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Handout 14: Nonlinear Water Waves

The KdV equation can be written in the form

u̇ + uu′ + u′′′ = 0 (1)

1 Energy conservation in KdV

Among the several other conservation laws, energy conservation is an important one. To contrast the
effects of viscosity with dispersive effects, let us write

u̇ = −uu′ + νu′′ − µu′′′, (2)

where we have introduced viscosity ν and “dispersivity” µ. To compute energy conservation, let us write

∂

∂t

(

1
2
u2

)

≡ uu̇ = −u2u′ + νuu′′ − µuu′′′. (3)

The advection operator does not change the energy, because
∫

u2u′ dx =

∫

(

1
3
u3

)′

dx = 0. (4)

But even the dispersive term does not change the energy:
∫

uu′′′ dx =

∫

(uu′′)
′

dx −

∫

(u′u′′) dx =

∫

(uu′′)
′

dx −

∫

(

u′2
)′

dx =

∫

(

uu′′ − u′2
)′

dx = 0. (5)

By comparison,
∫

uu′′ dx =

∫

(uu′)
′

dx −

∫

(

u′2
)

dx = −

∫

(

u′2
)

dx 6= 0, (6)

does lead to energy dissipation.

2 Solution

To determine the solution, we make what is called an ansatz, namely

u =
A

cosh2[a(x − ct)]
, (7)

which has 3 unknowns that can be determined such that Equation (1) is obeyed. We now compute every
term in turn and begin with

u̇ = +2Aac
sinh[a(x − ct)]

cosh3[a(x − ct)]
. (8)

Next to compute uu′ and later u′′′, we need

u′ = −2Aa
sinh[a(x − ct)]

cosh3[a(x − ct)]
. (9)

We see that with each differentiation we pull out a factor a. To simplify notation let us now introduce

θ = x(x − ct) (10)

for the argument of the cosh and sinh functions, so

u′′ = −2Aa2

(

−3
sinh2 θ

cosh4 θ
+

1

cosh2 θ

)

. (11)
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Finally, we compute

u′′′ = −2Aa3

[

−3

(

−4
sinh3 θ

cosh5 θ
+ 2

sinh θ

cosh3 θ

)

− 2
sinh θ

cosh3 θ

]

, (12)

which combines to

u′′′ = −2Aa3

(

12
sinh3 θ

cosh5 θ
− 8

sinh θ

cosh3 θ

)

. (13)

Making use of the relation cosh2 − sinh2 x = 1, i.e., sinh2 x = cosh2 −1, we have

u′′′ = −2Aa3

(

12
sinh θ (cosh2 θ − 1)

cosh5 θ
− 8

sinh θ

cosh3 θ

)

. (14)

or

u′′′ = −2Aa3

(

12
sinh θ

cosh3 θ
− 12

sinh θ

cosh5 θ
− 8

sinh θ

cosh3 θ

)

. (15)

and therefore

u′′′ = −2Aa3

(

4
sinh θ

cosh3 θ
− 12

sinh θ

cosh5 θ

)

. (16)

Putting now everything together, we have

u̇ + uu′ + u′′′ = 2aA
sinh θ

cosh3 θ

[

(c − 4a2) + (−A + 12a2)
1

cosh2 θ

]

. (17)

The rhs can only vanish if
c = 4a2 = A/3. (18)

We also see that, if we were to introduce a parameter µ in front of the dispersive term, i.e.,

u̇ + uu′ + µu′′′ = 0, (19)

the solution would read
c = 4a2/µ = A/3. (20)

so the relation A = 3c is not altered, but just the width changes.

Figure 1: xt diagram for c1 = 3 and c2 = 2.
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Figure 2: xt diagram for c1 = 3 and c2 = 1.

3 Numerical solutions

To compute numerical solutions of the KdV equation, one can just use a high-order finite difference
scheme and represent first derivative on a discrete mesh as

f ′

i
= (−fi−3 + 9fi−2 − 45fi−1 + 45fi+1 − 9fi+2 + fi+3)/(60δx), (21)

and the third derivative as

f ′′′

i
= (+fi−3 − 8fi−2 + 13fi−1 − 13fi+1 + 8fi+2 − fi+3)/(8δx3). (22)

Both formulae have a stencil width of three in each direction, but the first derivative is sixth order and
the third one is only second order accurate. A third derivative that is also sixth order has a stencil width
of four:

f ′′′

i
= (+7fi−4 − 72fi−3 + 338fi−2 − 488fi−1 + 488fi+1 − 338fi+2 + 72fi+3 − 7fi−4)/(240δx3). (23)

The equations are advanced in time by a time-stepping scheme. It is advantageous to choose a high-
order scheme, e.g., a third order scheme. Higher order schemes also allow for a longer time step, which
allows the code still to be stable. The maximum possible time step scales in a well-defined way with
the parameters in the simulation. For pure advection, this is known as the Courant–Friedrichs–Lewy
condition, i.e., δt < CCFLδx/umax. If viscosity is important, it can constrain the time step further, and
on dimensional grounds it must be δt < Cviscδx

2/ν, and likewise for dispersion, δt < Cdispδx3/µ. In
practice, we can take the minimum of all three or more such constraints, i.e.,

δtmax = min
[

CCFLδx/umax, Cviscδx
2/ν, Cdispδx3/µ

]

. (24)

For the code at hand, we found empirically CCFL ≈ 0.9, Cvisc ≈ 0.1, and Cdisp ≈ 0.3.
Solitons cannot be superimposed just like that. Exact two-soliton solutions do actually exist, and if

they are fare enough apart initially, the addition of two solution is good enough. In Figures 1 and 2 we
show examples of soliton collisions. One clearly sees that the actual interaction is not just the sum of
two. Also, there is always a phase shift.
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