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We perform numerical simulations of decaying hydrodynamic and magnetohydrodynamic turbulence.
We classify our time-dependent solutions by their evolutionary tracks in parametric plots between
instantaneous scaling exponents. We find distinct classes of solutions evolving along specific trajectories
toward points on a line of self-similar solutions. These trajectories are determined by the underlying
physics governing individual cases, while the infrared slope of the initial conditions plays only a limited
role. In the helical case, even for a scale-invariant initial spectrum (inversely proportional to wave number
k), the solution evolves along the same trajectory as for a Batchelor spectrum (proportional to k4).

DOI: 10.1103/PhysRevLett.118.055102

The study of decaying turbulence is as old as that of
turbulence itself. Being independent of an ill-defined
forcing mechanism, decaying turbulence has a better
chance in displaying generic properties of turbulence.
Such properties are usually reflected in the existence of
conserved quantities such as the Loitsiansky integral [1]
and the magnetic helicity [2,3]. Important applications of
decaying turbulence include grid turbulence [4], turbulent
wakes [5], atmospheric turbulence [6], as well as inter-
stellar turbulence [7], galaxy clusters [8], and the early
Universe [9,10]. In the latter case, cosmological magnetic
fields generated in the early Universe provide the initial
source of turbulence, which leads to a growth of the
correlation length by an inverse cascade mechanism
[11], in addition to the general cosmological expansion
of the Universe. In the last two decades, this topic has
gained significant attention [12]. The time span since the
initial magnetic field generation is enormous, but it is still
uncertain whether it is long enough to produce fields at
sufficiently large length scales to explain the possibility of
contemporary magnetic fields in the space between clusters
of galaxies [13].
In this Letter, we use direct numerical simulations (DNS)

of both hydrodynamic (HD) and magnetohydrodynamic
(MHD) decaying turbulence to classify different types by
their decay behavior. The decay is characterized by the
temporal change of the kinetic energy spectrum EKðk; tÞ,
and, in MHD, also by the magnetic energy spectrum
EMðk; tÞ. Here, k is the wave number and t is time. In
addition to the decay laws of the energies EiðtÞ ¼R
Eiðk; tÞdk, with i ¼ K or M for kinetic and magnetic

energies, there are the kinetic and magnetic integral scales

ξiðtÞ ¼
Z

∞

0

k−1Eiðk; tÞdk
�Z

∞

0

Eiðk; tÞdk: ð1Þ

We quantify the decay by the instantaneous scaling
exponents pðtÞ≡ d ln E=d ln t and qðtÞ≡ d ln ξ=d ln t.
Thus, we study the decay behaviors by plotting pðtÞ vs
qðtÞ in a parametric representation. The pq diagram turns
out to be a powerful diagnostic tool.
Earlier work [8,14,15] has suggested that the decay

behavior, and thus the positions of solutions in the pq
diagram, depend on the exponent α for initial conditions of
the form E ∼ kαe−k=k0 , where k0 is a cutoff wave number.
Motivated by earlier findings [2,11] of an inverse cascade
in decaying MHD turbulence, Olesen considered the time-
dependent energy spectra Eðk; tÞ to be of the form [15]

Eðk; tÞ ∝ kαψ(kξðtÞ); ð2Þ

where ξðtÞ ∝ tq with q being an as yet undetermined
scaling exponent, and ψ is a function that depends on
the dissipative and turbulent processes that lead to a
departure from a power law at large k. Moreover, the slope
ψ 0 ≡ dψ=dκ with κ ¼ kξ must vanish for κ → 0. This turns
out to be a critical restriction.
Olesen then makes use of the fact that the HD and

MHD equations are invariant under rescaling, x → ~xl
and t → ~tl1=q, which implies corresponding rescalings
for velocity u→~tl1−1=q and viscosity ν→ ~νl2−1=q.
Furthermore, using the fact that the dimensions of
Eðk; tÞ are given by ½E� ¼ ½x�3½t�−2, and requiring ψ to
be invariant under rescaling E → ~El3−2=q ∝ ~kαl−αψ , he
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finds from Eq. (2) that α ¼ −3þ 2=q. He argues that for a
given subinertial range spectral exponent α, the exponent q
is given by [12,15–17]

q ¼ 2=ð3þ αÞ ð3Þ
for both HD and MHD and independent of the presence or
absence of helicity. A remarkable prediction of Olesen’s
original work concerns the existence of inverse transfer
even in the absence of magnetic helicity, provided α > −3.
In subsequent work he stresses that for constant ν (and η),
only the case α ¼ 1 can be realized. For nonhelical MHD,
this is indeed compatible with simulations [18–20], but not
for HD [21] or for helical MHD [3,22].
In this Letter, we argue that the scaling exponent q is not

primarily determined by the initial value of α, as suggested
by Eq. (3), but by the physical processes involved.
Moreover, we relax the restriction ψ 0ð0Þ ¼ 0 and write
instead

E(kξðtÞ; t) ¼ ξ−βϕðkξÞ; ð4Þ
where ξ ¼ ξðtÞ is computed from Eq. (1), and β needs to be
determined empirically or theoretically. Clearly, the initial
power law slope at small k is no longer an adjustable input
parameter, but is fixed by the formofϕ ¼ ϕðκÞ. Specifically,
the “intrinsic” slope is α� ≡ d lnϕ=d ln κ. Evidently, ψ can
be computed fromϕ asψðκÞ ¼ ξα−βϕðκÞ=κα, but, in general,
d lnψ=d ln κ ¼ α� − α ≠ 0 for κ → 0.
In the following, we study examples of different decay

behaviors in the diagnostic pq diagram using data from
DNS. As in earlier work [22], we solve the nonideal HD
and MHD equations for an isothermal equation of state;
i.e., the pressure P and density ρ are proportional to each
other, P ¼ ρc2s , where cs ¼ const is the sound speed. The

kinematic viscosity ν is characterized by the Reynolds
number, Re ¼ urmsξ=ν, with urms ¼ ð2EÞ1=2 and the mag-
netic diffusivity η is characterized by the magnetic Prandtl
number PrM ¼ ν=η. The governing equations are solved
using the PENCIL CODE [23,24]. The resolution is either
11523 or 23043 mesh points. The Mach number urms=cs is
always below unity, so compressibility effects are weak.
We first consider cases that have α ¼ 4 for the initial

spectral slopes of EK or EM. We consider (i) HD decay, (ii)
nonhelical MHD decay, and (iii) helical MHD decay. In
cases (ii) and (iii), the magnetic energy also drives kinetic
energy through the Lorentz force. The particular simulation
of case (ii) was already presented in Ref. [18], where
inverse transfer to smaller wave numbers was found in the
absence of magnetic helicity using high-resolution DNS.
Case (iii) leads to standard inverse transfer [2,3,9,10]. The
resulting spectra are plotted in Figs. 1(a)–1(c), where we
show energy spectra for cases (i)–(iii) at different times.
The values of the Re at half time are roughly 100, 230, and
300, respectively.
In Figs. 1(d)–1(f) we compare with suitably compen-

sated spectra. We compensate for the shift in k by plotting
Eðk; tÞ against kξðtÞ. The peak in each spectrum, which is
approximately at k ¼ ξ−1, has then always the same
position on the abscissa. Furthermore, to compensate for
the decay in energy, we multiply E by ξβ with some
exponent β such that the compensated spectra collapse onto
a single function ϕ(kξðtÞ) ≈ ξβE(kξðtÞ; t). In terms of the
energy EðtÞ≡ R

Eðk; tÞdk, the function Φ ¼ ξβþ1EK is
asymptotically constant, ΦðtÞ → Φ∞, and has the same
dimension as ϕ, so we plot the nondimensional ratio ϕ=Φ∞.
The function ψðκÞ is shown as an inset and normalized by
Ψ� ≡ ξα−βΦ at the last time.

FIG. 1. EKðk; tÞ for different t in HD DNS (a), compared with EM (solid red) and EK (dashed blue) in MHD without helicity (b), and
with helicity (c). Panels (d)–(f) show collapsed spectra using β ¼ 3 (d), β ¼ 1 (e), and β ¼ 0 (f).
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Let us now consider solutions (i)–(iii) in the pq diagram,
see Figs. 2(a)–2(c). These are compatible with independ-
ently computed βq diagrams [24]. To study the relation
between the exponents β and q, we make use of Olesen’s
scaling arguments and the fact that ϕ is invariant under
rescaling, to show from Eq. (4) that β þ 3 − 2=q ¼ 0, i.e.,

β ¼ 2=q − 3; ð5Þ
or q ¼ 2=ð3þ βÞ. This is formally equivalent to Olesen’s
relation (3), but with α being replaced by β. Moreover,
unlike the exponent α in Eq. (2), the exponent β in Eq. (4)
bears no relation with the initial spectral slope, except
for certain cases discussed below. The temporal decay
of kinetic and magnetic energies follows power laws
EiðtÞ ∼ t−pi for i ¼ K or M. The exponents are obtained
by integrating over k, EðtÞ ¼ ξ−ðβþ1Þ R ϕdðkξÞ ∝ t−p, and
since ξ ∝ tq, this yields

p ¼ ð1þ βÞq: ð6Þ
Thus, in a pq diagram, a certain value of β corresponds
to a line pðtÞ ∝ qðtÞ with the slope β þ 1. Furthermore,
inserting Eq. (5) yields the line p ¼ 2ð1 − qÞ. We call this
the self-similarity line.
The exponents β, p, and q are roughly consistent with

those expected based on the dimensions of potentially
conserved quantities such as the Loitsiansky integral [27],
L ¼ R

r2huðxÞ · uðxþ rÞidr ∝ l5u2l, with typical velocity
ul on scale l, the magnetic helicity hA · Bi, where B ¼
∇ × A is the magnetic field in terms of the vector potential
A, and the mean squared vector potential hA2i, which is
conserved in two-dimensions (2D); see Table I.
In the HD case (i), the solution approaches the β ¼ 3 line

and then settles on the self-similarity line at q ≈ 1=3, see
Fig. 2(a). This decay behavior departs from what would be
expected if the Loitsiansky integral were conserved, i.e.,
q ¼ 2=7 and β ¼ 4. A slower decay law with p ¼ 6=5,
corresponding to q ¼ 2=5 and β ¼ 2, has been favored by
Saffman [28], while experiments and simulations suggest
p ¼ 5=4 [21,29].
In case (ii), the solution evolves along β ¼ 1 toward

q ¼ 1=2, see Figs. 2(b) and 2(e). This is compatible with

the conservation of hA2
2Di, where A2D is the component of

A that describes the 2D magnetic field in the plane
perpendicular to the local intermediate eigenvector of the
rate-of-strain matrix S, see the Supplemental Material [18]
for details and also Ref. [30]. The motivation for applying
2D arguments to 3D comes from the fact that for suffi-
ciently strong magnetic fields the dynamics tends to
become locally 2D in the plane perpendicular to the local
field. This allows one to compute A in a gauge that projects
out contributions perpendicular to the intermediate eigen-
vector of S.
In case (iii) the solution evolves along β ¼ 0. toward

q ¼ 2=3, see Figs. 2(c) and 2(f). This means that the
spectrum shifts just in k, while the amplitude of EM does
not change, as can be seen from Fig. 2(c). This is consistent
with the invariance of hA · Bi, see Ref. [3].
Next, we investigate cases with α < 4. In the helical

case with α ¼ 2 we see that the subinertial range
spectrum quickly steepens and approaches α� ¼ 4 ≠ α, see
Figs. 3(a)–3(c). For α ¼ −1, which is a scale-invariant
spectrum, the spectral energy remains nearly unchanged at
small k, but the magnetic energy still decays due to decay at
all higher k, see Figs. 3(d)–3(f). The values of pM and qM
are rather small (≈0.2), but the spectra can still be collapsed
onto each other with β ¼ 0, see Fig. 3(e).
The examples discussed above demonstrate that in

general β ≠ α ≠ α�; i.e., the self-similarity parameter β
is not determined by the initial power spectrum but rather
by the different physical processes involved. In helical
MHD, we always find α� ¼ 4 together with β ¼ 0. For
nonhelical MHD with α ¼ 4 and EK ∝ k2, we find β ¼ 1,

TABLE I. Scaling exponents and relation to physical invariants
and their dimensions.

β p q Invariant Dimension

4 10=7 ≈ 1.43 2=7 ≈ 0.286 L ½x�7½t�−2
3 8=6 ≈ 1.33 2=6 ≈ 0.333
2 6=5 ¼ 1.20 2=5 ¼ 0.400
1 4=4 ¼ 1.00 2=4 ¼ 0.500 hA2

2Di ½x�4½t�−2
0 2=3 ≈ 0.67 2=3 ≈ 0.667 hA · Bi ½x�3½t�−2
−1 0=2 ¼ 0.00 2=1 ¼ 1.000

FIG. 2. pq diagrams for cases (i)–(iii). Open (closed) symbols correspond to i ¼ K (M) and their sizes increase with time.
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while in HD with α ¼ 4, we find β ¼ 3. In agreement with
earlier work [31], the following exceptions can be identi-
fied: in HD with 1 ≤ α ≤ 3 and in nonhelical MHD with
1 ≤ α ≤ we find β ¼ α [24]. The only case where α ¼ β ¼
4 has been found is when the magnetic Prandtl number
PrM ≡ν=η is small, see Figs. 4(a)–4(c) for PrM ¼ 0.01.
Here, the conservation of L may actually apply [27]. For
PrM ≡ ν=η ≫ 1, on the other hand, we find β ¼ 2 scaling,
even though α ¼ 4, see Figs. 4(d)–4(f).
In conclusion, the present work has revealed robust

properties of the scaling exponent β governing the time

dependence of the energy spectrumEðk; tÞ through ξβϕðkξÞ
with a time-independent scaling function ϕ and a time-
dependent integral scale ξðtÞ. The helical case is particularly
robust in that any point in the pq plane evolves along the
β ¼ 0 line (p ¼ q) toward the point p ¼ q ¼ 2=3.
Furthermore, if the initial spectrum has α ¼ 2, it first
steepens to α ¼ 4 and then follows the same decay as with
an initial α ¼ 4. Moreover, for a scale-invariant spectrum
withα ¼ −1, we again find β ¼ 0, i.e., the same as forα ¼ 2
and 4, but now with pM ≈ qM ≈ 0.2, see Fig. 3(f). In the
fractionally helical case, points in the pq plane evolve

FIG. 3. EM (solid) and EK (dashed) in MHD with fractional helicity and α ¼ 2 (a), as well as full helicity and α ¼ −1 (d), together
with compensated spectra (b),(e) and the pq diagrams (c),(f).

FIG. 4. Similar to Fig. 3, but for nonhelical MHD with PrM ¼ 0.01 (a) and PrM ¼ 100 (d), together with compensated spectra (b),(e)
and the pq diagrams (c),(f).
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toward the β ¼ 0 line and, for α ≥ 2, later toward
pM ¼ qM ¼ 2=3.
Our results have consequences for two types of cosmo-

logical initial magnetic fields: causal ones with EM ∝ k4

will always be accompanied by a shallower kinetic energy
spectrum EK ∝ k2, thus favoring inverse transfer [18,32],
while a scale-invariant inflation-generated helical field
exhibits self-similarity with β ¼ 0 in the same way as
for other initial slopes, but now with p ¼ q ≈ 0.2 instead of
2=3. For decaying wind tunnel turbulence, Loitsiansky
scaling is ruled out in favor of Saffman scaling, provided
α ¼ 2. No inverse transfer is possible in HD, even if α ¼ 4,
contrary to earlier claims [15]. The experimental realization
of initial conditions with α ≠ 2 could be challenging for
wind tunnels, but may well be possible in plasma experi-
ments [33].
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