Summary of previous lecture

- Newton’s law
- Equation of state
- Lorentz force

Lecture 11

- Lorentz force (cont'd)
- Sound waves
- Flux tubes $(\operatorname{div} \boldsymbol{B}=0)$

How we got the scale height

sum of all forces per unit volume

$$
\begin{gathered}
\rho \frac{d \mathbf{u}}{d t}=-\nabla p+\rho \mathbf{g} \ldots \\
\rho \frac{d \mathbf{u}}{d t}=-\nabla\left(\frac{\mathfrak{R} T}{\mu} \rho\right)+\rho \mathbf{g} \ldots
\end{gathered}
$$

Isothermal case

$$
\rho \frac{d \mathbf{u}}{d t}=-\frac{\mathfrak{R} T}{\mu} \nabla \rho+\rho \mathbf{g} \ldots
$$

Exponential stratification (isothermal)

z component

$$
\frac{\mathfrak{R T}}{\mu} \frac{d \rho}{d z}=-\rho g
$$

only z dependent
$\rho=\rho(z)$

Separation of variables

$$
\frac{d \rho}{\rho}=-\frac{g}{\frac{\mathfrak{R} T}{\mu}} d z
$$

define scale height

$$
H=\frac{\mathfrak{R} T}{\mu g}
$$

Lower \& upper boundaries

$$
\int_{\rho_{0}}^{\rho} d \ln \rho^{\prime}=-\int_{0}^{z} \frac{d z^{\prime}}{H}
$$

Exponential stratification

$$
\rho=\rho_{0} \exp (-z / H)
$$

Lorentz force: charge neutral

$$
m \frac{d \mathbf{u}}{d t}=q \mathbf{u} \times \mathbf{B}
$$

per unit volume, for hydrogen (H) and electrons (e)

$$
\underbrace{n m}_{\rho} \frac{d\left(\mathbf{u}_{\mathrm{H}}+\mathbf{u}_{\mathrm{e}}\right)}{d t}=\underbrace{n\left(e \mathbf{u}_{\mathrm{H}}-e \mathbf{u}_{\mathrm{e}}\right)}_{\mathbf{J}} \times \mathbf{B}+\ldots
$$

sum of all forces per unit volume

$$
\rho \frac{d \mathbf{u}}{d t}=-\nabla p+\rho \mathbf{g}+\mathbf{J} \times \mathbf{B}+\ldots
$$

In which direction...

$$
\rho \frac{d \mathbf{u}}{d t}=-\nabla p \underbrace{-\frac{1}{\mu_{0}} \nabla \mathbf{B}^{2}+\frac{1}{\mu_{0}} \mathbf{B} \cdot \nabla \mathbf{B}}_{=\mathbf{J} \times \mathbf{B}}+\rho \mathbf{g}+\ldots
$$

does $\mathbf{J} \times \mathbf{B}$ point?
A. Along \boldsymbol{B}
B. Perpendicular to \boldsymbol{B}
C. Perpendicular to \boldsymbol{J}
D. Neither of these
E. Perp to both \boldsymbol{J} and \boldsymbol{B}

In which direction...

$$
\rho \frac{d \mathbf{u}}{d t}=-\nabla p \underbrace{-\frac{1}{\mu_{0}} \nabla \mathbf{B}^{2}+\frac{1}{\mu_{0}} \mathbf{B} \cdot \nabla \mathbf{B}}_{=\mathbf{J} \times \mathbf{B}}+\rho \mathbf{g}+\ldots
$$

does $\mathbf{B} \cdot \nabla \mathbf{B}$ point?
A. Along \boldsymbol{B}
B. Perpendicular to \boldsymbol{B}
C. Perpendicular to \boldsymbol{J}
D. Neither of these
E. Perp to both \boldsymbol{J} and \boldsymbol{B}

Total time derivative

Consider momentum equation

$$
\rho \frac{d \mathbf{u}}{d t}=-\nabla p+\mathbf{J} \times \mathbf{B}+\rho \mathbf{g}+\ldots
$$

is correct if $d \boldsymbol{u} / d t$ is evaluated on comoving fluid particle
\rightarrow Lagrangian derivative or material derivative
In a fixed frame, we have $\boldsymbol{u}(t, \boldsymbol{x})$ chain rule

$$
\frac{d \mathbf{u}}{d t}=\frac{\partial \mathbf{u}}{\partial t}+\frac{d x_{j}}{d t} \frac{\partial \mathbf{u}}{\partial x_{j}}=\frac{\partial \mathbf{u}}{\partial t}+u_{j} \frac{\partial \mathbf{u}}{\partial x_{j}}=\frac{\partial \mathbf{u}}{\partial t}+\mathbf{u} \cdot \nabla \mathbf{u}
$$

"directional derivative" - similar to tension force $\mathbf{B} \cdot \nabla \mathbf{B}$

...also called advective derivative

$$
\frac{\partial \mathbf{u}}{\partial t}+\mathbf{u} \cdot \nabla \mathbf{u} \equiv \frac{D \mathbf{u}}{D t}
$$

Seen before?
A. Yes
B. Maybe
C. Probably not
D. Certainly not

What about continuity equation?

$\frac{\partial \rho}{\partial t}=-\nabla \cdot(\rho \mathbf{u})$

$$
\begin{array}{cc}
\frac{\partial}{\partial t} \int_{V} \rho d V=- & \oint_{\partial V} \rho \mathbf{u} \cdot d \mathbf{S} \\
\text { change of mass } & \text { What gets in \& out } \\
\text { in volume } V & \text { of surface } d V
\end{array}
$$

Seen before?

A. Yes
B. Maybe
C. Probably not
D. Certainly not

Recall Lecture 9

insert

$$
B_{y}(x, t)=\hat{B}_{y} e^{i k_{x} x-i \omega t}+\text { c.c. }
$$

$E_{z}(x, t)=\hat{E}_{z} e^{i k_{x} x-i \omega t}+$ c.c.

$$
\begin{aligned}
\frac{\partial}{\partial t}\left(\begin{array}{c}
0 \\
B_{y}(x, t) \\
0
\end{array}\right) & =-\left(\begin{array}{c}
\partial_{x} \\
0 \\
0
\end{array}\right) \times\left(\begin{array}{c}
0 \\
0 \\
E_{z}
\end{array}\right)=\partial_{x} E_{z} \\
\mu_{0} \varepsilon_{0} \frac{\partial}{\partial t}\left(\begin{array}{c}
0 \\
0 \\
E_{z}(x, t)
\end{array}\right) & =+\left(\begin{array}{c}
\partial_{x} \\
0 \\
0
\end{array}\right) \times\left(\begin{array}{c}
0 \\
B_{y} \\
0
\end{array}\right)=\partial_{x} B_{y}
\end{aligned}
$$

Vanishing determinant

$$
\operatorname{det}\left(\begin{array}{cc}
\omega & k_{x} \\
k_{x} / \mu_{0} \varepsilon_{0} & \omega
\end{array}\right)=0
$$

$$
-i \omega \hat{B}_{y}=i k_{x} \hat{E}_{z}
$$

$$
-i \omega \hat{E}_{z}=i k_{x} \hat{B}_{y} / \mu_{0} \varepsilon_{0}
$$

Eigenvalue problem with eigenvalue ω
Speed of light

$$
\omega= \pm k_{x} / \sqrt{\mu_{0} \varepsilon_{0}} \quad c=1 / \sqrt{\mu_{0} \varepsilon_{0}}
$$

Combined with momentum equation

Expand continuity eqn: $\quad \frac{\partial \rho}{\partial t}=-\nabla \cdot(\rho \mathbf{u})=-\mathbf{u} \cdot \nabla \rho-\rho \nabla \cdot \mathbf{u}$
Momntum eqn (isothermal):

$$
\rho \frac{\partial \mathbf{u}}{\partial t}=-\rho \mathbf{u} \cdot \nabla \mathbf{u}-\frac{\Re T}{\mu} \nabla \rho+\ldots
$$

Linearized form

$$
\begin{array}{rr}
\frac{\partial \rho_{1}}{\partial t}=-\rho_{0} \nabla \mathbf{u}_{1} & \text { Trial solution } \\
\rho_{0} \frac{\partial \mathbf{u}_{1}}{\partial t}=-\frac{\mathfrak{R T}}{\mu} \nabla \rho_{1}(z, t)=\hat{\rho}_{1} e^{i k_{z} z-i \omega t}+\text { c.c. } \\
u_{1 z}(z, t)=\hat{u}_{1 z} e^{i k_{z} z-i \omega t}+\text { c.c. } \\
& \left(\begin{array}{cc}
i \omega & -i k_{z} \rho_{0} \\
-i k_{z} \frac{\mathfrak{R} T}{\mu} & i \omega \rho_{0}
\end{array}\right)\binom{\hat{\rho}_{1}}{\hat{u}_{1 z}}=0
\end{array}
$$

Dispersion relation $\omega^{2}=\frac{\mathfrak{R} T}{\mu} k_{z}^{2}$

$$
c_{\mathrm{s}}=\sqrt{\Re T / \mu} \quad \text { Sound speed }
$$

Static flux tube

$\nabla \cdot \mathbf{B}=0$

Axisymmetry
 $\nabla \cdot \mathbf{B}=0$

$$
\frac{1}{r} \frac{\partial}{\partial r}\left(r B_{r}\right)+\frac{1}{r} \frac{\partial}{\partial \phi} B_{\phi}+\frac{\partial}{\partial z} B_{z}=0
$$

Boundary conditions on the axis $(r=0)$?

A: $B_{r}=0$ and $B_{z}=0$
B : $\frac{\partial}{\hat{\partial r}} B_{r}=0$ and $B_{z}=0$

C: $B_{r}=0$ and $\frac{\partial}{\partial r} B_{z}=0$
D: $\frac{\partial}{\partial \mathrm{r}} B_{r}=0$ and $\frac{\partial}{\partial \mathrm{r}} B_{z}=0$

Flux conservation

$$
\begin{aligned}
\frac{B_{r 1}}{B_{z 1}} & =\frac{\Delta r}{\Delta z} \quad \text { (tube geometry) } \\
B_{r 1} & =-\frac{1}{2} \frac{\Delta B_{z}}{\Delta z} r_{1} \text { (problem 3a) }
\end{aligned}
$$

Divide by each other $\frac{\Delta B_{z}}{B_{z 1}}=-2 \frac{\Delta r}{r_{1}}=-\frac{\Delta A}{A} \quad(A=$ area $)$

