Handout 12b: Ray tracing

Ray tracing means that one solves the eikonal equation, which is a nonlinear partial differential equation that emerges in problems of wave propagation, when the wave equation is approximated using the WKB theory. Here one follows a ray path $\boldsymbol{r}=\boldsymbol{r}(t)$ and its direction $\boldsymbol{k}=\boldsymbol{k}(t)$ by solving the eikonal equations,

$$
\begin{gather*}
\frac{\mathrm{d} \boldsymbol{r}}{\mathrm{~d} t}=\boldsymbol{v}_{\mathrm{g}} \tag{1}\\
\frac{\mathrm{~d} \boldsymbol{k}}{\mathrm{~d} t}=-\boldsymbol{\nabla} \omega \tag{2}
\end{gather*}
$$

where $\boldsymbol{v}_{\mathrm{g}}=\nabla_{\boldsymbol{k}} \omega$ is the group velocity and $\omega=\omega(\boldsymbol{r}, \boldsymbol{k})$ is the known dispersion relation of the wave.

1 Sound waves

Take as an example a polytropic layer with $c_{\mathrm{s}}=\left(z_{0}-z\right) g$, so

$$
\begin{equation*}
\boldsymbol{\nabla} \omega=-\frac{g k}{2 c_{\mathrm{s}}} \boldsymbol{z} \tag{3}
\end{equation*}
$$

but this we do numerically. Without magnetic fields, the Doppler-shifted frequency is $\omega=\boldsymbol{U} \cdot \boldsymbol{k}+\sqrt{c_{\mathrm{s}}^{2} \boldsymbol{k}^{2}}$, so the group velocity is $\boldsymbol{v}_{g}=\nabla_{\boldsymbol{k}} \omega=\boldsymbol{U}+c_{\mathrm{s}} \hat{\boldsymbol{k}}$.

Figure 1: Rays launched from one point at the surface.

Figure 2: Focussing rays (launched from the focussing point).

2 Fast magnetosonic waves

In the presence of magnetic fields, one can use the dispersion relation for fast magnetosonic waves, $\omega=\boldsymbol{U} \cdot \boldsymbol{k}+\omega_{\mathrm{ms}}$. Here,

$$
\begin{equation*}
\omega_{\mathrm{ms}}^{2}=\frac{1}{2} k^{2}\left(c_{\mathrm{ms}}^{2}+c_{\mathrm{m}}^{2}\right) \tag{4}
\end{equation*}
$$

with $c_{\mathrm{ms}}^{2}=c_{\mathrm{s}}^{2}+v_{\mathrm{A}}^{2}, v_{\mathrm{A}}^{2}=\boldsymbol{v}_{\mathrm{A}}^{2}=\boldsymbol{B}^{2} / \mu_{0} \rho$, and

$$
\begin{equation*}
c_{\mathrm{m}}^{4}=c_{\mathrm{ms}}^{4}-4 c_{\mathrm{s}}^{2}\left(\boldsymbol{v}_{\mathrm{A}} \cdot \boldsymbol{k}\right)^{2} / k^{2} \tag{5}
\end{equation*}
$$

The group velocity is $\boldsymbol{v}_{\mathrm{g}}=\nabla_{\boldsymbol{k}} \omega$ and can be written as

$$
\begin{equation*}
\boldsymbol{v}_{\mathrm{g}}=\boldsymbol{U}+v_{\mathrm{m}} \hat{\boldsymbol{k}}+v_{\mathrm{m}}^{\|} \hat{\boldsymbol{k}}_{\|}, \tag{6}
\end{equation*}
$$

with

$$
\begin{equation*}
v_{\mathrm{m}}=\frac{\omega_{\mathrm{ms}}}{k}\left(1+c_{\mathrm{n}}^{2} \frac{k_{\|}^{2}}{\omega_{\mathrm{ms}}^{2}}\right), \quad v_{\mathrm{m}}^{\|}=-c_{\mathrm{n}}^{2} \frac{k_{\|}}{\omega_{\mathrm{ms}}} \tag{7}
\end{equation*}
$$

Note that

$$
\begin{equation*}
v_{\mathrm{m}}=\frac{\omega_{\mathrm{ms}}}{k}\left[1+\frac{c_{\mathrm{s}}^{2}}{c_{\mathrm{m}}^{2}} \frac{\left(\boldsymbol{v}_{\mathrm{A}} \cdot \boldsymbol{k}\right)^{2}}{\omega_{\mathrm{ms}}^{2}}\right] \tag{8}
\end{equation*}
$$

and

$$
\begin{gather*}
v_{\mathrm{m}}^{\|} \hat{\boldsymbol{k}}_{\|}=-\frac{c_{\mathrm{s}}^{2}}{c_{\mathrm{m}}^{2}} \frac{v_{\mathrm{A}} k}{\omega_{\mathrm{ms}}} \boldsymbol{v}_{\mathrm{A}} . \tag{9}\\
c_{\mathrm{m}}^{4}=\left(v_{\mathrm{A}}^{2}-c_{\mathrm{s}}^{2}\right)^{2}+4 v_{\mathrm{A}}^{2} c_{\mathrm{s}}^{2} k_{\perp}^{2} / k^{2} \tag{10}
\end{gather*}
$$

so $\boldsymbol{v}_{\mathrm{g}}=\boldsymbol{\nabla}_{\boldsymbol{k}} \omega=\boldsymbol{U}+\frac{1}{2} \omega_{\mathrm{ms}}^{-1} \boldsymbol{\nabla}_{\boldsymbol{k}} \omega_{\mathrm{ms}}^{2}$ with 1

$$
\begin{equation*}
\nabla_{\boldsymbol{k}} \omega_{\mathrm{ms}}^{2}=\left(c_{\mathrm{ms}}^{2}+c_{\mathrm{m}}^{2}\right) \boldsymbol{k}+2 c_{\mathrm{n}}^{2}\left(\boldsymbol{k}_{\perp}-\boldsymbol{k} k_{\perp}^{2} / k^{2}\right) \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{\mathrm{n}}^{2}=2 c_{\mathrm{s}}^{2} v_{\mathrm{A}}^{2} / c_{\mathrm{m}}^{2} \tag{14}
\end{equation*}
$$

so

$$
\begin{equation*}
\boldsymbol{v}_{\mathrm{g}}=\boldsymbol{\nabla}_{\boldsymbol{k}} \omega=\boldsymbol{U}+\left(\frac{\omega_{\mathrm{ms}}}{k^{2}}-\frac{c_{\mathrm{n}}^{2}}{\omega_{\mathrm{ms}}} \frac{k_{\perp}^{2}}{k^{2}}\right) \boldsymbol{k}+\frac{c_{\mathrm{n}}^{2}}{\omega_{\mathrm{ms}}} \boldsymbol{k}_{\perp} \tag{15}
\end{equation*}
$$

or

$$
\begin{equation*}
\boldsymbol{v}_{\mathrm{g}}=\boldsymbol{U}+v_{\mathrm{m}} \hat{\boldsymbol{k}}+v_{\mathrm{m}}^{\perp} \hat{\boldsymbol{k}}_{\perp}, \tag{16}
\end{equation*}
$$

with

$$
\begin{equation*}
v_{\mathrm{m}}=\frac{\omega_{\mathrm{ms}}}{k}\left(1-c_{\mathrm{n}}^{2} \frac{k_{\perp}^{2}}{\omega_{\mathrm{ms}}^{2}}\right), \quad v_{\mathrm{m}}^{\perp}=c_{\mathrm{n}}^{2} \frac{k_{\perp}}{\omega_{\mathrm{ms}}} . \tag{17}
\end{equation*}
$$

\$Header: /var/cvs/brandenb/tex/teach/ASTR_5410/12_helioseismology/notes2.tex,v 1.3 2016/10/05 13:44:29 brandenb Exp \$

$$
\nabla_{\boldsymbol{k}} \omega_{\mathrm{ms}}^{2}=\boldsymbol{k}\left\{c_{\mathrm{ms}}^{2}+\left[\left(v_{\mathrm{A}}^{2}-c_{\mathrm{s}}^{2}\right)^{2}+4 v_{\mathrm{A}}^{2} c_{\mathrm{s}}^{2} \frac{k_{\perp}^{2}}{k^{2}}\right]^{1 / 2}\right\}+\frac{\frac{1}{2} k^{2}}{2\left[\left(v_{\mathrm{A}}^{2}-c_{\mathrm{S}}^{2}\right)^{2}+4 v_{\mathrm{A}}^{2} c_{\mathrm{s}}^{2} \frac{k_{\perp}^{2}}{k^{2}}\right]^{1 / 2}} \frac{8 v_{\mathrm{A}}^{2} c_{\mathrm{s}}^{2}}{k^{4}}\left(k^{2} \boldsymbol{k}_{\perp}-k_{\perp}^{2} \boldsymbol{k}\right)
$$

or

$$
\begin{equation*}
\nabla_{\boldsymbol{k}} \omega_{\mathrm{ms}}^{2}=\boldsymbol{k}\left\{c_{\mathrm{ms}}^{2}+\left[\left(v_{\mathrm{A}}^{2}-c_{\mathrm{s}}^{2}\right)^{2}+4 v_{\mathrm{A}}^{2} c_{\mathrm{s}}^{2} \frac{k_{\perp}^{2}}{k^{2}}\right]^{1 / 2}\right\}+\frac{2 v_{\mathrm{A}}^{2} c_{\mathrm{s}}^{2}\left(\boldsymbol{k}_{\perp}-\boldsymbol{k} k_{\perp}^{2} / k^{2}\right)}{\left[\left(v_{\mathrm{A}}^{2}-c_{\mathrm{s}}^{2}\right)^{2}+4 v_{\mathrm{A}}^{2} c_{\mathrm{s}}^{2} \frac{k_{\perp}^{2}}{k^{2}}\right]^{1 / 2}} \tag{12}
\end{equation*}
$$

