

Today

- Electrolysis experiment
 - $-2H_2O \rightarrow 2H_2 + O_2$
- Delivery by comets
- Panspermia Reading:
 - -RGS pp. 22-24, 28-29
 - -Lon pp. 383-384
 - _BS pp. 121-125

— also: BS pp 210-212

Power input?

- 200 Volts
- 0.1 Amps
- Power: 200V * 0.1A = 20 W

= 20 Joule/sec

Comparison

• 2500 calories/day = 10^7 J/day = 10^7 J/(24*3600s) = 120 W

Solar energy: 10 W from 13x10 inches

Mighty Max Battery

10 Watt Polycrystalline Solar Panel Charger for Deep Cycle Battery - Mighty Max Battery brand product

★★★★★ * 11 customer reviews | 13 answered questions

Price: \$37.95 & FREE Shipping. Details

In Stock.

Want it tomorrow, Sept. 16? Order within 4 hrs 4 mins and choose Saturday Delivery at checkout. Details

Sold by Mighty Max Battery and Fulfilled by Amazon. Gift-wrap available.

- MLS-10WP is 12v 10 watt polycrystaline solar panel
- Dimensions: 13.75 inches x 10 inches x .75 inches. Pre drilled diodes in junction box and a pair of 6.5 foot cables with alligator clips already attached to the panel
- Strong aluminum frame and high efficiency solar cells bade on photvoltaic technology
- Power per square meter?
- 10W/[(13*0.0254m)*(10*0.0254m)
 - $= 120 \text{ W/m}^2$

How many Joules per year?

• $1 \text{ yr} = 3x10^7 \text{ sec}$

So 120 W = 120 J/s in 1 yr gives:

$$120*3x10^7 J = 360x10^7 J = 3.6x10^9 J$$

Source	Energy/Jm ⁻² yr ⁻¹		
total radiation from the Sun	1 090 000.0		
ultraviolet light	1 680.0		
electric discharges (lightning)	1.68		
cosmic rays	0.0006		
radioactivity (to 1 km depth)	0.33		
volcanoes	0.05		
shock waves (atmospheric entry)	0.46		

Corrected in 2011 issue of RGS

Table 1.4	Present-day	sources of e	energy	averaged	over the Earth.
-----------	-------------	--------------	--------	----------	-----------------

Source	Power/W m ⁻²	J/m2 yu
total solar radiation	360	111-101
geothermal heat flow	8.1×10^{-2}	2.6-10
electrical discharges (lightning)	5.4×10^{-8}	1.7
cosmic rays	2×10^{-11}	6.370
shock waves (atmospheric entry)	1.5×10^{-8}	0 4

• Efficiency of solar panels with 120 W/m²?

$$1/3 \text{ or } \sim 0.3 = 30\%$$

Other numbers were ok

Source	$J m^{-2} s^{-1}$	Energy/Jm ⁻² yr ⁻¹
total radiation from the Sun	1.1 x 10^{10}	1 090 000.0
ultraviolet light		1 680.0
electric discharges (lightning)	1.7	1.68
cosmic rays	6.3 x 10 ⁻⁴	0.0006
radioactivity (to 1 km depth)		0.33
volcanoes		0.05
shock waves (atmospheric entry)	0.47	0.46

Putting the right molecules together

- Need to produce order
 - → drive away from equilibrium
- Energy required to generate & sustain order

Source		Energy/Jm-2yr-1
total radiation from the Sun	1.1 x 10^{10}	1 090 000.0
ultraviolet light		1 680.0
electric discharges (lightning)	1.7	1.68
cosmic rays	6.3 x 10 ⁻⁴	0.0006
radioactivity (to 1 km depth)		0.33
volcanoes		0.05
shock waves (atmospheric entry)	0.47	0.46

Conclusion from this

- Electrolysis experiment turned electric energy into chemical energy
- Hydrogen can be stored & used later
- Enery much higher than other non-solar energy sources
- Some biological metabolisms operate at much lower energies

Where in the solar system did it start?

- Where is the carbon?
- Where is the water?

Enough carbon in inner parts?

Puzzle

- Not much Carbon where liquid water
- A lot of carbon where water is frozen

What is the reason?

Carbon delivery (present rates)

Table 1.7 Accretion rates on Earth today.

Sources	Mass range /kg	Mass accretion rate (estimated)/106 kg yr ⁻¹	Carbon %	Carbon accretion rate /10 ⁶ kg yr ⁻¹
meteoritic matter meteors (from comets)	10 ⁻¹⁷ to 10 ⁻¹	16.0	10.0	
meteorites	10^{-2} to 10^{5}	0.058	1.3	
crater-forming bodies	10 ⁵ to 10 ¹⁵	62.0	4.2	
unmelted material contributing				
organic matter meteors (from comets)	10 ⁻¹⁵ to 10 ⁻⁹	3.2	10.0	
meteorites, non-carbonaceous	10 ⁻² to 10 ⁵	2.9×10^{-3}	0.1	
meteorites, carbonaceous	10 ⁻² to 10 ⁵	1.9×10^{-4}	2.5	

• Which type is the greatest C source?

Carbon delivery (present rates)

Table 1.7 Accretion rates on Earth today.

Sources	Mass range /kg	Mass accretion rate (estimated)/10 ⁶ kg yr ⁻¹	Carbon %	Carbon accretion rate /10 ⁶ kg yr ⁻¹
meteoritic matter meteors (from comets) meteorites crater-forming bodies	10^{-17} to 10^{-1} 10^{-2} to 10^{5} 10^{5} to 10^{15}	16.0 0.058 62.0	10.0 1.3 4.2	1.6 <0.001 2.6
unmelted material contributing organic matter meteors (from comets) meteorites, non-carbonaceous	10 ⁻¹⁵ to 10 ⁻⁹ 10 ⁻² to 10 ⁵	3.2 2.9×10^{-3}	10.0 0.1	
meteorites, carbonaceous	10 ⁻² to 10 ⁵	1.9×10^{-4}	2.5	

- Which type is the greatest C source?
 - Crater-forming bodies
 - Arrive intermittently

Carbon delivery (present rates)

Table 1.7 Accretion rates on Earth today.

Sources	Mass range /kg	Mass accretion rate (estimated)/10 ⁶ kg yr ⁻¹	Carbon %	Carbon accretion rate /10 ⁶ kg yr ⁻¹
meteoritic matter meteors (from comets) meteorites crater-forming bodies	10 ⁻¹⁷ to 10 ⁻¹ 10 ⁻² to 10 ⁵ 10 ⁵ to 10 ¹⁵	16.0 0.058 62.0	10.0 1.3 4.2	1.6 <0.001 2.6
unmelted material contributing organic matter meteors (from comets) meteorites, non-carbonaceous meteorites, carbonaceous	10 ⁻¹⁵ to 10 ⁻⁹ 10 ⁻² to 10 ⁵ 10 ⁻² to 10 ⁵	3.2 2.9×10^{-3} 1.9×10^{-4}	10.0 0.1 2.5	0.32

- Greatest organic C source?
- Compare with C of biomass: 6×10^{14} kg
 - $-6x10^{14} \text{ kg} / 0.3x10^6 \text{ kg/yr} = 20 \text{ x } 10^8 \text{ yr} = 2\text{Gyr}$

Carbon delivery

- Somewhat more anorganic than organic C
 - Organic C delivery continuous
- Enough to produce all C in biomass
 - Early rates likely much higher; see moon

Also water is volatile

- Not much water during formation
 - temperatures too high → dry accretion
- Possible solution:
 - Late delivery from beyond "snowline"
 - Evidence: depletion wrt meteorites
- Low K/U (potassium to uranium ratio)
 - Indicator of relative depletion of volatiles

Is wet accretion possible?

- Yes, by later inward migration
 - Need to look at orbital dynamics
- Many body problem
 - Can easily become unstable

Water on terrestrial planets

- Not much on Venus and Mars
 - either acquired less than Earth,
 - or lost more
- Earth: much is in the mantle (2-10 times)
 - Venus: unclear (losses by impact & sol wind)
 - Mars: loss by solar wind (MAVEN)

Alternative: late delivery

- Also known as: late veneer
 - comets & asteroids
 - Formed beyond snow line
- Potential problem D/H ~ 3x10⁻⁴
 - Ocean water D/H = 1.56×10^{-4}
- But 103P/Hartley 2 (IR): comp. w/ Earth
- For the coma: core could be enriched

Different types of comets

LETTER

doi:10.1038/nature105

Ocean-like water in the Jupiter-family comet 103P/Hartley 2

Paul Hartogh¹, Dariusz C. Lis², Dominique Bockelée-Morvan³, Miguel de Val-Borro¹, Nicolas Biver³, Michael Küppers⁴, Martin Emprechtinger², Edwin A. Bergin⁵, Jacques Crovisier³, Miriam Rengel¹, Raphael Moreno³, Slawomira Szutowicz⁶ & Geoffrey A. Blake²

For decades, the source of Earth's volatiles, especially water with a deuterium-to-hydrogen ratio (D/H) of $(1.558 \pm 0.001) \times 10^{-4}$, has been a subject of debate. The similarity of Earth's bulk composition to that of meteorites known as enstatite chondrites¹ suggests a dry proto-Earth² with subsequent delivery of volatiles³ by local accre-

Our measured D/H value is substantially larger than that which characterized the young Sun (4.5 Gyr ago; the protosolar rational believed to be about 2.1×10^{-5} , which in turn is slightly higher that the value found in the local interstellar medium today (1.6×10^{-5}) a

Panspermia

- Arrhenius (1859-1927): spores survived
- Lord Kelvin (1824-1907): via meteorites
- Allan Hills meteorite (ALH 84001)
 - 4.5 Gyr: crystallized magma from Mars
 - 4.0 Gyr: battered, but not ejected
 - 3.6-1.8 Gyr: altered by water
 - 1984: discovered in Antarctica
 - 1996: NASA press conference

Why not Panspermia Earth → Mars?

- A. Because of Earth's atmosphere
- B. Because Earth is too massive
- C. Because Earth is closer to the Sun
- D. Because of either B or C
- E. Because of both B and C

Why not Panspermia Earth → Mars?

- A. Because of Earth's atmosphere
- B. Because Earth is too massive
- C. Because Earth is closer to the Sun
- D. Because of either B or C
- E. Because of both B and C

Panspermia

- Not a hypothesis for origin of life
 - We could be related to Martian life (think)
 - Other way unlikely (against Sun, heavier)
- Bacteria → suspended animation
 - Virtually no metabolism (bact spores)
 - Hardy to heat, desiccation, radiation, chem.
- Record so far 250 Myr (Lon 384)
 - Isolated bubbles, lake bed Salado in NM

Next week's material

- Domains of life & extremophiles
 - Bacteria in antarctica survived -50 C (-58 F)
 - LUCA, the last common ancestor
- RNA world
 - It can also act as catalyst
 - No proteins necessary

Preparation for quiz #1

- Next week Thursday
- Check all lectures: def of life, order/disorder,
- Away from equilibrium
- Natural selection
- Carbon & Water, polar molecules
- Lipids and other building blocks
- Genetic code, A-T, G-C
- Biomarkers, meteorites, Miller/Urey, ...