Handout 11: p-modes for the isentropic case

1 Derivation for isentropic case

The continuity equations is $\mathrm{D} \ln \rho / \mathrm{D} t=-\boldsymbol{\nabla} \cdot \boldsymbol{u}$, and from $\mathrm{D} s / \mathrm{D} t=0$ we obtain $\mathrm{D} \ln p / \mathrm{D} t=-\gamma \boldsymbol{\nabla} \cdot \boldsymbol{u}$. Our linearized equations are then

$$
\begin{gather*}
\dot{\rho_{1}}+\boldsymbol{u}_{1} \cdot \boldsymbol{\nabla} \rho_{0}+\rho_{0} \boldsymbol{\nabla} \cdot \boldsymbol{u}_{1}=0, \tag{1}\\
\dot{p_{1}}+\boldsymbol{u}_{1} \cdot \nabla p_{0}+\gamma p_{0} \boldsymbol{\nabla} \cdot \boldsymbol{u}_{1}=0, \tag{2}\\
\rho_{0} \dot{\boldsymbol{u}}_{1}+\boldsymbol{\nabla} p_{1}+\rho_{1} g \hat{\boldsymbol{z}}=0 . \tag{3}
\end{gather*}
$$

Assume $\dot{\boldsymbol{\xi}}=\boldsymbol{u}$ and integrate the continuity equation in time, i.e.,

$$
\begin{gather*}
\rho_{1}+\boldsymbol{\xi}_{1} \cdot \boldsymbol{\nabla} \rho_{0}+\rho_{0} \boldsymbol{\nabla} \cdot \boldsymbol{\xi}_{1}=0, \tag{4}\\
p_{1}+\boldsymbol{\xi}_{1} \cdot \nabla p_{0}+\gamma p_{0} \boldsymbol{\nabla} \cdot \boldsymbol{\xi}_{1}=0, \tag{5}\\
\rho_{0} \ddot{\boldsymbol{\xi}}_{1}+\boldsymbol{\nabla} p_{1}+\rho_{1} g \hat{\boldsymbol{z}}=0 \tag{6}
\end{gather*}
$$

Divide by ρ_{0}, use $\boldsymbol{\nabla} p_{0}=-\rho_{0} g \hat{\boldsymbol{z}}, \gamma p_{0}=c_{\mathrm{s}}^{2} \rho_{0}$, replace $g \hat{\boldsymbol{z}}=c_{\mathrm{s}}^{2} \hat{\boldsymbol{z}} / H_{\rho}=-c_{\mathrm{s}}^{2} \boldsymbol{\nabla} \ln \rho_{0}$, and insert the above expressions for p_{1} and ρ_{1}, so

$$
\begin{gather*}
\rho_{1}+\boldsymbol{\xi}_{1} \cdot \boldsymbol{\nabla} \rho_{0}+\rho_{0} \boldsymbol{\nabla} \cdot \boldsymbol{\xi}_{1}=0 \tag{7}\\
p_{1}-\xi_{1 z} \rho_{0} g+c_{\mathrm{s}}^{2} \rho_{0} \boldsymbol{\nabla} \cdot \boldsymbol{\xi}_{1}=0, \tag{8}\\
\ddot{\boldsymbol{\xi}}_{1}+\frac{1}{\rho_{0}} \boldsymbol{\nabla} p_{1}+\frac{\rho_{1}}{\rho_{0}} g \hat{\boldsymbol{z}}=0 . \tag{9}
\end{gather*}
$$

Insert p_{1} and ρ_{1} into the momentum equation, so

$$
\begin{equation*}
\ddot{\boldsymbol{\xi}}_{1}+\frac{1}{\rho_{0}} \boldsymbol{\nabla}\left[\rho_{0}\left(\xi_{1 z} g-c_{\mathrm{s}}^{2} \boldsymbol{\nabla} \cdot \boldsymbol{\xi}_{1}\right)\right]-\left(\boldsymbol{\xi}_{1} \cdot \boldsymbol{\nabla} \ln \rho_{0}+\boldsymbol{\nabla} \cdot \boldsymbol{\xi}_{1}\right) g \hat{\boldsymbol{z}}=0 \tag{10}
\end{equation*}
$$

or

$$
\begin{equation*}
\ddot{\boldsymbol{\xi}}_{1}+\frac{1}{\rho_{0}} \boldsymbol{\nabla}\left[\rho_{0}\left(\xi_{1 z} g-c_{\mathrm{s}}^{2} \boldsymbol{\nabla} \cdot \boldsymbol{\xi}_{1}\right)\right]+\left(\xi_{1 z} / H_{\rho}-\boldsymbol{\nabla} \cdot \boldsymbol{\xi}_{1}\right) g \hat{\boldsymbol{z}}=0 \tag{11}
\end{equation*}
$$

or, using the fact that $g H_{\rho}=c_{\mathrm{s}}^{2}$, we get

$$
\begin{equation*}
\ddot{\boldsymbol{\xi}}_{1}+\frac{1}{\rho_{0}} \boldsymbol{\nabla}\left[\rho_{0}\left(\xi_{1 z} g-c_{\mathrm{s}}^{2} \boldsymbol{\nabla} \cdot \boldsymbol{\xi}_{1}\right)\right]+\left(\xi_{1 z} g-c_{\mathrm{s}}^{2} \boldsymbol{\nabla} \cdot \boldsymbol{\xi}_{1}\right) \hat{\boldsymbol{z}} / H_{\rho}=0 \tag{12}
\end{equation*}
$$

so

$$
\begin{equation*}
\ddot{\boldsymbol{\xi}}_{1}+\boldsymbol{\nabla}\left(\xi_{1 z} g-c_{\mathrm{s}}^{2} \boldsymbol{\nabla} \cdot \boldsymbol{\xi}_{1}\right)=0 \tag{13}
\end{equation*}
$$

Assuming that the displacement is a potential field, i.e., $\boldsymbol{\xi}_{1}=\boldsymbol{\nabla} \Phi$, we have (Bogdan \& Cally, 1995)

$$
\begin{equation*}
\ddot{\Phi}+g \partial \Phi / \partial z-c_{\mathrm{s}}^{2} \nabla^{2} \Phi=0 . \tag{14}
\end{equation*}
$$

This leads to an eigenvalue problem for eigenvalue ω^{2},

$$
\begin{equation*}
\omega^{2} \Phi=c_{\mathrm{s}}^{2} k^{2} \Phi+g \frac{\partial \Phi}{\partial z}-c_{\mathrm{s}}^{2} \frac{\partial^{2} \Phi}{\partial^{2} z} \tag{15}
\end{equation*}
$$

At the bottom, we assume $\Phi=0$, which means that the last data point has to be omitted from the matrix. At the top, we require $\left(k^{2}-\mathrm{d}^{2} / \mathrm{d} z^{2}\right) \Phi=0$, which means that we replace the eigenvalue problem on the boundary by

$$
\begin{equation*}
\omega^{2} \Phi=g \frac{\partial \Phi}{\partial z} \tag{16}
\end{equation*}
$$

Note that Equation (15) is valid even in the non-isothermal case. In Figure 1, we compare solutions for the isothermal and non-isothermal $(n=3 / 2)$ cases. Note that in the latter case the p-modes bend down and the difference between qualitative difference between the f - and p-modes diminishes.

Figure 1: $k \omega$ diagram for isothermal case (left) and various isentropic cases.

2 Reduction to the isothermal case

It is instructive to see how to obtain the dispersion relation for the isothermal case from Equation (15). Replacing $\partial_{z} \rightarrow \mathrm{i} k_{z}$, we have

$$
\begin{equation*}
\omega^{2}=c_{\mathrm{s}}^{2} k^{2}+\mathrm{i} k_{z} g+c_{\mathrm{s}}^{2} k_{z}^{2}=0 \tag{17}
\end{equation*}
$$

Split $k_{z}=k_{z}^{\prime}+\mathrm{i} k_{z}^{\prime \prime}$ into real and imaginary parts, so we get

$$
\begin{equation*}
\omega^{2}=c_{\mathrm{s}}^{2} k^{2}+\left(\mathrm{i} k_{z}^{\prime}-k_{z}^{\prime \prime}\right) g+c_{\mathrm{s}}^{2}\left(k_{z}^{\prime 2}-k_{z}^{\prime \prime 2}+2 \mathrm{i} k_{z}^{\prime} 2 k_{z}^{\prime \prime}\right)=0 \tag{18}
\end{equation*}
$$

and solve for real and imaginary parts:

$$
\begin{gather*}
\omega^{2}=c_{\mathrm{s}}^{2} k^{2}-k_{z}^{\prime \prime} g+c_{\mathrm{s}}^{2}\left(k_{z}^{\prime 2}-k_{z}^{\prime \prime 2}\right)=0 \tag{19}\\
g k_{z}^{\prime}+2 k_{z}^{\prime} 2 k_{z}^{\prime \prime} c_{\mathrm{s}}^{2}=0 \tag{20}
\end{gather*}
$$

So now replace $k_{z}^{\prime \prime}=-g / 2 c_{\mathrm{s}}^{2}$ into Equation (19) and get

$$
\begin{equation*}
\omega^{2}=c_{\mathrm{s}}^{2} k^{2}+g^{2} / 2 c_{\mathrm{s}}^{2}+c_{\mathrm{s}}^{2}\left(k_{z}^{\prime 2}-g^{2} / 4 c_{\mathrm{s}}^{4}\right)=0 \tag{21}
\end{equation*}
$$

SO

$$
\begin{equation*}
\omega^{2}=c_{\mathrm{s}}^{2} k^{2}+g^{2} / 4 c_{\mathrm{s}}^{2}+c_{\mathrm{s}}^{2} k_{z}^{\prime 2}=0 \tag{22}
\end{equation*}
$$

References

Bogdan, T. J., \& Cally, P. S., "Jacket Modes: Solar Acoustic Oscillations Confined to Regions Surrounding Sunspots and Plage," Astrophys. J. 453, 919-928 (1995).

