generally believed to be turbulent,
although there is substantial uncertainty regarding the relative
importance of possible mechanisms and the necessary physics
involved. The turbulence in protostellar discs may not be as
vigorous as in fully ionized discs around neutron stars and
black holes, but its presence is critical for driving accretion
towards the central star, driving mass concentrations within
the disc above the critical value for gravitational collapse
to form planets. Turbulence is also important for heating a
corona above the disc from where outflows can be driven.

Several important aspects have been omitted in this
review. The inclusion of radiative cooling has already been
mentioned as one of the important ingredients that allow
matter to settle deeper in the potential well and hence to
prevent newly accreted material from being stripped away
from the forming protoplanet. Related to this is the question
how effective the acceleration of outflows is when one allows
for radiative cooling of the jet. Another aspect concerns the
generation of large-scale magnetic fields both in the protostar
and the disc. Much attention has been paid to the importance
of shedding small-scale magnetic helicity from the dynamo,
because otherwise the dynamo will suffocate from excess
small-scale magnetic helicity that quenches the production of
large-scale magnetic fields by kinetic helicity and/or shear.
Advanced global simulations are likely to shed light on these
and related questions.
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