Today - Electrolysis experiment - $-2H_2O \rightarrow 2H_2 + O_2$ - Delivery by comets - Panspermia Reading: - -RGS pp. 22-24, 28-29 - -Lon pp. 383-384 - _BS pp. 121-125 — also: BS pp 210-212 # Power input? - 200 Volts - 0.1 Amps - Power: 200V * 0.1A = 20 W = 20 Joule/sec #### Comparison • 2500 calories/day = 10^7 J/day = 10^7 J/(24*3600s) = 120 W #### Solar energy: 10 W from 13x10 inches Mighty Max Battery 10 Watt Polycrystalline Solar Panel Charger for Deep Cycle Battery - Mighty Max Battery brand product ★★★★★ * 11 customer reviews | 13 answered questions Price: \$37.95 & FREE Shipping. Details #### In Stock. Want it tomorrow, Sept. 16? Order within 4 hrs 4 mins and choose Saturday Delivery at checkout. Details Sold by Mighty Max Battery and Fulfilled by Amazon. Gift-wrap available. - MLS-10WP is 12v 10 watt polycrystaline solar panel - Dimensions: 13.75 inches x 10 inches x .75 inches. Pre drilled diodes in junction box and a pair of 6.5 foot cables with alligator clips already attached to the panel - Strong aluminum frame and high efficiency solar cells bade on photvoltaic technology - Power per square meter? - 10W/[(13*0.0254m)*(10*0.0254m) - $= 120 \text{ W/m}^2$ ## How many Joules per year? • $1 \text{ yr} = 3x10^7 \text{ sec}$ So 120 W = 120 J/s in 1 yr gives: $$120*3x10^7 J = 360x10^7 J = 3.6x10^9 J$$ | Source | Energy/Jm ⁻² yr ⁻¹ | | | |---------------------------------|--|--|--| | total radiation from the Sun | 1 090 000.0 | | | | ultraviolet light | 1 680.0 | | | | electric discharges (lightning) | 1.68 | | | | cosmic rays | 0.0006 | | | | radioactivity (to 1 km depth) | 0.33 | | | | volcanoes | 0.05 | | | | shock waves (atmospheric entry) | 0.46 | | | #### Corrected in 2011 issue of RGS | Table 1.4 | Present-day | sources of e | energy | averaged | over the Earth. | |-----------|-------------|--------------|--------|----------|-----------------| |-----------|-------------|--------------|--------|----------|-----------------| | Source | Power/W m ⁻² | J/m2 yu | |-----------------------------------|-------------------------|---------| | total solar radiation | 360 | 111-101 | | geothermal heat flow | 8.1×10^{-2} | 2.6-10 | | electrical discharges (lightning) | 5.4×10^{-8} | 1.7 | | cosmic rays | 2×10^{-11} | 6.370 | | shock waves (atmospheric entry) | 1.5×10^{-8} | 0 4 | • Efficiency of solar panels with 120 W/m²? $$1/3 \text{ or } \sim 0.3 = 30\%$$ #### Other numbers were ok | Source | $J m^{-2} s^{-1}$ | Energy/Jm ⁻² yr ⁻¹ | |---------------------------------|-------------------------------|--| | total radiation from the Sun | 1.1 x 10^{10} | 1 090 000.0 | | ultraviolet light | | 1 680.0 | | electric discharges (lightning) | 1.7 | 1.68 | | cosmic rays | 6.3 x 10 ⁻⁴ | 0.0006 | | radioactivity (to 1 km depth) | | 0.33 | | volcanoes | | 0.05 | | shock waves (atmospheric entry) | 0.47 | 0.46 | #### Putting the right molecules together - Need to produce order - → drive away from equilibrium - Energy required to generate & sustain order | Source | | Energy/Jm-2yr-1 | |---------------------------------|-------------------------------|-----------------| | total radiation from the Sun | 1.1 x 10^{10} | 1 090 000.0 | | ultraviolet light | | 1 680.0 | | electric discharges (lightning) | 1.7 | 1.68 | | cosmic rays | 6.3 x 10 ⁻⁴ | 0.0006 | | radioactivity (to 1 km depth) | | 0.33 | | volcanoes | | 0.05 | | shock waves (atmospheric entry) | 0.47 | 0.46 | #### Conclusion from this - Electrolysis experiment turned electric energy into chemical energy - Hydrogen can be stored & used later - Enery much higher than other non-solar energy sources - Some biological metabolisms operate at much lower energies # Where in the solar system did it start? - Where is the carbon? - Where is the water? # Enough carbon in inner parts? #### **Puzzle** - Not much Carbon where liquid water - A lot of carbon where water is frozen #### What is the reason? # Carbon delivery (present rates) Table 1.7 Accretion rates on Earth today. | Sources | Mass range /kg | Mass accretion rate (estimated)/106 kg yr ⁻¹ | Carbon % | Carbon
accretion rate /10 ⁶ kg yr ⁻¹ | |--|---------------------------------------|---|----------|---| | meteoritic matter
meteors (from comets) | 10 ⁻¹⁷ to 10 ⁻¹ | 16.0 | 10.0 | | | meteorites | 10^{-2} to 10^{5} | 0.058 | 1.3 | | | crater-forming bodies | 10 ⁵ to 10 ¹⁵ | 62.0 | 4.2 | | | unmelted material contributing | | | | | | organic matter
meteors (from comets) | 10 ⁻¹⁵ to 10 ⁻⁹ | 3.2 | 10.0 | | | meteorites, non-carbonaceous | 10 ⁻² to 10 ⁵ | 2.9×10^{-3} | 0.1 | | | meteorites, carbonaceous | 10 ⁻² to 10 ⁵ | 1.9×10^{-4} | 2.5 | | • Which type is the greatest C source? # Carbon delivery (present rates) Table 1.7 Accretion rates on Earth today. | Sources | Mass range /kg | Mass accretion rate
(estimated)/10 ⁶ kg yr ⁻¹ | Carbon % | Carbon
accretion rate /10 ⁶ kg yr ⁻¹ | |---|--|--|--------------------|---| | meteoritic matter meteors (from comets) meteorites crater-forming bodies | 10^{-17} to 10^{-1}
10^{-2} to 10^{5}
10^{5} to 10^{15} | 16.0
0.058
62.0 | 10.0
1.3
4.2 | 1.6
<0.001
2.6 | | unmelted material contributing
organic matter
meteors (from comets)
meteorites, non-carbonaceous | 10 ⁻¹⁵ to 10 ⁻⁹
10 ⁻² to 10 ⁵ | 3.2 2.9×10^{-3} | 10.0
0.1 | | | meteorites, carbonaceous | 10 ⁻² to 10 ⁵ | 1.9×10^{-4} | 2.5 | | - Which type is the greatest C source? - Crater-forming bodies - Arrive intermittently # Carbon delivery (present rates) Table 1.7 Accretion rates on Earth today. | Sources | Mass range /kg | Mass accretion rate
(estimated)/10 ⁶ kg yr ⁻¹ | Carbon % | Carbon
accretion rate /10 ⁶ kg yr ⁻¹ | |---|---|--|--------------------|---| | meteoritic matter meteors (from comets) meteorites crater-forming bodies | 10 ⁻¹⁷ to 10 ⁻¹
10 ⁻² to 10 ⁵
10 ⁵ to 10 ¹⁵ | 16.0
0.058
62.0 | 10.0
1.3
4.2 | 1.6
<0.001
2.6 | | unmelted material contributing organic matter meteors (from comets) meteorites, non-carbonaceous meteorites, carbonaceous | 10 ⁻¹⁵ to 10 ⁻⁹
10 ⁻² to 10 ⁵
10 ⁻² to 10 ⁵ | 3.2 2.9×10^{-3} 1.9×10^{-4} | 10.0
0.1
2.5 | 0.32 | - Greatest organic C source? - Compare with C of biomass: 6×10^{14} kg - $-6x10^{14} \text{ kg} / 0.3x10^6 \text{ kg/yr} = 20 \text{ x } 10^8 \text{ yr} = 2\text{Gyr}$ ### Carbon delivery - Somewhat more anorganic than organic C - Organic C delivery continuous - Enough to produce all C in biomass - Early rates likely much higher; see moon #### Also water is volatile - Not much water during formation - temperatures too high → dry accretion - Possible solution: - Late delivery from beyond "snowline" - Evidence: depletion wrt meteorites - Low K/U (potassium to uranium ratio) - Indicator of relative depletion of volatiles #### Is wet accretion possible? - Yes, by later inward migration - Need to look at orbital dynamics - Many body problem - Can easily become unstable #### Water on terrestrial planets - Not much on Venus and Mars - either acquired less than Earth, - or lost more - Earth: much is in the mantle (2-10 times) - Venus: unclear (losses by impact & sol wind) - Mars: loss by solar wind (MAVEN) ### Alternative: late delivery - Also known as: late veneer - comets & asteroids - Formed beyond snow line - Potential problem D/H ~ 3x10⁻⁴ - Ocean water D/H = 1.56×10^{-4} - But 103P/Hartley 2 (IR): comp. w/ Earth - For the coma: core could be enriched ## Different types of comets #### LETTER doi:10.1038/nature105 # Ocean-like water in the Jupiter-family comet 103P/Hartley 2 Paul Hartogh¹, Dariusz C. Lis², Dominique Bockelée-Morvan³, Miguel de Val-Borro¹, Nicolas Biver³, Michael Küppers⁴, Martin Emprechtinger², Edwin A. Bergin⁵, Jacques Crovisier³, Miriam Rengel¹, Raphael Moreno³, Slawomira Szutowicz⁶ & Geoffrey A. Blake² For decades, the source of Earth's volatiles, especially water with a deuterium-to-hydrogen ratio (D/H) of $(1.558 \pm 0.001) \times 10^{-4}$, has been a subject of debate. The similarity of Earth's bulk composition to that of meteorites known as enstatite chondrites¹ suggests a dry proto-Earth² with subsequent delivery of volatiles³ by local accre- Our measured D/H value is substantially larger than that which characterized the young Sun (4.5 Gyr ago; the protosolar rational believed to be about 2.1×10^{-5} , which in turn is slightly higher that the value found in the local interstellar medium today (1.6×10^{-5}) a ### Panspermia - Arrhenius (1859-1927): spores survived - Lord Kelvin (1824-1907): via meteorites - Allan Hills meteorite (ALH 84001) - 4.5 Gyr: crystallized magma from Mars - 4.0 Gyr: battered, but not ejected - 3.6-1.8 Gyr: altered by water - 1984: discovered in Antarctica - 1996: NASA press conference # Why not Panspermia Earth → Mars? - A. Because of Earth's atmosphere - B. Because Earth is too massive - C. Because Earth is closer to the Sun - D. Because of either B or C - E. Because of both B and C # Why not Panspermia Earth → Mars? - A. Because of Earth's atmosphere - B. Because Earth is too massive - C. Because Earth is closer to the Sun - D. Because of either B or C - E. Because of both B and C ## Panspermia - Not a hypothesis for origin of life - We could be related to Martian life (think) - Other way unlikely (against Sun, heavier) - Bacteria → suspended animation - Virtually no metabolism (bact spores) - Hardy to heat, desiccation, radiation, chem. - Record so far 250 Myr (Lon 384) - Isolated bubbles, lake bed Salado in NM #### Next week's material - Domains of life & extremophiles - Bacteria in antarctica survived -50 C (-58 F) - LUCA, the last common ancestor - RNA world - It can also act as catalyst - No proteins necessary #### Preparation for quiz #1 - Next week Thursday - Check all lectures: def of life, order/disorder, - Away from equilibrium - Natural selection - Carbon & Water, polar molecules - Lipids and other building blocks - Genetic code, A-T, G-C - Biomarkers, meteorites, Miller/Urey, ...