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In lecture 26, page 4, we derived the solution to the Eddington approximation as

I(τ, µ) = 3
4π

F (τ + 2
3

+ µ), (1)

where F is the flux. The first three moments are

J(τ) = 1
2

∫ 1

−1
I(τ, µ) dµ = 3

4π
F 1

2

∫ 1

−1

[

(τ + 2
3
) + µ

]

dµ = 3
4π

F (τ + 2
3
), (2)

H(τ) = 1
2

∫ 1

−1
I(τ, µ) µ dµ = 3

4π
F 1

2

∫ 1

−1

[

(τ + 2
3
)µ + µ2

]

dµ = 1
4π

F (3)

K(τ) = 1
2

∫ 1

−1
I(τ, µ) µ2 dµ = 3

4π
F 1

2

∫ 1

−1

[

(τ + 2
3
)µ2 + µ3

]

dµ = 1
4π

F (τ + 2
3
), (4)

Thus, we see that 3K(τ) = J(τ) = (3/4π)F (τ + 2
3
) for all τ and J(0) = 2H(τ). In thermal

equilibrium, the source function is always equal to the mean intensity, i.e., S(τ) = J(τ).

Comparison with the formal solution

In Homework 2(b), we verified that

I(τ, µ) = I(τ0, µ) e−(τ0−τ)/µ +
∫ τ0

τ
S(τ ′) e−(τ ′

−τ)/µ dτ ′/µ (5)

which is known as the formal solution of the radiative transfer equation (see Stix, p. 150).
We are now interested in two special cases: (i) upward propagating rays (µ > 0) that
receive radiation from all the way down to τ0 → ∞, and (ii) downward propagating rays
(µ < 0) that receive radiation from all the way up to τ0 = 0 with I(τ0, µ) = 0, i.e., there
is no illumination from the top. Thus, we have

I(τ, µ) = eτ/µ
∫

∞

τ
S(τ ′) e−τ ′/µ dτ ′/µ (for upward rays, µ > 0), (6)

I(τ, µ) = eτ/µ
∫ 0

τ
S(τ ′) e−τ ′/µ dτ ′/µ (for downward rays, µ < 0). (7)

Inserting now the Eddington solution, S(τ) = J(τ) = (3/4π)F (τ + 2
3
), we find1

I(τ, µ) = (3/4π) F (τ + 2
3

+ µ) (for µ > 0), (8)

I(τ, µ) = (3/4π)F [(τ + 2
3

+ µ) − (2
3

+ µ) eτ/µ] (for µ < 0). (9)

so it agrees with the solution to the Eddington approximation exept for an additional term,
−(2

3
+ µ) eτ/µ, for the downward propagating rays; see Fig. 1. Without this “correction

term”, Idn ≡ I(τ,−1) would actually become negative for τ < 1/3, which is unphysical.
With the correction term included, we have for µ = −1

Idn/[(3/4π)F ] = τ −
1
3

+ 1
3
e−τ = τ −

1
3
(1 − e−τ ) ≈ τ −

1
3
τ = 2τ/3 (for τ → 0). (10)

1Details regarding the derivation are not relevant now, but the calculation is similar to that in the

key to Homework 2, problem 1.
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Figure 1: Linear and logarithmic representations of the τ dependencies of the intensities
of upward (Iup, red) and downward (Idn, blue) propagating rays, compared with the mean
intensity J (black). The solution to the Eddington approximation is shown in dashed.
Here, (3/4π)F = 1 is assumed.

Remarks regarding Homework 5, problem 1

(a) the expression for Idn ≡ I(τ,−1) is given in Eq. (10) as Idn ∝ τ −
1
3
(1 − e−τ ). The

expression for Iup ≡ I(τ, +1) is even simpler.

(b) the relevant expression for τ = 0 is just I(µ) = 3
4π

F (2
3

+ µ) = 3H (2
3

+ µ).

(c) the result of a numerical integration is shown in Fig. 2 as a function of τ . For τ = 0,
the integration is quite straightforward.

(d) the results can be read off Fig. 2, but here you are supposed to compute actual
values. [Under (d), it should of course read “From your answer to part (c), ...]

Figure 2: Eddington approximation at different optical depth τ .
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