## Handout 0: Basic equations

## 1 Continuity equation

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \boldsymbol{u})=0 \tag{1}
\end{equation*}
$$

It can be written in various other forms, such as $D \ln \rho / D t=-\boldsymbol{\nabla} \cdot \boldsymbol{u}$.

## 2 Navier-Stokes equation

$$
\begin{equation*}
\rho \frac{\mathrm{D} \boldsymbol{u}}{\mathrm{D} t}=-\nabla P-\rho \boldsymbol{\nabla} \Phi+\boldsymbol{J} \times \boldsymbol{B}+\boldsymbol{\nabla} \cdot \boldsymbol{\tau} \tag{2}
\end{equation*}
$$

where $\Phi$ is the gravitational potential, which obeys $\nabla^{2} \Phi=4 \pi G \rho$. The solution for a sphere, for example, is $\Phi=-G M / r$, while for a plane layer it is $\Phi=z g$, up to an additive constant.

For a monatomic gas, the stress tensor is $\boldsymbol{\tau}=2 \rho \nu \mathbf{S}$ with $\mathrm{S}_{i j}=\frac{1}{2}\left(u_{i, j}+u_{j, i}\right)-\frac{1}{3} \delta_{i j} \boldsymbol{\nabla} \cdot \boldsymbol{u}$. In that case, $\boldsymbol{\nabla} \cdot \boldsymbol{\tau}=\rho \nu\left(\nabla^{2} \boldsymbol{u}+\frac{1}{3} \boldsymbol{\nabla} \boldsymbol{\nabla} \cdot \boldsymbol{u}+2 \mathbf{S} \boldsymbol{\nabla} \ln \rho \nu\right)$.

- Note that the $\boldsymbol{\nabla} \Phi$ term comes with a minus and an additional $\rho$ factor.
- All the other terms come with no $\rho$ factor.
- It is sometimes useful to note that $\rho^{-1} \nabla P=\nabla h-T \nabla S$, where $h$ is the specific enthalpy. For an ideal gas we have $h=c_{\mathrm{p}} T$.


## 3 Energy equation

$$
\begin{equation*}
\rho T \frac{\mathrm{D} S}{\mathrm{D} t}=-\boldsymbol{\nabla} \cdot \boldsymbol{F}_{\mathrm{rad}}+\boldsymbol{\tau}: \boldsymbol{\nabla} \boldsymbol{u}+\boldsymbol{J}^{2} / \sigma+\text { nucl. fusion } \tag{3}
\end{equation*}
$$

The $\boldsymbol{\tau}: \boldsymbol{\nabla} \boldsymbol{u}$ is supposed to mean $\tau_{i j} u_{i, j}$. This is the viscous heating term and it is positive definite. In the homework, we are supposed to find that for $\boldsymbol{\tau}=2 \rho \nu \mathbf{S}$ we have $\boldsymbol{\tau}: \boldsymbol{\nabla} \boldsymbol{u}=2 \rho \nu \mathbf{S}^{2}$, which is manifestly positive definite. In the optically thick case, the radiative flux is $\boldsymbol{F}_{\text {rad }}=-K \nabla T$. The electric conductivity $\sigma$ can also be written as $1 / \sigma=\mu_{0} \eta$, where $\mu_{0}$ is the vacuum permeability and $\eta$ the magnetic diffusivity.

- In the strictly isentropic case ( $S=$ const), we have $P \propto \rho^{\gamma}$. However, viscous heating can usually not be neglected!
- The lhs of Equation (3) can also be written as $\rho \mathrm{De} / \mathrm{D} t+P \nabla \cdot \boldsymbol{u}$.
- For an ideal gas, we have $e=c_{\mathrm{v}} T$ and can write the lhs also as $\rho c_{\mathrm{v}} \mathrm{D} T / \mathrm{D} t+P \nabla \cdot \boldsymbol{u}$.
- Again for an ideal gas, we can write the lhs as $\rho c_{\mathrm{p}} \mathrm{D} T / \mathrm{D} t-\mathrm{D} P / \mathrm{D} t$.

Recall that $\mathcal{R} / \mu=c_{\mathrm{p}}-c_{\mathrm{v}}$, where $\mathcal{R}=k_{\mathrm{B}} / m_{\mathrm{u}}$ is the universal gas constant ${ }^{1}$ and $\mu$ is the mean molecular weight ( $=1$ for neutral hydrogen, $\approx 1.2$ for a neutral hydrogen-helium mixture, 0.6 for an ionized hydrogen-helium mixture).

## 4 Induction equation

$$
\begin{equation*}
\frac{\partial \boldsymbol{B}}{\partial t}=\boldsymbol{\nabla} \times(\boldsymbol{u} \times \boldsymbol{B}-\boldsymbol{J} / \sigma) \tag{4}
\end{equation*}
$$

[^0]
[^0]:    ${ }^{1}$ Here, $k_{\mathrm{B}}=1.3806505 \times 10^{-16} \mathrm{erg} \mathrm{K}{ }^{-1}$ is the Boltzmann constant, $m_{\mathrm{u}}=1.66053886^{-24} \mathrm{~g}$ is the atomic mass unit [0.993 times the proton mass], and so $\mathcal{R}=8.31447 \times 10^{7} \mathrm{erg} \mathrm{g}^{-1} \mathrm{~K}^{-1}$. In astrophysics, $\mu$ is dimensionless rather than in $\mathrm{g} / \mathrm{mol}$.

