
ASTR/ATOC-5410: Fluid Instabilities, Waves, and Turbulence
Problem Set 1 (Due Wed., Sept 7, 2016) September 19, 2016, Axel Brandenburg

1. Picking up some pieces.

(a) For a monatomic gas, the stress tensor is τ = 2ρνS with Sij = 1
2
(ui,j + uj,i) −

1
3
δij∇ · u.

Show that
τ : ∇u = 2ρνS

2. (1)

Hint: make use of the facts that (i) S is a symmetric tensor, and (ii) it is trace-free.

(b) Furthermore, show that in this case, the viscous acceleration is

∇ · τ = ρν(∇2
u + 1

3
∇∇ · u + 2S∇ ln ρν). (2)

(c) Show that, for an ideal gas,

ρT
DS

Dt
= ρcp

DT

Dt
−

DP

Dt
. (3)

Hint: use the facts that R/µ = cp−cv, DS = cvD lnP−cpD ln ρ, and D lnP = D lnT+D ln ρ.
Note: there is really a cp factor in front of the DT/Dt term, not cv.

(d) During the lecture, we discussed the isochoric and isobaric instability criteria (β < 0 and
β < 1, respectively. The latter is the more stringent one. Compare now with the isentropic
instability criterion

(
∂L

∂T

)

S
< 0 (for instability). (4)

What is the condition on β? Hint: use Eq. (27) from Handout 1 and make sure you
differentiate ρ with respect to T such that S = const. To do this, write the density in the
form ρ = ρ(T, S).

(a) We split ∇u into symmetric and antisymmetric parts, i.e.

(∇u)ij = 1
2
(ui,j + uj,i) + 1

2
(ui,j − uj,i). (5)

Using the fact that a symmetric matrix multiplied by an antisymmetric one1 vanishes, we find

τ : ∇u = 2ρνSij
1
2
(ui,j + uj,i). (6)

Furthermore, Sij is trace-free, i.e., Sijδij = 0, so

τ : ∇u = 2ρνSij

[
1
2
(ui,j + uj,i) + δij × “(anything)”

]

. (7)

Choosing “(anything)” = −
1
3
∇u, we have

τ : ∇u = 2ρνSij [1
2
(ui,j + uj,i) −

1
3
δij∇ · u

︸ ︷︷ ︸

=Sij

] = 2ρνS. (8)

1Note that 1

2
(ui,j − uj,i) = −

1

2
ǫijkωk, where ω = ∇ × u is the vorticity.
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(b) Insert τ = 2ρνS and use the product rule, so

(∇ · τ )i = (2ρνSij),j = 2∇j(ρν)Sij + 2ρνSij,j . (9)

Note that
Sij,j = 1

2
(ui,jj + uj,ij) −

1
3
δij(∇ · u),j . (10)

In Cartesian coordinates, uj,ij = uj,ji, which is the same as ∇∇ · u. Furthermore,
1
3
δij(∇ ·u),j = 1

3
(∇ ·u),i = 1

3
(∇∇ ·u)i, so, together with the factor 2, we have 1− 2/3 = 1/3

times ∇∇ · u. Also, ui,jj = (∇2
u)i, so we have

(∇ · τ )i = ρν(∇2
u)i + ρν 1

3
(∇∇ · u)i + 2∇j(ρν)Sij . (11)

Finally, writing ∇(ρν) = ρν∇ ln ρν, we have

∇ · τ = ρν(∇2
u + 1

3
∇∇ · u + 2S∇ ln ρν), (12)

where one may think of S∇ ln ρν as a multiplication of a matrix with a vector, which is
normally written without a dot. However, this operation does involve a contraction over j, so
one could also write this as S · ∇ ln ρν.

(c) Insert DS = cvD lnP − cpD ln ρ, so

ρTDS = ρTcvD lnP − ρTcpD ln ρ = ρTcvD lnP − ρTcp (D lnP − D lnT ) , (13)

and combine, so that

ρTDS = ρcpDT − (cp − cv)ρTD lnP = ρcpDT − (cp − cv)
ρT

P
DP = ρcpDT − DP, (14)

where we have made use of the ideal gas equation, i.e., P = (cp − cv)ρT . Thus, we have

ρT
DS

Dt
= ρcp

DT

Dt
−

DP

Dt
. (15)

(d) The isentropic instability criterion
(

∂L

∂T

)

S
< 0 (for instability) (16)

implies
(

∂L

∂T

)

S
=

(
∂L

∂T

)

ρ
+

(
∂L

∂ρ

)

T

(
∂ρ

∂T

)

S
< 0 (for instability). (17)

We now write the density in the form ρ = ρ(T, S) and use dS = cvd lnP − cpd ln ρ, and use
d lnP = d ln ρ + d lnT , so

dS = cvd ln ρ + cvd lnT − cpd ln ρ = cvd lnT − (cp − cv)d ln ρ. (18)

To compute (∂ρ/∂T )S we set dS = 0 and find
(

∂ρ

∂T

)

S
=

ρ

T

(
∂ ln ρ

∂ lnT

)

S
=

ρ

T

cv

cp − cv

=
1

γ − 1

ρ

T
, (19)

and therefore
(

∂L

∂T

)

S
=

(
∂L

∂T

)

ρ
+

1

γ − 1

ρ

T

(
∂L

∂ρ

)

T

< 0 (for instability). (20)
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Using now L = ρΛ(T ) − Γ with Λ(T ) = Λ0T
β and Γ = const, we have (∂L/∂T )ρ = βρΛ/T

and (∂L/∂ρ)T = Λ, so

(
∂L

∂T

)

S
= βρΛ/T +

1

γ − 1

ρ

T
Λ < 0 =

(

β +
1

γ − 1

)
ρ

T
Λ < 0 (for instability). (21)

For γ = 5/3, we have β < −3/2 for instability, which is less stringent than both the isochoric
and isobaric instability!

2. Momentum and energy equations in conservative forms. Consider the continuity,
momentum, and energy equations in the form

∂ρ

∂t
+ ∇ · (ρu) = 0, (22)

and

ρ
∂u

∂t
+ ρu · ∇u + ∇P = 0, (23)

∂e

∂t
+ u · ∇e +

P

ρ
∇ · u = 0, (24)

where e is the internal energy per unit mass.

(a) Derive the evolution equation for the momentum density

∂

∂t
(ρui) = −

∂

∂xj
(ρuiuj + δijP ) (25)

Note that summation over double indices is assumed!

(b) Explain why this equation is in conservative form. Discuss how the volume-integrated
momentum changes for periodic boundary conditions. What other boundary conditions
give the same result?

(c) Derive the so-called total energy equation in the form

∂

∂t
(1
2
ρu

2 + ρe) = −
∂

∂xj

[

uj

(
1
2
ρu

2 + ρe + P
)]

, (26)

Again, summation over double indices is assumed.

(d) Explain in words how these equations can be used to say something about hydrodynamic
planar shocks, where density, pressure, and velocity can change discontinuously across a
surface. Consider a one-dimensional frame of reference comoving with the shock. What
happens to the time derivative in that frame? Use the equation of state in the form

P = (γ − 1)ρe

and count how many unknowns do you have?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(a) Using the product rule, we have

∂ρui

∂t
= ρ

∂ui

∂t
+ ui

∂ρ

∂t
. (27)
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Likewise
∂

∂xj
[(ρuj)ui] = (ρuj)

∂

∂xj
ui + ui

∂

∂xj
(ρuj). (28)

With this we can write

∂

∂t
(ρui) +

∂

∂xj
(ρujui) = ρ

Dui

Dt
+ ui

(

∂ρ

∂t
+

∂

∂xj
(ρuj)

)

. (29)

Inserting ρDui/Dt = −∂p/∂xi, and noting that we can write ∂p/∂xi = ∂(δijp)/∂xj , we can
pull this term underneath the ∂/∂xj derivative and have

∂

∂t
(ρui) +

∂

∂xj
(ρujui + δijp) = 0. (30)

(b) It is in conservative form, because the rate of change of the momentum ρu is given by
a negative divergence term. Integrating over a certain volume, the rate of change of the
integrated momentum is given by the surface integral of the momentum tensor, i.e.,

d

dt

∫

ρui dV = −

∮

(ρujui + δijp) dSj . (31)

In vanishes for periodic boundary conditions, for example, but it also vanishes if ρ and p
vanish on the boundary of the domain. However, requiring ρ and p to vanish on the boundary
is unphysical, so in practice it will not be possible to preserve the integrated momentum in
the presence of physically meaningful boundaries.

(c) We use the energy and momentum equations,

ρ
De

Dt
= −p∇ · u, (32)

as well as the momentum equation,

ρui
Dui

Dt
= −u · ∇p. (33)

Add the two gives

∂

∂t
(ρe + 1

2
ρu

2) +
∂

∂xj
(ρuje + 1

2
ρuju

2) = −∇ · (pu). (34)

Thus, we have
∂

∂t
(ρe + 1

2
ρu

2) +
∂

∂xj
(ρuje + 1

2
ρuju

2 + puj) = 0, (35)

or
∂

∂t
(ρe + 1

2
ρu

2) +
∂

∂xj

[

uj(ρe + 1
2
ρu

2 + p)
]

= 0. (36)

(d) In a frame moving with the shock, the shock is stationary and therefore all time derivatives
vanish, and therefore the divergences vanish. Since the shock is planar, we can assume it
to move along the x direction, so the divergences are just x derivatives, and thus the terms
underneath these x derivatives must be constant, i.e., equal when evaluated on both sides of
the shock. Thus, we have

ρux = const,
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ρu2
x + p = const,

ux(1
2
ρu2

x + ρe + p) = const.

Together with an equation of state, p = (γ − 1)ρe, we have 4 equations for 4 unknowns,
Assuming that we know the state of the shock on one side, we can use these 4 equations to
solve for the 4 unknowns ux, ρ, p, and e on the other side of the shock.
Incidently, the last of the three equations can be rewritten as ρux(1

2
u2

x + e + p/ρ) = const, so
by using the first equation, the last one can be written as

1
2
u2

x + e + p/ρ = const,

which is now a different constant.

3. Sound waves in an isothermally stratified atmosphere. Consider the continuity and
momentum equations for an isothermal atmosphere (constant temperature) and an isothermal
equation of state (special case with γ = 1) with constant speed of sound, cs, and uniform gravity,
g, in one dimension,

∂ρ

∂t
+ uz

∂ρ

∂z
+ ρ

∂uz

∂z
= 0, (37)

ρ
∂uz

∂t
+ ρuz

∂uz

∂z
+ c2

s

∂ρ

∂z
+ ρg = 0, (38)

where ρ is density and uz vertical velocity.

(a) Show that these equations obey an equilibrium solution uz = uz0(z), ρ = ρ0(z), given by

uz0(z) = 0, ρ0(z) = ρ00 e−z/H , (39)

where ρ00 is a constant and H = c2
s/g is the vertical scale height.

(b) Write ρ = ρ0 + ρ1 and uz = uz1 and linearize equations (37) and (38) with respect to ρ1

and uz1.

(c) Assume that ρ1 and uz1 take the form

ρ1(z, t) = ρ̂1e
ikz−iωt−z/2H , (40)

uz1(z, t) = ûz1e
ikz−iωt+z/2H , (41)

and show that the linearized equations can be written as

(
−iω [ik − (2H)−1]

[ik + (2H)−1]c2
s −iω

) (
ρ̂1

ρ00ûz1

)

=

(
0
0

)

(42)

(d) Calculate the dispersion relation. Note: it will be convenient to use the abbreviation
ω0 = cs/2H for the acoustic cutoff frequency.

(e) Give a qualitative plot of the dispersion relation.

(f) Calculate the value of the period 2π/ω0 for the solar atmosphere, assuming cs = 6 km/s and
g = 270 m/ s2, and the Earth’s atmosphere, assuming cs = 300 m/ s and g = 10 m/ s2.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Figure 1: Dispersion relation.

(a) In hydrostatic equilibrium we have

c2
s

d ln ρ0

dz
= −g,

so ln(ρ0/ρ00) = −gz/c2
s and therefore ρ0 =

ρ00 exp(−gz/c2
s ), which we write as ρ0 = ρ00 exp(−z/H),

where H = c2
s/g is the scale height.

(b) The linearized equations take the form

∂ρ1

∂t
+ uz1

dρ0

dz
+ ρ0

∂uz1

∂z
= 0, (43)

ρ0

∂uz1

∂t
+ c2

s

∂ρ1

∂z
+ ρ1g = 0, (44)

(c) Inserting Eqs. (40) and (41), we have

−iωρ̂1e
ikz−iωt−z/2H+ûz1e

ikz−iωt+z/2H
(

−
ρ0

H
e−z/H

)

+ρ0e
−z/H

(

ik +
1

2H

)

ûz1e
ikz−iωt+z/2H = 0,

(45)

−iωρ0e
−z/H ûz1e

ikz−iωt+z/2H + c2
s

(

ik −
1

2H

)

ρ̂1e
ikz−iωt−z/2H + gρ̂1e

ikz−iωt−z/2H = 0. (46)

Note that in both equations the exponential factors cancel, which requires in some expressions
the presence of the e−z/H factors from the background density. Thus, we have

−iωρ̂1 + ûz1

(

−
ρ0

H

)

+ ρ0

(

ik +
1

2H

)

ûz1 = 0, (47)

−iωρ0ûz1 + c2
s

(

ik −
1

2H

)

ρ̂1 + gρ̂1 = 0, (48)

using g = c2
s/H, and combining terms, we have

−iωρ̂1 +

(

ik −
1

2H

)

ρ0ûz1 = 0, (49)

−iωρ0ûz1 + c2
s

(

ik +
1

2H

)

ρ̂1 = 0. (50)

In matrix form, this can be written as
(

−iω [ik − (2H)−1]
[ik + (2H)−1]c2

s −iω

) (
ρ̂1

ρ0ûz1

)

=

(
0
0

)

. (51)

(d) The determinant of the matrix vanishes when

−ω2
−

(

−k2
−

1

4H2

)

c2
s = 0, (52)

or
ω2 = c2

sk
2 + ω2

0. (53)

(e) Fig. 1 shows two graphic representations of the dispersion relation.

(f) Inserting the numerical values, we have ω0 = cs/2H = g/2cs = 270/12, 000 s−1 = 0.0225 s−1,
so the period is ≈ 280 s = 4.7 min. For the Earth’s atmosphere, we have ω0 = g/2cs =
10/600 s−1 = 0.017 s−1, so the period is ≈ 380 s = 6 min.
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