Handout 12: Acoustic cavity

In Handout 11 we derived the following eigenvalue problem for eigenvalue ω^{2},

$$
\begin{equation*}
\left(\omega^{2}-c_{\mathrm{s}}^{2} k^{2}\right) \Phi-g \Phi^{\prime}+c_{\mathrm{s}}^{2} \Phi^{\prime \prime}=0 \tag{1}
\end{equation*}
$$

with boundary condition $\Phi=0$ at the bottom and $\boldsymbol{\nabla} \cdot \boldsymbol{\xi}=0$, or $\left(k^{2}-\mathrm{d}^{2} / \mathrm{d} z^{2}\right) \Phi=0$, at the top. We assume a polytropic stratification with

$$
\begin{equation*}
c_{\mathrm{s}}^{2}=c_{\mathrm{s} 0}^{2}-(\gamma-1) g z \tag{2}
\end{equation*}
$$

We can bring Equation (1) into Sturm-Liouville form by substituting

$$
\begin{equation*}
\Phi(z)=f(z) \phi(z) \tag{3}
\end{equation*}
$$

so

$$
\begin{equation*}
\Phi^{\prime}=f^{\prime} \phi+f \phi^{\prime} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi^{\prime \prime}=f^{\prime \prime} \phi+2 f^{\prime} \phi^{\prime}+f \phi^{\prime \prime} \tag{5}
\end{equation*}
$$

Thus, we have

$$
\begin{equation*}
\left(\omega^{2}-c_{\mathrm{s}}^{2} k^{2}\right) f \phi-g\left(f^{\prime} \phi+f \phi^{\prime}\right)+c_{\mathrm{s}}^{2}\left(f^{\prime \prime} \phi+2 f^{\prime} \phi^{\prime}+f \phi^{\prime \prime}\right)=0 \tag{6}
\end{equation*}
$$

We now choose f such that the ϕ^{\prime} term vanishes, i.e.,

$$
\begin{equation*}
-g f+2 c_{\mathrm{s}}^{2} f^{\prime}=0 \tag{7}
\end{equation*}
$$

so that

$$
\begin{equation*}
\ln f=\frac{1}{2} \int \frac{g}{c_{\mathrm{s}}^{2}} \mathrm{~d} z \tag{8}
\end{equation*}
$$

Using Equation (2), we have $\mathrm{d} c_{\mathrm{s}}^{2} / \mathrm{d} z=-(\gamma-1) g$, so

$$
\begin{equation*}
\ln f=\frac{1}{\gamma-1} \int \frac{\mathrm{~d} c_{\mathrm{s}}^{2}}{2 c_{\mathrm{s}}^{2}}=\frac{1}{\gamma-1} \int \frac{\mathrm{~d} c_{\mathrm{s}}}{c_{\mathrm{s}}}=\frac{\ln c_{\mathrm{s}}}{\gamma-1} \tag{9}
\end{equation*}
$$

or simply $f=c_{\mathrm{s}}^{1 /(\gamma-1)}=c_{\mathrm{s}}^{n}$, where $n=1 /(\gamma-1)$ is the polytropic index.
Having eliminated the ϕ^{\prime} term, our differential equation takes the form

$$
\begin{equation*}
\left(\omega^{2}-c_{\mathrm{s}}^{2} k^{2}\right) f \phi-g f^{\prime} \phi+c_{\mathrm{s}}^{2}\left(f^{\prime \prime} \phi+f \phi^{\prime \prime}\right)=0 \tag{10}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(\omega^{2} / c_{\mathrm{s}}^{2}-k^{2}+f^{\prime \prime} / f-g f^{\prime} / f\right) \phi+\phi^{\prime \prime}=0 \tag{11}
\end{equation*}
$$

where $f^{\prime} / f=n c_{\mathrm{s}}^{\prime} / c_{\mathrm{s}}$ and $f^{\prime \prime} / f=n(n-1) c_{\mathrm{s}}^{\prime 2} / c_{\mathrm{s}}^{2}+n c_{\mathrm{s}}^{\prime \prime} / c_{\mathrm{s}}$. Let us now introduce the abbreviation $K(z)^{2}=\omega^{2} / c_{\mathrm{s}}^{2}-k^{2}+f^{\prime \prime} / f-g f^{\prime} / f$, so we have

$$
\begin{equation*}
K^{2} \phi+\phi^{\prime \prime}=0 \tag{12}
\end{equation*}
$$

We now proceed by solving Equation (12) using WKB. If K was constant, the solution would be of the form $\phi=e^{\mathrm{i} K}$. Thus, we make the ansatz

$$
\begin{equation*}
\phi(z)=A(z) e^{\mathrm{i} \varphi(z)} \tag{13}
\end{equation*}
$$

where $A(z)$ is a slowly varying function. Let us first calculate the first and second derivatives, so

$$
\begin{gather*}
\phi^{\prime}=\left(A^{\prime}+\mathrm{i} A \varphi^{\prime}\right) e^{\mathrm{i} \varphi} \tag{14}\\
\phi^{\prime \prime}=\left(A^{\prime \prime}+\mathrm{i} A^{\prime} \varphi^{\prime}+\mathrm{i} A \varphi^{\prime \prime}\right) e^{\mathrm{i} \varphi}+\left(A^{\prime}+\mathrm{i} A \varphi^{\prime}\right) \mathrm{i} \varphi^{\prime} e^{\mathrm{i} \varphi} \tag{15}
\end{gather*}
$$

i.e.,

$$
\begin{equation*}
\phi^{\prime \prime}=\left[\left(A^{\prime \prime}-A \varphi^{2}\right)+\mathrm{i}\left(2 A^{\prime} \varphi^{\prime}+A \varphi^{\prime \prime}\right)\right] e^{\mathrm{i} \varphi} \tag{16}
\end{equation*}
$$

Inserting this into Equation (12), canceling the $e^{i \varphi}$ term everywhere, and demanding that real and imaginary parts vanish separately, we have

$$
\begin{equation*}
\left(K^{2}-\varphi^{\prime 2}\right) A+A^{\prime \prime}=0, \quad 2 A^{\prime} \varphi^{\prime}+A \varphi^{\prime \prime}=0 . \tag{17}
\end{equation*}
$$

We now make use of the fact that A is slowly varying, so we drop $A^{\prime \prime}$ in favor of the $\left(K^{2}-\varphi^{\prime 2}\right) A$ term, which then implies that

$$
\begin{equation*}
\varphi^{\prime}= \pm K \tag{18}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\varphi(z)= \pm \int^{z} K\left(z^{\prime}\right) \mathrm{d} z^{\prime} \tag{19}
\end{equation*}
$$

Integrating the second part of Equation (17) yields

$$
\begin{equation*}
\mathrm{d} \ln A / \mathrm{d} z=-\frac{1}{2} \mathrm{~d} \ln \varphi^{\prime} / \mathrm{d} z=-\frac{1}{2} \mathrm{~d} \ln K / \mathrm{d} z \tag{20}
\end{equation*}
$$

so

$$
\begin{equation*}
A=A_{0} K^{-1 / 2} \tag{21}
\end{equation*}
$$

and therefore Equation (22) yields

$$
\begin{equation*}
\phi(z)=\frac{A_{0}}{\sqrt{K}} e^{ \pm \mathrm{i} \int K\left(z^{\prime}\right) \mathrm{d} z^{\prime}} \tag{22}
\end{equation*}
$$

Figure 1: Eigenfunctions from WKB (red) and the eigenvalue solver.

