
ASTR/ATOC-5410: Fluid Instabilities, Waves, and Turbulence
Problem Set 2: extra KEY (Sept 30, 2016)

2. Compute numerically the solutions of the anharmonic oscillator

ẍ = − sinx (1)

both as x(t) and ẋ(t), but also, for a set of different initial conditions, as parametric plots, in the
plane x(t) vs ẋ(t).
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The equations were solved numerically in double precision with a third-order Runge-Kutta scheme
and fixed time step (δt = 0.01). The initial condition is chosen to be

x(0) = 0, ẋ(0) = 2 + ǫ. (2)

In Fig. 1 the evolution is shown for three value of ǫ. For ǫ = −10−8 (red), the solution takes
sharp turns and stays on a limit cycle (upper panel). The time evolution is markedly anharmonic.
For ǫ = +10−7 (black), the solution escapes and jumps higher in x with each semi-orbit. This is
referred to as a heteroclinic orbit1. However, and this is probably due to finite numerical accuracy,
it does get stuck pretty soon and is then caught between x = 3π and 5π; see the black line. For
ǫ = +10−6 (thick-blue, dashed), the solution continues to escape. Note also the shorter period in
the latter case.

Figure 1: Parametric representation of ẋ(t) versus x(t) (upper panel) and time dependence of both
x(t) (solid or dashed) and ẋ(t) (dotted).

1https://en.wikipedia.org/wiki/Heteroclinic_orbit
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3. Compute the eigenfrequencies of the Rayleigh-Benard problem with free-slip boundary conditions
and negative values of Ra for parameters of your choice. Explain in words the physical difference
between positive and negative values of Ra.
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As pointed out by Loren, a k2 term was missing in the original Handout 3. The corrected version
was on my website since September 12. The corrected dispersion relation reads

σ± = −
1 + Pr

2 Pr
k2

±

√

(1 + Pr)2

4 Pr2
k4 −

k4

Pr
+

Ra

Pr

k2

⊥

k2
. (3)

or

σ± = −
1 + Pr

2 Pr
k2

±

√

(

1 − Pr

2 Pr
k2

)2

+
Ra

Pr

k2

⊥

k2
. (4)

See Fig. 2. For negative Ra, there are only oscillatory solutions that correspond to Brunt-Väsälä
oscillations; see Fig. 2.

Figure 2: Similar to the plot in Handout 3, but now corrected. Fatter lines correspond to larger
values of PrM .

It is interesting to note that only for PrM = 1, oscillatory solutions occur for Ra < 0. Both for
larger and smaller values of Pr, there is an interval of negative values of Ra where no oscillations
are possible. Mathematically, this is because (Pr − 1)2 has a minimum at 1.
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