# ASTR/GEOL-2040: Search for life in the Universe: Lecture 37

ETHER

• planet's radius vs mass

AMINO ACIDS

PAHs

- life around M dwarfs
- starshot

Axel Brandenburg (Office hours: Mondays 2:30 – 3:30 in X590 and Wednesdays 11-12 in D230)

# Decoding the signal

- Easy decoding?
- Sending back our own TV transmissions?
- Image  $1679 = 23 \times 73$
- 1974 Arecibo message





# but 1679 just example

- Arecibo:  $1679 = 23 \times 73$
- Why not:  $23 \times 11 = 253$
- Or:  $5 \ge 11 = 55$ ?

A. Product of odd numbersB. Product of prime numbersC. Product of even numbers



# but 1679 just example

- Arecibo:  $1679 = 23 \times 73$
- Why not:  $23 \times 11 = 253$
- Or:  $5 \ge 11 = 55$ ?

- A. Product of odd numbers
- B. Product of prime numbersC. Product of even numbers





... from the fast lecture

- Real terrestrial planets!
- Similar to Earth!



# Planets 1.4 composition

| Μ   | R    |
|-----|------|
| 0.1 |      |
| 0.2 |      |
| 0.5 | 0.84 |
| 1.0 |      |
| 2.0 |      |
|     |      |
|     |      |



# Planets<sup>1.4</sup> composition

| Μ   | R    |
|-----|------|
| 0.1 |      |
| 0.2 |      |
| 0.5 | 0.84 |
| 1.0 | 1.01 |
| 2.0 |      |
|     |      |
|     |      |



# Planets<sup>a</sup> 1.4 composition

| Μ   | R    |
|-----|------|
| 0.1 |      |
| 0.2 |      |
| 0.5 | 0.84 |
| 1.0 | 1.01 |
| 2.0 | 1.23 |
|     |      |
|     |      |



# Planets 1.4 composition

| Μ   | R    |
|-----|------|
| 0.1 |      |
| 0.2 | 0.64 |
| 0.5 | 0.84 |
| 1.0 | 1.01 |
| 2.0 | 1.23 |
|     |      |
|     |      |



# Planets<sup>a</sup> 1.4 composition

| Μ   | R    |
|-----|------|
| 0.1 | 0.54 |
| 0.2 | 0.64 |
| 0.5 | 0.84 |
| 1.0 | 1.01 |
| 2.0 | 1.23 |
|     |      |
|     |      |



#### Planets composition



#### Planets composition



#### Fit a straight line through the data





Crater dating





Craters per 1 000 000 sq uare kilometers



## Proxima Centauri b

- Temperature (w/o greenhouse) 234 K
- Radius 0.8 1.5 RE
- Distance 4.22 ly
- Metallicity [Fe/H] = 0.24 ( $\rightarrow$  factor 1.74)
- Discovered 24 Aug 2016
- Southern hemisphere!

## Problems with M dwarfs

(Dwarf = main sequence stars)

- M dwarfs have frequent flares
  At least in their first 1 Gyr
- Closer planet: synchronous rotation
- What does this mean for life?

• (and what about effect of atmosphere)





## Most stars are binaries

- Triple system (2 stars + planet) often not stable
- a: wide separation, each star with planet
- b: Stars close together: planet orbits 2 stars



## Most stars are binaries

- Triple system (2 stars + planet) often not stable
- a: wide separation, each star with planet
- b: Stars close together: planet orbits 2 stars
- c: intermediate case: unstable? Short-lived?

#### **Starshot**

- StarChip: cm scale, g scale
- 2 Mpx camera
- 150 mg atomic battery
- 4m x 4m sail, non-absorbing! (evaporize?)
- Sub-gram photon thrusters
- Alpha Centauri (4.37 ly)

### Propulsion

- $10^7 \text{ x } 10 \text{ kW} = 100 \text{ GW}$  lasers from Earth
- Endure acceleration, vacuum, cold, protons
- 20 30 yr
- ~1000 StarChips (← dust coll *en route*)
- Accelerate one-by-one
- Within 10 min, 1 TJ to each sail
- Within 1 AU to Proxima Centauri b



vin M. Gill

(of photon sail in general)

## Next time

- The rest of Chapter 9
- Which radio frequency?
- Why just radio?
- Why not light?