
ASTR/ATOC-5410: Fluid Instabilities, Waves, and Turbulence
Problem Set 3 (Due Wed., Oct 5, 2016) October 19, 2016, Axel Brandenburg

1. Stability of different solution branches

Consider the following amplitude equation:

ξ̇ = (R − Rc)ξ + ǫξ2 − ξ3 (1)

Here, ξ is the amplitude, R is the control parameter. and Rc is the critical value for onset.
Consider the parameters Rc = 1 and ǫ = 1.

(a) Determine all fixed points of Eq. (1). Plot ξ vs. R. At this point, use only a dotted line
for each of the solution branches. What is the nature of the bifurcation at R = Rc? (Is it
super- or subcritical?)

(b) For each of these fixed points, linearize Eq. (1) around these fixed points and determine
thereby the stability of these solutions to the full nonlinear equation on all branches. Now
modify your plot and mark all stable solutions as a fat line.

(c) Compute numerically the time dependence ξ(t) for R = 0.8 using as initial conditions
ξ(0) = 0.2764, 0.2763, 0.72, and 0.74. For each of the four cases, plot (i) ξ = ξ(t), (ii)
|ξ(t)− ξ0|, where ξ0 is the relevant fixed point solution, and finally (iii) the instantaneous

growth rate, σ(t) = d ln |ξ(t) − ξ0|/dt, and determine the time interval in which σ(t) can
be used to estimate the growth or decay rate of the perturbed solution.

(d) Compare the σ(t) with the σ obtained under (b). Explain in a few words the reasons for
discrepancies. Also, explain in a few words the structure of the bifurcation diagrams in
terms of the slope of the branches. What do you think one should do with negative values
of ξ? What happens if ǫ were negative?

(e) Imagine applying the amplitude equation to a nonlinear laboratory dynamo problem,
where dynamo action occurs when the magnetic Reynolds number has to be above a
certain critical value for the dynamo to be excited. In the lab you would measure ≈ 0.5 G
even in the absence of a dynamo because of the Earth’s magnetic field. How do you think
Eq. (1) needs to be modified to take this into account.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(a) Fixed points are solutions where ξ̇ = 0. Thus, we have

0 = (R − Rc)ξ + ǫξ2 − ξ3. (2)

There are 3 solutions; one of them is ξ = ξ0 = 0 and the other two are given by

ξ± = 1
2ǫ ±

√

1
4ǫ2 + R − Rc (3)

A plot of ξ vs R is shown in the left panel of Fig. 1. For ǫ > 0, the bifurcation is subcritical,
because solutions are possible for −ǫ2/4 < R − Rc < 0. In particular, for R − Rc = −0.2,
we have ξ+ ≈ 0.723607 (red dot) and ξ− ≈ 0.276393 (blue dot) we have solutions.

(b) To perform a stability analysis, we linearize around any of the three fixed points. For the
solution ξ = ξ0 = 0, we know already that it becomes unstable for R > Rc. To compute
the stability for the other two solutions, we write

ξ(t) = ξ± + ξ1(t) (4)
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Figure 1: Bifurcation diagram for Rc = 1 and ǫ = 1.

and insert this into Eq. (1):

ξ̇1 = (R − Rc)(ξ± + ξ1) + ǫ(ξ2
± + 2ξ±ξ1) − ξ3

± − 3ξ2
±ξ1. (5)

We subtract the steady solutions, which we know obey 0 = (R−Rc)ξ± + ǫξ2
± − ξ3

±, so we
are left with

ξ̇1 = (R − Rc)ξ1 + 2ǫξ±ξ1 − 3ξ2
±ξ1 (6)

We assume the perturbations to be of the form ξ1(t) = ξ̂ eσt, so we obtain the characteristic
equation in the form

σ = (R − Rc) + 2ǫξ± − 3ξ2
±. (7)

The solution, σ = σ(R), is plotted in the right-hand panel of Fig. 1. All unstable branches
are now marked as a dotted line in the left panel of Fig. 1. For R = 0.8, we have
σ(ξ+) ≈ −0.324 and σ(ξ−) ≈ +0.124.

(c) We now solve Eq. (1) numerically for the initial conditions specified above. In Fig. 2 we
show the evolution of ξ(t), the departure from the equilibrium solution |ξ(t)−ξ(0)|, and the
instantaneous growth rate, σ(t) = d ln |ξ(t) − ξ0|/dt, for the initial condition ξ = 0.2764.
The reference slope of σ = 0.12 is also shown. Clearly, this solution is unstable, but
the exponential departure from the equilibrium solution can clearly be seen for a limited

amount of time. If one waits too long, a new (stable) equilibrium solution is obtained
(upper branch, ξ = ξ+), and so σ(t) becomes zero, but this is now not a measure of the
growth rate any more. Likewise, at early times, the growth is not yet exponential. This
is because our initial condition was not close enough to the actual eigenfunction of the
perturbed equation. The correct eigenfunction emerges a bit later automatically, because
it is the fastest growing one.

In Fig. 3 we show the corresponding evolution for the initial condition ξ = 0.2763.
Now we are initially slightly below the equilibrium solution. Again, the solution departs
exponentially and reaches eventually the “trivial” solution, ξ = ξ0 = 0.

Next, we consider the initial condition ξ = 0.72; see Fig. 4. This is close to the stable
solution, so one has to go a certain distance away from the equilibrium solution to be able
to see the exponential departure toward the final solution. Eventually one is so close to
the final state that the small difference can no longer be resolved with the finite numerical
accuracy, even in double precision.
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Figure 2: Initial condition ξ = 0.2764. Reference slope σ = 0.12.

Figure 3: Initial condition ξ = 0.2763. Reference slope σ = 0.12.

Figure 4: Initial condition ξ = 0.72. Reference slope σ = −0.32.

Finally, for the initial condition ξ = 0.74, we find similar behavior, but now ξ approaches
the final solution from above; see Fig. 5.

Figure 5: Initial condition ξ = 0.74. Reference slope σ = −0.32.
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Figure 6: Enantiomeric excess η as a function of the strength of auto-catalysis f .

(d) As already explained above, the reason for departures between σ(t) and the actual eigenvalue
σ is that our numerical solutions reach the correct eigenfunction only after some time,
and also only for a limited amount of time.

Unstable solutions (dotted lines in Fig. 1) have negative slopes in the bifurcation diagram,
at least for ξ > 0.

In principle, negative values of ξ are perfectly fine, but if we are thinking of amplitude
equations, we should discard those solutions.

When ǫ < 0, the bifurcation at R = Rc becomes supercritical.

(e) One obtains a so-called imperfect bifurcation. Fig. 6 shows such a plot in the context
of astrobiology, where η is the so-called enantiomeric excess, i.e., the dominance of one
handedness over the other1 In this case, η is not just an amplitude, but a signed quantity:
negative means left handedness, and positive right handedness. In astrobiology, a small
preference of one handedness could come about by having (terrestrial) enzymes (=catalysts)
giving rise to one particular handedness. Also the electroweak force breaks chirality, but
that effect is very likely too small.

In the context of the Earth’s magnetic field, if we looked at one component of the magnetic
field (Bz, say), that would then also be a signed quantity, so positive and negative values
could be possible, depending on the initial conditions.

2. Conservation equations with viscosity

In the presence of a viscous stress tensor, τ , the Navier-Stokes and internal energy equations

1Brandenburg, A., Andersen, A. C., Höfner, S., & Nilsson, M., “Homochiral growth through enantiomeric cross-
inhibition,” Orig. Life Evol. Biosph. 35, 225-241 (2005).
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take the form

ρ
∂u

∂t
+ ρu · ∇u + ∇P = ∇ · τ , (8)

∂e

∂t
+ u · ∇e +

P

ρ
∇ · u = τ · ∇u, (9)

where e is the internal energy per unit mass.

(a) How are the right-hand sides of the inviscid momentum and energy equations to be
modified?

∂

∂t
(ρui) = −

∂

∂xj

(ρuiuj + δijP + . . . . . .) (10)

∂

∂t
(1
2ρu2 + ρe) = −

∂

∂xj

[

uj

(

1
2ρu2 + ρe + P

)

+ . . . . . .
]

, (11)

(b) How does viscosity affect the jump conditions for one-dimensional shocks?

(c) In the diffusion approximation, how does a radiative flux proportional to Frad = −K∇T
affect the above equations? What are the consequences for the jump conditions?

(d) In the optically thin case, the diffusion approximation does not hold. Speculate in words
how this might affect the conclusions above.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(a) In the presence of viscosity, we have additional terms on the right-hand sides of the
momentum and internal energy equations

∂

∂t
(ρui) = ... + τij,j

∂

∂t
(ρe) = ... + ui,jτij

The τij,j term is readily included under the divergence. To compute the evolution of
kinetic energy, we multiply by ui, so

ui

∂

∂t
(ρui) = ... + uiτij,j

but
uiτij,j = [uiτij ],j − ui,jτij .

Thus, when computing

∂

∂t
(1
2ρu2 + ρe) = −

∂

∂xj

[

uj

(

1
2ρu2 + ρe + P

)

−uiτij

]

,

the source and sinks terms (±ui,jτij) have dropped out, so the equations are, again, in
conservation form.

(b) Viscosity just smoothes the jump, but it does not affect the differences sufficiently far
away from the shock.
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(c) The Frad = −K∇T is readily included underneath the divergence,

∂

∂t
(1
2ρu2 + ρe) = −

∂

∂xj

[

uj

(

1
2ρu2 + ρe + P

)

−uiτij − F rad
j

]

,

The presence of the Frad = −K∇T term does not affect the jump conditions, because far
away from the shock the temperature is supposed to be constant.

(d) In the optically thin case, we have a nonlocal loss term

∂

∂t
(ρe) = ... + κρ

∮

4π
(I − S) dΩ,

which cannot be written underneath the divergence term. So we can’t write the jump
conditions in the usual way. (Here, S is the source function, I is the intensity, and κ is
the opacity.)

3. Rayleigh equation from linearized stream function

In two dimensions, (x, y), the velocity can be written as u = ∇× (ψẑ), where ψ is the stream
function.

(a) Derive the inviscid, but fully nonlinear evolution equation for ∇2ψ.

(b) Linearize this evolution equation by writing ψ(x, y, t) = ψ0(x) + ψ1(x, y, t).

(c) Define U = ∇ × (ψ0ẑ) as the background flow and thus derive Rayleigh’s instability
equation for ψ1 = ψ1(x, y, t) directly from the equation for the stream function. Assume
ψ1(x, y, t) = ψ̂1(x) eik(y−ct), where c is a wave speed.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(a) We recall that ω = −∇2ψ, so the vorticity equation in 2-D (Dω/Dt = 0) can be written
in the form

∂

∂t
∇2ψ + [∇ × (ψẑ)] · ∇∇2ψ = 0,

which can also be written in terms of a Jacobian,

∂

∂t
∇2ψ +

∂(ψ,∇2ψ)

∂(x, y)
= 0.

(b) Linearizing this yields

∂

∂t
∇2ψ1 +

∂(ψ1,∇
2ψ0)

∂(x, y)
+

∂(ψ0,∇
2ψ1)

∂(x, y)
= 0.

(c) Using U = ∂ψ/∂x, we have

∂

∂t
∇2ψ1 −

∂ψ1

∂y
U ′′ + U

∂∇2

∂y
= 0

Assuming ψ1(x, y, t) = ψ̂1(x) eik(y−ct), we have

ikc k2ψ̂1 − ikψ̂1U
′′ − ikU k2ψ̂1 = 0,

or
(U − c) (D2 − k2)ψ̂1 − ψ̂1U

′′.
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4. Solutions to Rayleigh’s instability equation

Consider Rayleigh’s instability equation in the form

(U − c)
(

∂2
x − k2

)

ψ̂ − U ′′ψ̂ = 0, (12)

rewrite it,
[

U
(

∂2
x − k2

)

− U ′′
]

ψ̂ = c
(

∂2
x − k2

)

ψ̂ (13)

and formulate a numerical eigenvalue problem in the form Mq = cSq, where c is the eigenvalue
and q the eigenvector consisting of the discretized values of ψ̂. See solutions for eigenvalues
and eigenvectors in Fig. 7.

Figure 7: Eigenvalues (upper panels) and eigenvectors (lower panels) for U = tanhx in −5 <
x < 5. Eigenvectors are shown for k = 0 (solid), 0.2 (dotted), 0.4 (dashed), 0.6 (dash-dotted),
and 0.8 (dash-triple-dotted); see http://lcd-www.colorado.edu/~axbr9098/teach/ASTR_5410/

lectures/8_Inflection_Pt_Inst_II/idl/.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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The details of constructing the matrix were explained during the lecture. http://lcd-www.colorado.
edu/~axbr9098/teach/ASTR_5410/lectures/8_Inflection_Pt_Inst_II/idl/. Here here visualizations
of the matrices, together with explicit numbers.

1.

Figure 8: Visualization of the M and S matrices.

10.886 -4.837 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000

-4.839 10.881 -4.833 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000

-0.000 -4.837 10.868 -4.823 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000

-0.000 -0.000 -4.833 10.835 -4.799 -0.000 -0.000 -0.000 -0.000 -0.000 0.000

-0.000 -0.000 -0.000 -4.823 10.754 -4.738 -0.000 -0.000 -0.000 -0.000 0.000

-0.000 -0.000 -0.000 -0.000 -4.799 10.559 -4.591 -0.000 -0.000 -0.000 0.000

-0.000 -0.000 -0.000 -0.000 -0.000 -4.738 10.107 -4.246 -0.000 -0.000 0.000

-0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -4.591 9.130 -3.488 -0.000 0.000

-0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -4.246 7.252 -2.060 0.000

-0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -3.488 4.152 0.000

-0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -2.060 -0.000

-10.890 4.840 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

4.840-10.890 4.840 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 4.840-10.890 4.840 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 4.840-10.890 4.840 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 4.840-10.890 4.840 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 4.840-10.890 4.840 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 4.840-10.890 4.840 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 4.840-10.890 4.840 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 4.840-10.890 4.840 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 4.840-10.890 4.840

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 4.840-10.890
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