ASTR/GEOL-2040: Search for life in the Universe: Lecture 28

- Titan's haze
- Titan's interior
- Future missions

Axel Brandenburg

(Office hours: Mondays 2:30 - 3:30 in X590 and

Wednesdays 11-12 in D230)

Fiske, Quiz 2, & guest lecture

- Fiske, *next* Monday November 13
- Quiz #2, Wednesday November 15
 - Sample Quiz #2 is online!
- Guest lecture, Friday, Carol Cleland, Nov 17
 - Check out her work on Web of Science,
 - or ADS (see syllabus!)
- Fiske & Cleland lect included in final

Advantages of fly-bys...

- Measuring thickness of atmosphere
- 1.6 bar

Titan

- Titan's pressure of 1.6 bar
 - Bennett & Shostak, p. 319
 - "fairly comfortable even without space suit"
 - Why? What's the problem at low pressures?
 - A. Can't hear normally
 - B. Can't balance properly
 - C. Body tissue would burst
 - D. Water would boil

Neil Armstrong?

1930-2012

Armstrong limit

From Wikipedia, the free encyclopedia

The Armstrong limit, often called Armstrong's **line**, is the altitude that produces an atmospheric pressure so low (0.0618 atmosphere or 6.3 kPa (47 mmHg)) that water boils at the normal temperature of the human body: 37 °C (98.6 °F). It is named after Harry George Armstrong, who founded the U.S. Air Force's Department of Space Medicine in 1947 at Randolph Field, Texas. [Note 1] Armstrong was the first to recognize this phenomenon, which occurs at an altitude beyond which humans absolutely cannot survive in an unpressurized environment.[1] Above Earth, this begins at an altitude of approximately 18 km (60,000 ft)^[2] to about 19 km (62,000 ft).[3]

If the cockpit lost pressure while the aircraft was above the Armstrong limit, even a positive pressure oxygen mask could not sustain pilot consciousness.

Titan

- Titan's pressure of 1.6 bar
 - Bennett & Shostak, p. 319
 - "fairly comfortable even without space suit"
 - Why? What's the problem at low pressures?
 - A. Can't hear normally
 - B. Can't balance properly
 - C. Body tissue would burst
 - D. Water would boil

Why is Titan so cold?

- A. Because of the haze
- B. Because of large albedo
- C. Because of distance to the Sun
- D. Because tidal heating inefficient
- E. Radioactive heating inefficient

Why so cold?

- A. Because of the haze
- B. Because of large albedo
- C. Because of distance to the Sun
- D. Because tidal heating inefficient
- E. Radioactive heating inefficient

→ Lecture 9 (Earth's temperature)

$$T_{\rm E} = T_{\rm S} \left(\frac{R_{\rm Sun}}{2r}\right)^{1/2} (1-A)^{1/4} \le 279 \text{ K}$$

This was for r=1AU; for $r=10AU \rightarrow$

- A. 30% less
- B. 3 times less
- C. 6 times less

→ Lecture 9 (Earth's temperature)

$$T_{\rm E} = T_{\rm S} \left(\frac{R_{\rm Sun}}{2r}\right)^{1/2} (1-A)^{1/4} \le 279 \text{ K}$$

This was for
$$r=1AU$$
; for $r=10AU \rightarrow 1/\sqrt{10} \approx 1/3$

- A. 30% less
- B. 3 times less 279/3 = 93
- C. 6 times less

Today:

- Methanogenesis, cryovolcanism
- Haze photochemistry

- Longstaff: pp 297 303
- BS: 319 326
- RGS: 180 198

Titan's atmosphere

• Infrared spectrum from Voyager

Origin of N₂

Lect. 19, p.16 Bermuda triangle

- N₂ trapped in the ice (as clathrates)
- Lab experiments: N₂ and Ar trapped equally
- Original ratio: $Ar/N_2 \sim 0.06$

A. $Ar/N_2 \sim 0.6$

B. $Ar/N_2 \sim 0.06$

C. $Ar/N_2 \sim 0.006$

D. $Ar/N_2 << 0.0006$

Atmospheric composition

• N₂, CH₄, and H₂ most important

gas	concentration
N_2	0.97
CH_4	0.049
H_2	0.0011
CO	0.00006 (6e-5)
Ar	0.0000432
C_2H_6	0.000011 [ethane]
C_2H_6 C_2H_2	0.000003 (3e-6) [ethyne]

Origin of N₂

Lect. 19, p.16 Bermuda triangle

- N₂ trapped in the ice (as clathrates)
- Lab experiments: N₂ and Ar trapped equally
- Original ratio: $Ar/N_2 \sim 0.06$

A. $Ar/N_2 \sim 0.6$

B. $Ar/N_2 \sim 0.06$

C. $Ar/N_2 \sim 0.006$

D. $Ar/N_2 << 0.0006$

Actually 0.0004

4e-5

2^{nd} model: $2NH_3 \rightarrow N_2 + 3H_2$

- Would be very slow at 94K
- if reaction in equilibrium!

Lect 4: Energy sources on Earth

Source	Energy/Jm ⁻² yr
total radiation from the Sun	1 090 000.0
ultraviolet light	1 680.0
electric discharges (lightning)	1.68
cosmic rays	0.0006
radioactivity (to 1 km depth)	0.33
volcanoes	0.05
shock waves (atmospheric entry)	0.46

$2NH_3 \rightarrow N_2 + 3H_2$ not directly

- $NH_3 \rightarrow NH_2 + H$
- $NH_2 + NH_2 \rightarrow N_2H_4$

Hydrazine (famable)

• $N_2H_4 \rightarrow N_2+2H_2$

Methane: similar story

- $CH_4 \rightarrow CH_3 + H$ (methyl molecule)
 - has an unpaired electron → highly reactive
 - chemists call this a "radical"
- $CH_3+CH_3 \rightarrow C_2H_6$ (ethane)
 - Readily absorbs ultraviolet
 - $-C_2H_6 \rightarrow C_2H_2 + 2H_2$ (C_2H_2 ethyne)

Continue losing H

- Longer carbon chains
- HCC + HCCH→ HCCCCH+H
- Never regain any methane
 - irreversible

Haze = Smog

- Aerosols
- Wet haze
- Photochemical smog/haze

Titan has a "hydrological cycle" like Earth but with methane instead of water!

Only 10% of solar radiation reaches surface
There must be positive greenhouse effect
(not a negative one)

Methane liquid: low viscosity Wind speeds $\sim 1 \text{ m/s} \rightarrow \text{waves}$

Images in infrared: CO₂ etc

Figure 6. A mosaic of VIMS data showing the spectral diversity of Titan's surface. The bright orange areas, notably Tui Regio and inside Hotei Arcus, are particularly reflective at 5 μ m, perhaps indicating CO₂-rich deposits that might be associated with cryovolcanism. In this mosaic, bright clouds are present around the south pole. (Image courtesy of NASA/JPL/University of Arizona.)

Cassini Radar images

25 km

Impact Crater

Cryovolcanic Extrusion?

Geology

- Cryovolcanism
- Impact cratering
- Dune field formation

Subsurface water ocean

Typical of other icy worlds

Evidence:

- 1. Land marks shifted 30 km
- 2. Resonant radio waves
- 3. Heat flux 4-7 mW/m2
 - \rightarrow ice layer 50-150 km

Titan is differentiated: Core mantle of ice and water, icy crust covered in organics

Life in the methane-ethane lakes and seas of Titan:

--totally alien biology

--does not violate

physics

--strict test of

life's cosmic

commonality

Impact craters:

Comet/asteroid impacts melt crust for hundreds to thousands of years.

--organics evolve in water then freeze

Base of the liquid water ocean: life as we know it in hydrothermal vents?

Titan Mare Explorer (TIME)

- Was proposed to NASA, but not selected for flight
- TiME is a relatively low-cost, outer-planet mission designed to measure:
- organic constituents on Titan
- and would have performed the first nautical exploration of an extraterrestrial sea,
- analyzed its nature and,
- possibly, observed its shoreline.

Comparing Titan and Earth lakes

Titan Mare Explorer (TiME)

Next time

- Outer solar system's bodies
- More on icy bodies
- Pluto
- Organics on/in comets

- Longstaff: pp 297 303
- BS: 319 326