
ASTR-3760: Solar and Space Physics . . . . . . . . . . . . . Problem Set 1KEY (Due Mon., January 25, 2016)

Please try to be neat when writing up answers. In cases where calculations are called for, please show all of
the intermediate steps, including any approximations you choose to make and any sketches you may need
to illustrate what’s what. Be careful to properly evaluate units and significant figures. Calculations given
without ‘showing the work’ will receive zero credit, even if the final answer is correct.

1. K index and relation to B field. When googling for Kp index, I came across the following site:

http://www.spaceweatherlive.com/en/help/the-kiruna-magnetometer

It relates the K index (from 0 to 9) to ranges of the magnetic field (Bmin andBmax) in nT; see below.

(a) PlotBmin andBmax versus Kp (either with the computer or by hand) and check that K does indeed
grow logarithmically, and thusBmin andBmax grow exponentially with Kp.

(b) Try to describe the data with the formula

B = B0exp(Kp/Kp0)

and give the valuesB0 and Kp0. (Don’t forget the give units, when appropriate and necessary.)

(c) To see the logarithmic behavior of Kp, it is more natural to plot Kp versusBmin and versusBmax (in
the same graph). Check that

Kp = Kp0 ln(B/B0)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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(a) To show thatBmin andBmax grow exponentially with Kp, it is best to plot logBmin and logBmax versus
Kp. This is shown in Fig. 1. One can now overplot logB = logB0exp(Kp/Kp0) for some trial values
of B0 and Kp0. Alternatively, one can use a semi-logarithmic plot; see Fig. 3, where I plotBmin (in
blue) and versusBmax (in red) vs. Kp on the left and Kp versusBmin (in blue) and versusBmax (in red)
on the right. The straight lines denote approximate fits discussed below.

Figure 1: logBmin and logBmax versus Kp (left) and Kp versus logBmin and logBmax (right). (One is
essentially just the mirror image of the other.)

Figure 2: Kp index

(b) After some fiddling, I found that
B = B0exp(Kp/Kp0)

with B0 = 15nT and Kp0 = 1.7 fits the blue and red lines reasonably well (at least in the range 3≤
Kp ≤ 6).

(c) K̃0 = 3.9, butK̃0 = 4.0 is also good and even slightly better.
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2. Vector & scalar fields.Consider the following vector function in Cartesian space:

F = (y + 2xy)êx + (x + x2 + 3y2z2)êy + (2y3z)êz

(a) Calculate the divergence and curl ofF.

(b) CanF be an electric field? If so, under what circumstances?

(c) CanF be a magnetic field? If so, under what circumstances?

(d) Extra credit:Using a table of vector identities, it is possible for you to determine how the vector
field F was “generated” from a simpler scalar functionφ(x,y,z). Figure out how that was done, and
calculate the functional form ofφ(x,y,z).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(a) The divergence is given by:

∇ ·F = 2y + 6yz2 + 2y3 = 2y (1+ 3z2 + y2) .

The curl ofF is zero! If you didn’t get that answer, see the following breakdown:

(∇×F)x = (∂Fz/∂y) − (∂Fy/∂z) = 6y2z − 6y2z = 0

(∇×F)y = (∂Fx/∂z) − (∂Fz/∂x) = 0− 0 = 0

(∇×F)z = (∂Fy/∂x) − (∂Fx/∂y) = (1+ 2x) − (1+ 2x) = 0

(b) Yes. Its divergence describes the distribution of charge densityρc in space. Its curl is zero, which from
Faraday’s law means that the local magnetic fieldB must be constant in time (i.e.,∂B/∂t = 0).

(c) No, because its divergence is not zero. A magnetic field must obey∇ ·B = 0.

(d) We know that∇×F = 0, and there is a vector identity that says the curl of a gradient is also identically
zero:

∇×∇φ = 0 .

Thus, the vectorF must be expressible as the gradient of a scalar “potential” functionφ(x,y,z). Using
your knowledge of derivatives, it’s possible to work backwards fromthe three components ofF to see
that the potential must have been

−φ(x,y,z) = xy + x2y + y3z2 .

I’ve used here a minus sign to conform with the usual convention in which theelectric field is the
negative gradient ofφ, i.e.,E = −∇φ. Thus,E in the direction in whichφ becomes most negative.

3. A Not-So-Ordinary Differential Equation. Consider a one-dimensional “slab” of gas that starts atx = 0
and ends atx = D, and is surrounded by empty space. A ray of light with intensityI0 hits the slab atx = 0
and shines through it parallel to thex axis. Inside the slab, the intensity obeys

dI
dx

= α (S − I)

whereα andS are constants.
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Figure 3: Electric field vectors and contours of constant electrostatic potential.

Figure 4: Electrostatic potential, where dotted lines denote negative values of φ. As expectedE points in
the direction in whichφ becomes most negative (e.g. the upper left and right corners.

(a) Solve this equation forI(x) at all points betweenx = 0 andx = D.

(b) Define the quantityτ = αD. Give an approximate solution for the “emergent intensity”I(D) under
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the three limiting cases:

• τ ≪ 1.

• τ ≫ 1 andS ≫ I0.

• τ ≫ 1 andS ≪ I0.

(c) Each of the three above cases matches with one of the following three physical analogies. Which do
you think corresponds to which, and why?

• Shining a flashlight through a piece of dark smoky quartz.

• Shining a flashlight through the bright flame of a welder’s torch.

• Shining a flashlight through a glass window pane.

Hint: The quantityτ can be thought of as the “optical depth” or opaqueness of the slab—i.e., how efficiently
does the gas absorb (or otherwise eliminate) the incoming beam. The quantityS is a “source function” that
describes how the gas in the slab generates its own light.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(a) We can sort of separate the variables to get

dI
dx

+αI = αS,

but we can’t quite integrate this equation yet unless we introduce a so-called integrating factore−αx

and substitute
I(x) = e−αxĨ(x).

Inserting this gives

−αI + e−αx dĨ
dx

+αI = αS

where theαI cancels, so we have

e−αx dĨ
dx

= αS, (1)

or

dĨ
dx

= αSeαx, (2)

which can now be solved by separation of variables, i.e.

Ĩ − Ĩ0 = αS
∫ x

0
eαx′ dx′,

and because
∫

eαx dx = α−1 eαx + const, we have

Ĩ = Ĩ0 + S(eαx − 1).

We now express this solution in terms ofI by substitutingĨ = eαxI, so

eαx I = eα×0 I0 + S (eαx − 1),
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whereeα×0 I0 = I0, and after multiplying bye−αx

I(x) = I0e−αx + S (1− e−αx),

which is the solution! Several solutions are shown in Figs. 5 and 6.

As noted by some of you, in this particular case, sinceS = const, one can solve this equation also
directly by separation of variables. Thus, we write

dI
I − S

= −αdx.

SinceS = const, we can substitutedI by d(I − S), but that means that the lower and upper boundary
values areI0 − S andI − S, respectively, and the integrating variable will now be calledI′ − S. Thus, we
have

∫ I−S

I0−S

d(I′ − S)
I′ − S

= −α

∫ x

0
dx′.

This gives
ln(I − S) − ln(I0 − S) = −αx,

or
ln(I − S) = ln(I0 − S) −αx.

Exponentiating this gives
I − S = (I0 − S)e−αx,

which can also be written in the form

I = I0 e−αx + S
(

1− e−αx) .

which is indeed the same as the solution via integrating factor.

Figure 5: Dependence ofI(αx)/I0 on αx for S/I0=0 (solid), 0.5 (dotted), 1 (dashed), 2 (dash-dotted), 5
(dash-triple-dotted). The plot on the right shows a comparison with the approximation exp(x) ≈ 1− x (ed
lines) over a shorter range 0≤ αx ≤ 0.4
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Figure 6: Similar to previous figure, but now in semi-logarithmic representationfor S/I0=0 (solid), 0.01
(dotted), 0.1 (dashed), 1 (dash-dotted), 10 (dash-triple-dotted), and 100 (long dashed).

(b) At x = D, the solution is given by

I(D) = I0e−τ + S
(

1− e−τ
)

.

For τ ≪ 1, we can use the series expansion for the exponential function with a smallargument,

e−τ ≈ 1− τ + · · ·

(where we ignore tiny quantities likeτ2, τ3, etc). Thus, in this limit,

I(D) ≈ I0(1− τ ) + τS

and if we tookτ → 0, this leaves only
I(D) ≈ I0 .

For τ ≫ 1, thee−τ term goes to zero extremely rapidly, and all that is left is

I(D) ≈ S

and it doesn’t matter whetherS ≪ I0 or S ≫ I0, since in this limit the intensity atx = D completely
“forgets” about the boundary condition atx = 0.

(c) The glass window is the “optically thin” case ofτ ≪1, since the intensity that comes out is approximately
equal to the intensityI0 that goes in.

The other two cases correspond to the “optically thick” limit ofτ ≫ 1. The intensity that comes out
is dominated solely by the source functionS; i.e., by the properties of the slab itself. The dark smoky
quartz absorbs the incoming beam but doesn’t generate much light of its own; thus the emergent beam
is less intense than what went in (S ≪ I0). For the welder’s torch, the initial beam is swamped by the
much brighter intrinsic emission from within the slab (S ≫ I0).

4. Electromagnetic Energy Conservation. Use Maxwell’s equations, for a vacuum environment (i.e.,
D = ǫ0E andB = µ0H), to show that

∂

∂t
(UE +UB) +∇ ·S = −E ·J
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where

UE =
ǫ0|E|2

2
, UB =

|B|2

2µ0
, S=

1
µ0

(E×B) .

Hint: The online version of the “useful formulae” document contains a new vector identity that didn’t get
included in time for the printed handouts on the first day. If vectorsA & B depend on timet, then the chain
rule for the dot product is given by

∂

∂t
(A ·B) = A ·

∂B
∂t

+
∂A
∂t

·B .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

There are several ways to go about it, but I think the most straightforward is to start by expanding out

∂

∂t
(UE +UB) =

ǫ0

2
∂

∂t

(

|E|2
)

+
1

2µ0

∂

∂t

(

|B|2
)

= ǫ0E ·
∂E
∂t

+
1
µ0

B ·
∂B
∂t

which makes use of the vector identity above and the fact that|A|2 = A ·A.

Solving Ampère’s law and Faraday’s law for the time derivatives ofE andB allows us to substitute in to get

∂

∂t
(UE +UB) =

1
µ0

[E · (∇×B) − B · (∇×E)] − E ·J .

This is almost the final expression. The quantity in square brackets can besimplified, using a vector chain
rule identity, to∇ · (B×E). We can switch the order of vectors in the cross product if we change the sign,
so this quantity is also equal to−∇ · (E×B). Some algebra is all that is needed to rearrange everything into
the desired form.
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