ASTRIGEOL-2040: Search for-life in

the Universe. Lecture 37

- planet's radius vs mass
- life around M dwarfs
- starshot

AMINO ACIDS

* Axel Brandenburg
(Office hours: Mondays 2:30-3:30 in X590 and Wednesdays 11-12 in D230)
ACETMENE
aceto NITRIL!

Decoding the signal

- Easy decoding?
- Sending back our own TV transmissions?
- Image $1679=23 \times 73$
- 1974 Arecibo message

but 1679 just example

- Arecibo: $1679=23 \times 73$
- Why not: $23 \times 11=253$
- Or: $5 \times 11=55$?
A. Product of odd numbers
B. Product of prime numbers
C. Product of even numbers

but 1679 just example

- Arecibo: $1679=23 \times 73$
- Why not: $23 \times 11=253$
- Or: $5 \times 11=55$?
A. Product of odd numbers
B. Product of prime numbers
C. Product of even numbers

Planets composition

Planets composition

Fit a straight line through the data

Crater dating

Proxima Centauri b

- Temperature (w/o greenhouse) 234 K
- Radius $0.8-1.5 \mathrm{RE}$
- Distance 4.22 ly
- Metallicity $[\mathrm{Fe} / \mathrm{H}]=0.24(\rightarrow$ factor 1.74$)$
- Discovered 24 Aug 2016
- Southern hemisphere!

Problems with M dwarfs

(Dwarf $=$ main sequence stars)

- M dwarfs have frequent flares
- At least in their first 1 Gyr
- Closer planet: synchronous rotation
- What does this mean for life?
- (and what about effect of atmosphere)

TIDALLY LOCKED

WORLDS

Most stars are binaries

- Triple system (2 stars + planet) often not stable
- a: wide separation, each star with planet
- b: Stars close together: planet orbits 2 stars

Most stars are binaries

- Triple system (2 stars + planet) often not stable
- a: wide separation, each star with planet
- b: Stars close together: planet orbits 2 stars
- c: intermediate case: unstable? Short-lived?

Starshot

- StarChip: cm scale, g scale
- 2 Mpx camera
- 150 mg atomic battery
- $4 \mathrm{~m} \times 4 \mathrm{~m}$ sail, non-absorbing! (evaporize?)
- Sub-gram photon thrusters
- Alpha Centauri (4.37 ly)

Propulsion

- $10^{7} \times 10 \mathrm{~kW}=100 \mathrm{GW}$ lasers from Earth
- Endure acceleration, vacuum, cold, protons
- $20-30 \mathrm{yr}$
- ~1000 StarChips (\leftarrow dust coll en route)
- Accelerate one-by-one
- Within 10 min, 1 TJ to each sail
- Within 1 AU to Proxima Centauri b

Artist's

conception

(of photon sail in general)

Next time

- The rest of Chapter 9
- Which radio frequency?
- Why just radio?
- Why not light?

