Lecture 6

- Index notation
- Observational techniques
- Important contributions to opacity
- LASP visit 8:30-9:45

Summary of previous lecture

- More on neutrino observations
- Center to limb variation
- Maxwell equations
- Index notation
- LASP visit 8:30-9:45

Index notation (1st exposure)

divergence

$$\nabla \cdot \mathbf{F} = \sum_{i=1}^{3} \frac{\partial}{\partial x_i} F_i \equiv \frac{\partial}{\partial x_i} F_i \equiv \partial_i F_i$$

Einstein's summation convention

Subscript means spatial coordinate direction

curl

$$(\nabla \times \mathbf{F})_i = \mathcal{E}_{ijk} \partial_j F_k$$

 $(\mathbf{G} \times \mathbf{F})_i = \mathcal{E}_{ijk} G_j F_k$

 $\varepsilon_{123} = \varepsilon_{231} = \varepsilon_{312} = 1$ $\varepsilon_{321} = \varepsilon_{213} = \varepsilon_{132} = -1$ $\varepsilon_{ijk} = 0 \text{ otherwise}$

Application (useful for homework!)

Divergence and cross product combined: use product rule

$$\nabla \cdot (\mathbf{E} \times \mathbf{B}) = \varepsilon_{ijk} \partial_i (E_j B_k)$$
$$= \varepsilon_{ijk} (\partial_i E_j) B_k + \varepsilon_{ijk} E_j (\partial_i B_k)$$

Re-express in terms of vector notation

$$\nabla \cdot (\mathbf{E} \times \mathbf{B}) = (\varepsilon_{kij} \partial_i E_j) B_k + E_j (\varepsilon_{jki} \partial_i B_k)$$
$$= (\varepsilon_{kij} \partial_i E_j) B_k - E_j (\varepsilon_{jik} \partial_i B_k)$$
$$= (\nabla \times \mathbf{E}) \cdot \mathbf{B} - \mathbf{E} \cdot (\nabla \times \mathbf{B})$$

Kronecker tensor

$$\delta_{11} = \delta_{22} = \delta_{33} = 1$$

and 0 otherwise

	A.	0
	В.	1
what is δ_{ii} ??	С.	2
	D.	3
	E.	4

Levi-Civita tensor

$$\varepsilon_{123} = \varepsilon_{231} = \varepsilon_{312} = 1$$

$$\varepsilon_{321} = \varepsilon_{213} = \varepsilon_{132} = -1$$

 $\varepsilon_{ijk} = 0$ otherwise

Also: totally antisymmetric tensor

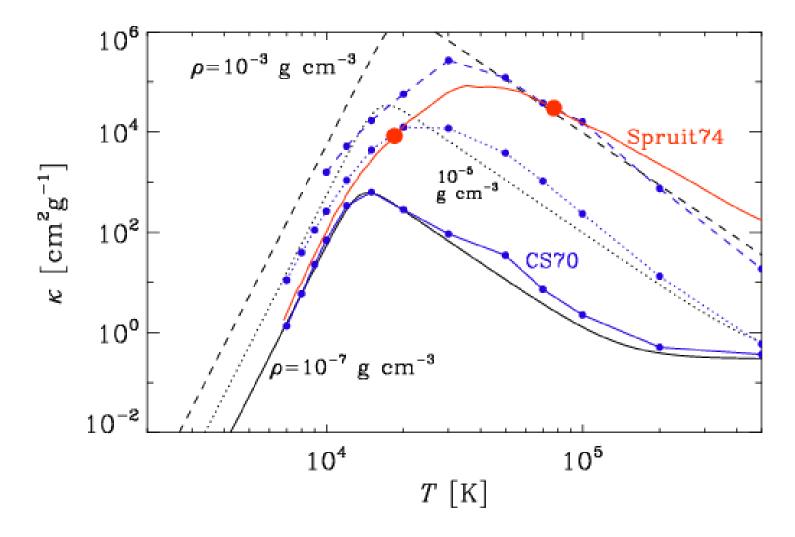
what is $\varepsilon_{ijk}\varepsilon_{ijk}$??

Δ 0

Observational techniques

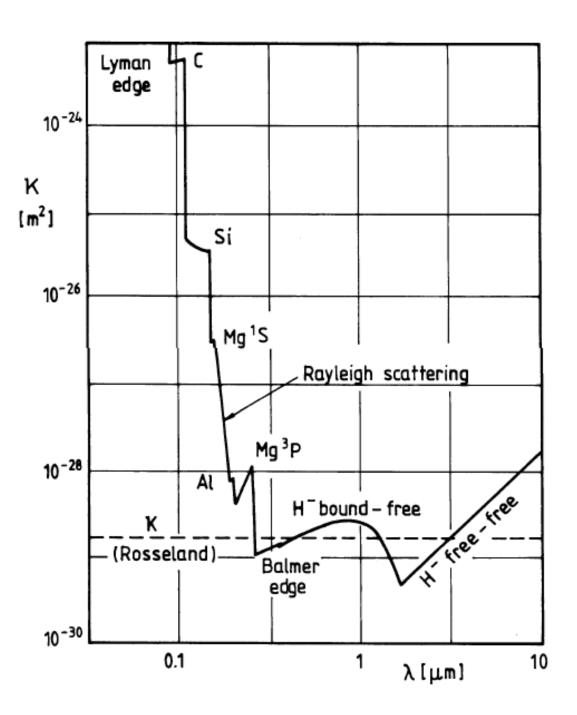
Name/Observatory +	lmage ¢	Aperture d.	Year(s) 🗢	Location 🗢	Country(s) +	
COronal Solar Magnetism Observatory (COSMO) ^[1]	-	150 cm	proposed	Hawaii, USA	United States	
Chinese Large Solar Telescope	-	180 cm	constructing	Western part of China	China	
National Large Solar Telescope	-	200 cm	proposed ^[2]	Merak Village, Ladakh, India	💶 India	
Chinese Giant Solar Telescope	-	500-800 cm	planned	Western part of China	China	Could be the world's largest s
European Solar Telescope (EST) ^[4]	-	400+ cm	planned	Canary Islands	15 European countries ^[5]	
Daniel K. Inouye Solar Telescope (formerly Advanced Technology Solar Telescope (ATST))	-	424 cm ^[6]	under construction [7]	Maui, Hawaii, USA	📕 United States	
GREGOR solar telescope, Teide Obs.		150 cm	2012-	Tenerife, Spain	Germany	[8]
BBO NST, BBS Obs.		160 cm	2008-	California, USA	💻 United States	Largest aperture solar telesc
New Vacuum Solar Telescope (NVST)	-	100 cm	2010-	Yunnan Astronomical Observatory, China	China	100 cm vacuum solar telesco
ONSET (Optical and Near-Infrared Solar Eruption Tracer)	-	3x27,5 cm	2010-	Yunnan Astronomical Observatory, China	China	The ONSET consists of four tu aperture of 27.5 cm, (2) a ch 27.5 cm, (3) a WL vacuum tub tube. ^[10]
Bulgarian 15-cm Solar Coronagraph, ^[11] NAO - Rozhen	-	100 cm	2005-	Rozhen, Bulgaria	Template:BG	
Swedish 1-m Solar Telescope ^[12] (SST), ORM		100 cm	2002-	La Palma, Spain	Sweden	

Solar Telescopes

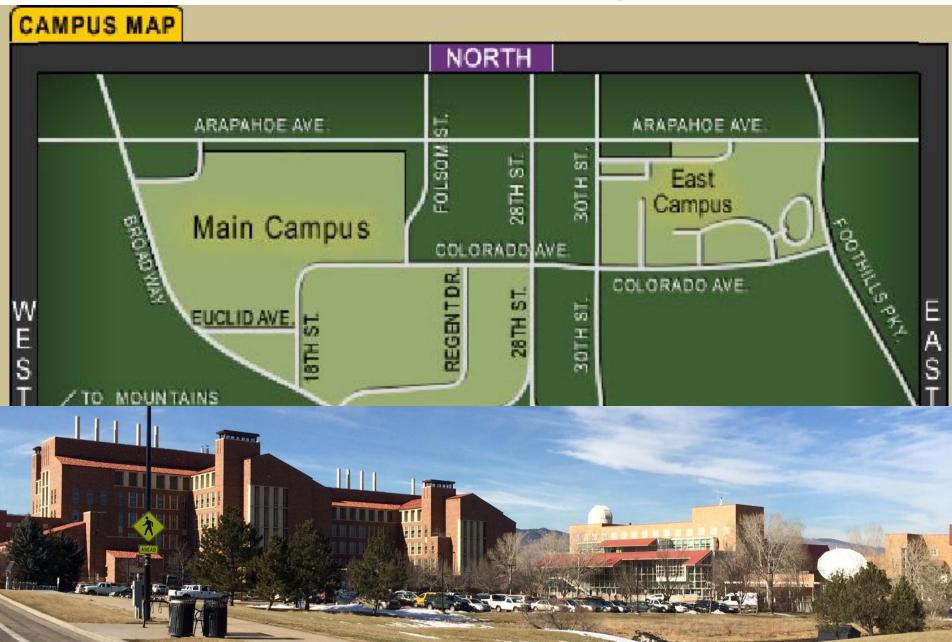


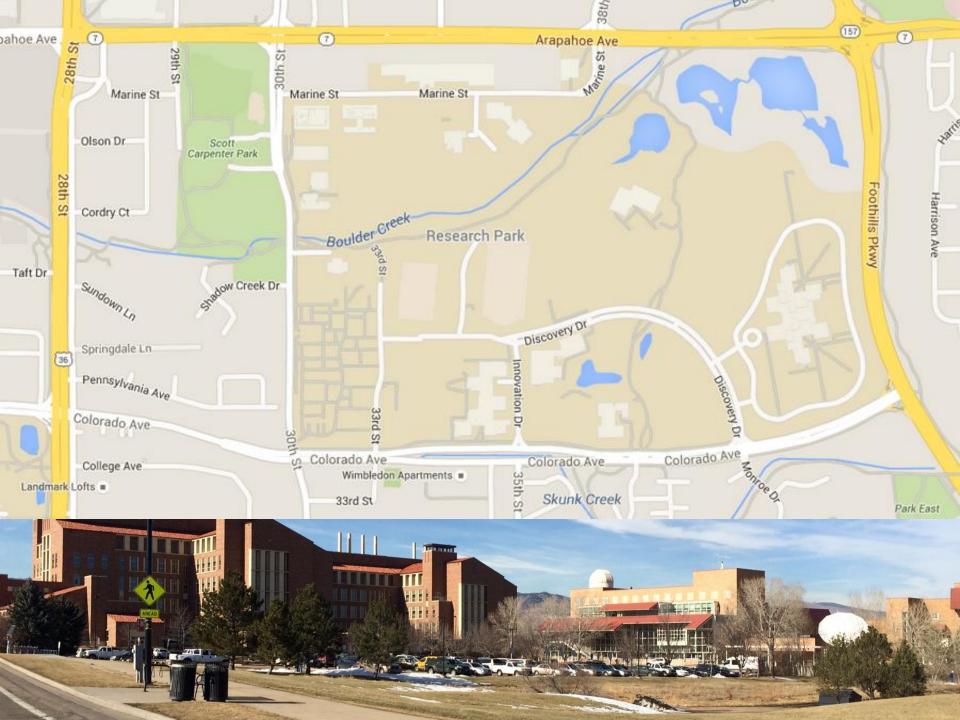
- Daniel K. Inouye Solar Telecope (DKIST)
- Heating, seeing, active optics, polarization

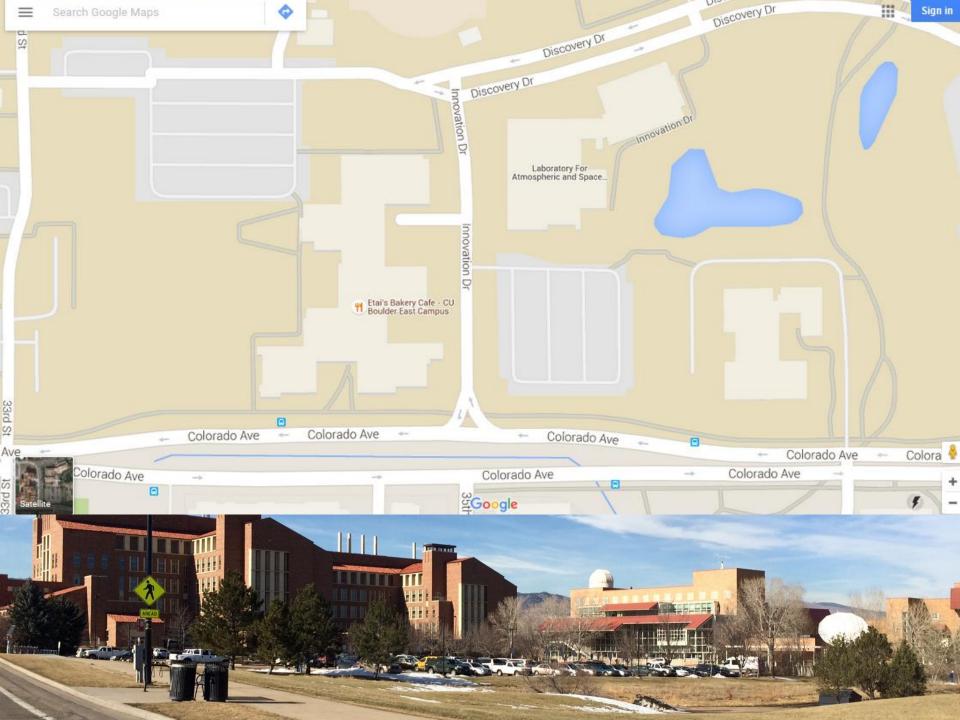
Opacity


- Electron scattering
 - EM passes by e⁻, makes it oscillate
 - It radiates in other directions
- Free-free transitions, and similar
 - $-e^{-}$ passes by an ion
 - absorbs & emits during time $\sim 1/v \sim T^{-1/2}$
- Negative Hydrogen ion
 - Neutral ion is polarized by nearby charge
 - Then attracts & binds another e-

T and ρ dependence, solar model




Opacity


- Increases toward red
- Strong absorption in UV
- Quadratic increase in IR

LASP visit on Wednesday 8:30-9:45

