Handout 14: Nonlinear Water Waves

The KdV equation can be written in the form

$$
\begin{equation*}
\dot{u}+u u^{\prime}+u^{\prime \prime \prime}=0 \tag{1}
\end{equation*}
$$

1 Energy conservation in KdV

Among the several other conservation laws, energy conservation is an important one. To contrast the effects of viscosity with dispersive effects, let us write

$$
\begin{equation*}
\dot{u}=-u u^{\prime}+\nu u^{\prime \prime}-\mu u^{\prime \prime \prime} \tag{2}
\end{equation*}
$$

where we have introduced viscosity ν and "dispersivity" μ. To compute energy conservation, let us write

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(\frac{1}{2} u^{2}\right) \equiv u \dot{u}=-u^{2} u^{\prime}+\nu u u^{\prime \prime}-\mu u u^{\prime \prime \prime} \tag{3}
\end{equation*}
$$

The advection operator does not change the energy, because

$$
\begin{equation*}
\int u^{2} u^{\prime} \mathrm{d} x=\int\left(\frac{1}{3} u^{3}\right)^{\prime} \mathrm{d} x=0 \tag{4}
\end{equation*}
$$

But even the dispersive term does not change the energy:

$$
\begin{equation*}
\int u u^{\prime \prime \prime} \mathrm{d} x=\int\left(u u^{\prime \prime}\right)^{\prime} \mathrm{d} x-\int\left(u^{\prime} u^{\prime \prime}\right) \mathrm{d} x=\int\left(u u^{\prime \prime}\right)^{\prime} \mathrm{d} x-\int\left(u^{\prime 2}\right)^{\prime} \mathrm{d} x=\int\left(u u^{\prime \prime}-u^{\prime 2}\right)^{\prime} \mathrm{d} x=0 \tag{5}
\end{equation*}
$$

By comparison,

$$
\begin{equation*}
\int u u^{\prime \prime} \mathrm{d} x=\int\left(u u^{\prime}\right)^{\prime} \mathrm{d} x-\int\left(u^{\prime 2}\right) \mathrm{d} x=-\int\left(u^{\prime 2}\right) \mathrm{d} x \neq 0 \tag{6}
\end{equation*}
$$

does lead to energy dissipation.

2 Solution

To determine the solution, we make what is called an ansatz, namely

$$
\begin{equation*}
u=\frac{A}{\cosh ^{2}[a(x-c t)]} \tag{7}
\end{equation*}
$$

which has 3 unknowns that can be determined such that Equation (1) is obeyed. We now compute every term in turn and begin with

$$
\begin{equation*}
\dot{u}=+2 A a c \frac{\sinh [a(x-c t)]}{\cosh ^{3}[a(x-c t)]} \tag{8}
\end{equation*}
$$

Next to compute $u u^{\prime}$ and later $u^{\prime \prime \prime}$, we need

$$
\begin{equation*}
u^{\prime}=-2 A a \frac{\sinh [a(x-c t)]}{\cosh ^{3}[a(x-c t)]} \tag{9}
\end{equation*}
$$

We see that with each differentiation we pull out a factor a. To simplify notation let us now introduce

$$
\begin{equation*}
\theta=x(x-c t) \tag{10}
\end{equation*}
$$

for the argument of the cosh and sinh functions, so

$$
\begin{equation*}
u^{\prime \prime}=-2 A a^{2}\left(-3 \frac{\sinh ^{2} \theta}{\cosh ^{4} \theta}+\frac{1}{\cosh ^{2} \theta}\right) \tag{11}
\end{equation*}
$$

Finally, we compute

$$
\begin{equation*}
u^{\prime \prime \prime}=-2 A a^{3}\left[-3\left(-4 \frac{\sinh ^{3} \theta}{\cosh ^{5} \theta}+2 \frac{\sinh \theta}{\cosh ^{3} \theta}\right)-2 \frac{\sinh \theta}{\cosh ^{3} \theta}\right] \tag{12}
\end{equation*}
$$

which combines to

$$
\begin{equation*}
u^{\prime \prime \prime}=-2 A a^{3}\left(12 \frac{\sinh ^{3} \theta}{\cosh ^{5} \theta}-8 \frac{\sinh \theta}{\cosh ^{3} \theta}\right) \tag{13}
\end{equation*}
$$

Making use of the relation $\cosh ^{2}-\sinh ^{2} x=1$, i.e., $\sinh ^{2} x=\cosh ^{2}-1$, we have

$$
\begin{equation*}
u^{\prime \prime \prime}=-2 A a^{3}\left(12 \frac{\sinh \theta\left(\cosh ^{2} \theta-1\right)}{\cosh ^{5} \theta}-8 \frac{\sinh \theta}{\cosh ^{3} \theta}\right) \tag{14}
\end{equation*}
$$

or

$$
\begin{equation*}
u^{\prime \prime \prime}=-2 A a^{3}\left(12 \frac{\sinh \theta}{\cosh ^{3} \theta}-12 \frac{\sinh \theta}{\cosh ^{5} \theta}-8 \frac{\sinh \theta}{\cosh ^{3} \theta}\right) \tag{15}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
u^{\prime \prime \prime}=-2 A a^{3}\left(4 \frac{\sinh \theta}{\cosh ^{3} \theta}-12 \frac{\sinh \theta}{\cosh ^{5} \theta}\right) . \tag{16}
\end{equation*}
$$

Putting now everything together, we have

$$
\begin{equation*}
\dot{u}+u u^{\prime}+u^{\prime \prime \prime}=2 a A \frac{\sinh \theta}{\cosh ^{3} \theta}\left[\left(c-4 a^{2}\right)+\left(-A+12 a^{2}\right) \frac{1}{\cosh ^{2} \theta}\right] \tag{17}
\end{equation*}
$$

The rhs can only vanish if

$$
\begin{equation*}
c=4 a^{2}=A / 3 \tag{18}
\end{equation*}
$$

We also see that, if we were to introduce a parameter μ in front of the dispersive term, i.e.,

$$
\begin{equation*}
\dot{u}+u u^{\prime}+\mu u^{\prime \prime \prime}=0 \tag{19}
\end{equation*}
$$

the solution would read

$$
\begin{equation*}
c=4 a^{2} / \mu=A / 3 \tag{20}
\end{equation*}
$$

so the relation $A=3 c$ is not altered, but just the width changes.

Figure 1: $x t$ diagram for $c_{1}=3$ and $c_{2}=2$.

Figure 2: $x t$ diagram for $c_{1}=3$ and $c_{2}=1$.

3 Numerical solutions

To compute numerical solutions of the KdV equation, one can just use a high-order finite difference scheme and represent first derivative on a discrete mesh as

$$
\begin{equation*}
f_{i}^{\prime}=\left(-f_{i-3}+9 f_{i-2}-45 f_{i-1}+45 f_{i+1}-9 f_{i+2}+f_{i+3}\right) /(60 \delta x) \tag{21}
\end{equation*}
$$

and the third derivative as

$$
\begin{equation*}
f_{i}^{\prime \prime \prime}=\left(+f_{i-3}-8 f_{i-2}+13 f_{i-1}-13 f_{i+1}+8 f_{i+2}-f_{i+3}\right) /\left(8 \delta x^{3}\right) \tag{22}
\end{equation*}
$$

Both formulae have a stencil width of three in each direction, but the first derivative is sixth order and the third one is only second order accurate. A third derivative that is also sixth order has a stencil width of four:

$$
\begin{equation*}
f_{i}^{\prime \prime \prime}=\left(+7 f_{i-4}-72 f_{i-3}+338 f_{i-2}-488 f_{i-1}+488 f_{i+1}-338 f_{i+2}+72 f_{i+3}-7 f_{i-4}\right) /\left(240 \delta x^{3}\right) \tag{23}
\end{equation*}
$$

The equations are advanced in time by a time-stepping scheme. It is advantageous to choose a highorder scheme, e.g., a third order scheme. Higher order schemes also allow for a longer time step, which allows the code still to be stable. The maximum possible time step scales in a well-defined way with the parameters in the simulation. For pure advection, this is known as the Courant-Friedrichs-Lewy condition, i.e., $\delta t<C_{\mathrm{CFL}} \delta x / u_{\max }$. If viscosity is important, it can constrain the time step further, and on dimensional grounds it must be $\delta t<C_{\text {visc }} \delta x^{2} / \nu$, and likewise for dispersion, $\delta t<C_{\text {disp }} \delta x^{3} / \mu$. In practice, we can take the minimum of all three or more such constraints, i.e.,

$$
\begin{equation*}
\delta t_{\max }=\min \left[C_{\mathrm{CFL}} \delta x / u_{\max }, C_{\mathrm{visc}} \delta x^{2} / \nu, C_{\mathrm{disp}} \delta x^{3} / \mu\right] \tag{24}
\end{equation*}
$$

For the code at hand, we found empirically $C_{\mathrm{CFL}} \approx 0.9, C_{\text {visc }} \approx 0.1$, and $C_{\text {disp }} \approx 0.3$.
Solitons cannot be superimposed just like that. Exact two-soliton solutions do actually exist, and if they are fare enough apart initially, the addition of two solution is good enough. In Figures 1 and 2 we show examples of soliton collisions. One clearly sees that the actual interaction is not just the sum of two. Also, there is always a phase shift.

