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Handout 11: p-modes for the isentropic case

1 Derivation for isentropic case

The continuity equations is D ln ρ/Dt = −∇ · u, and from Ds/Dt = 0 we obtain D ln p/Dt = −γ∇ · u.
Our linearized equations are then

ρ̇1 + u1 · ∇ρ0 + ρ0∇ · u1 = 0, (1)

ṗ1 + u1 · ∇p0 + γp0∇ · u1 = 0, (2)

ρ0u̇1 + ∇p1 + ρ1gẑ = 0. (3)

Assume ξ̇ = u and integrate the continuity equation in time, i.e.,

ρ1 + ξ1 · ∇ρ0 + ρ0∇ · ξ1 = 0, (4)

p1 + ξ1 · ∇p0 + γp0∇ · ξ1 = 0, (5)

ρ0ξ̈1 + ∇p1 + ρ1gẑ = 0. (6)

Divide by ρ0, use ∇p0 = −ρ0gẑ, γp0 = c2
sρ0, replace gẑ = c2

s ẑ/Hρ = −c2
s∇ ln ρ0, and insert the above

expressions for p1 and ρ1, so
ρ1 + ξ1 · ∇ρ0 + ρ0∇ · ξ1 = 0, (7)

p1 − ξ1zρ0g + c2
sρ0∇ · ξ1 = 0, (8)

ξ̈1 +
1

ρ0
∇p1 +

ρ1

ρ0
gẑ = 0. (9)

Insert p1 and ρ1 into the momentum equation, so

ξ̈1 +
1

ρ0
∇

[

ρ0(ξ1zg − c2
s∇ · ξ1)

]

− (ξ1 · ∇ ln ρ0 + ∇ · ξ1)gẑ = 0, (10)

or

ξ̈1 +
1

ρ0
∇

[

ρ0(ξ1zg − c2
s∇ · ξ1)

]

+ (ξ1z/Hρ − ∇ · ξ1)gẑ = 0, (11)

or, using the fact that gHρ = c2
s , we get

ξ̈1 +
1

ρ0
∇

[

ρ0(ξ1zg − c2
s∇ · ξ1)

]

+ (ξ1zg − c2
s∇ · ξ1)ẑ/Hρ = 0, (12)

so
ξ̈1 + ∇

(

ξ1zg − c2
s∇ · ξ1

)

= 0. (13)

Assuming that the displacement is a potential field, i.e., ξ1 = ∇Φ, we have (Bogdan & Cally, 1995)

Φ̈ + g∂Φ/∂z − c2
s∇

2Φ = 0. (14)

This leads to an eigenvalue problem for eigenvalue ω2,

ω2Φ = c2
sk

2Φ + g
∂Φ

∂z
− c2

s

∂2Φ

∂2z
. (15)

At the bottom, we assume Φ = 0, which means that the last data point has to be omitted from the
matrix. At the top, we require (k2

− d2/dz2)Φ = 0, which means that we replace the eigenvalue problem
on the boundary by

ω2Φ = g
∂Φ

∂z
(16)

Note that Equation (15) is valid even in the non-isothermal case. In Figure 1, we compare solutions
for the isothermal and non-isothermal (n = 3/2) cases. Note that in the latter case the p-modes bend
down and the difference between qualitative difference between the f - and p-modes diminishes.
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Figure 1: kω diagram for isothermal case (left) and various isentropic cases.

2 Reduction to the isothermal case

It is instructive to see how to obtain the dispersion relation for the isothermal case from Equation (15).
Replacing ∂z → ikz, we have

ω2 = c2
sk

2 + ikzg + c2
sk

2
z

= 0, (17)

Split kz = k′

z
+ ik′′

z
into real and imaginary parts, so we get

ω2 = c2
sk

2 + (ik′

z
− k′′

z
)g + c2

s (k
′2
z
− k′′2

z
+ 2ik′

z
2k′′

z
) = 0, (18)

and solve for real and imaginary parts:

ω2 = c2
sk

2
− k′′

z
g + c2

s (k
′2
z
− k′′2

z
) = 0, (19)

gk′

z
+ 2k′

z
2k′′

z
c2
s = 0, (20)

So now replace k′′

z
= −g/2c2

s into Equation (19) and get

ω2 = c2
sk

2 + g2/2c2
s + c2

s (k
′2
z
− g2/4c4

s ) = 0, (21)

so
ω2 = c2

sk
2 + g2/4c2

s + c2
sk

′2
z

= 0. (22)
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