Handout 14b: Nonlinear Water Waves (cont'd)

The KdV equation can be derived under the restrictions of shallow water (wavelength longer ℓ long compared with depth h) and small (but finite) amplitude a compared with h, i.e.,

$$
\begin{equation*}
a \ll h \ll \ell \tag{1}
\end{equation*}
$$

One assumes an inviscid irrotational flow $\boldsymbol{u}=\boldsymbol{\nabla} \phi$, so the governing equation is the Bernoulli equation,

$$
\begin{equation*}
\partial_{t} \phi+\frac{1}{2}(\nabla \phi)^{2}+P / \rho+g z=0, \quad \nabla^{2} \phi=0 \tag{2}
\end{equation*}
$$

We first need to discuss boundary conditions.

1 Boundary conditions

At rest, the water surface is assumed to be at $z=$, so the bottom is at $z=-h$, and the normal velocity vanishes there, so

$$
\begin{equation*}
\phi_{, z}=0 \quad(\text { at } z=-h) \tag{3}
\end{equation*}
$$

Next, the surface is assumed to be at $z=\zeta$. Since the pressure vanishes zero, we have

$$
\begin{equation*}
\partial_{t} \phi^{\mathrm{s}}+\frac{1}{2}\left(\boldsymbol{\nabla} \phi^{\mathrm{s}}\right)^{2}+g \zeta=0 \tag{4}
\end{equation*}
$$

where the superscript s refers to the surface. The location of the surface is described by the function $\zeta=\zeta(x, t)$, and we assume that

$$
\begin{equation*}
\mathrm{D} \zeta / \mathrm{D} t=u_{z} \equiv \phi_{, z} \tag{5}
\end{equation*}
$$

Since $\mathrm{D} \zeta / \mathrm{D} t=\partial_{t} \zeta+u_{x} \zeta_{, x}=\partial_{t} \zeta+\phi_{,_{x}} \zeta_{, x}$, we can also write

$$
\begin{equation*}
\left.\partial_{t} \zeta+\phi_{, x} \zeta_{, x}=\phi_{, z} \quad \text { (at the surface }\right) \tag{6}
\end{equation*}
$$

We note in passing that the linearized form of the two equations can be combined to $\partial_{t}^{2} \phi+g \phi_{, z}=0$, which is an equation we have encountered in handout 11, see Eq. (16) of that handout.

2 Linear wave solutions

Assuming wave-like solutions of the form

$$
\begin{equation*}
\phi=f(z) \sin (k x-\omega t) \tag{7}
\end{equation*}
$$

which satisfy $\nabla^{2} \phi=0$, the f has to be of the form $f=f_{1} e^{k z}+f_{2} e^{-k z}$. To obey $f_{, z}=0$, we have to have $f_{1} k e^{k z}-f_{2} k e^{-k z}=0$ at $z=-h$, and thus $f_{1} k e^{-k h}-f_{2} k e^{k h}=0$, or $f_{2} / f_{1}=e^{-2 k h}$ and thus

$$
f(z)=A\left(e^{k z}+e^{-k z-2 k h}\right)=A e^{-k h}\left(e^{k(z+h)}+e^{-k(z+h)}\right)
$$

and therefore $f(z)=2 A e^{-k h} \cosh k(z+h)$.
(8) Figure 1: Dispersion relation.

Figure 1: Dispersion relation.
The dashed line shows the result without the tanh factor.

Inserting $\phi=2 A e^{-k h} \cosh k(z+h) \sin (k x-\omega t)$ into $\partial_{t}^{2} \phi+g \phi \phi_{, z}=0$, and noting that $f_{, z}=2 A k e^{-k h} \sinh k(z+h)$, we have

$$
\begin{equation*}
-\omega^{2} 2 A e^{-k h} \cosh k(z+h) \sin (k x-\omega t)+2 A g k e^{-k h} \cosh k(z+h) \sin (k x-\omega t)=0 \tag{9}
\end{equation*}
$$

and therefore $\omega^{2}=g k \tanh k(z+h)$ at the surface at $z=0$, so

$$
\begin{equation*}
\omega^{2}=g k \tanh k h \tag{10}
\end{equation*}
$$

This is shown in Figure 1 and compared with $\omega^{2}=g k$.

3 Perturbative nonlinear wave equation

We now make the following ansatz for ϕ, which must obey $\nabla^{2} \phi=0$,

$$
\begin{equation*}
\phi=\sum_{n=0}^{\infty} z^{n} \phi_{n}(x, t) . \tag{11}
\end{equation*}
$$

To work with this, it is useful to write out the first few terms:

$$
\begin{equation*}
\phi=\phi_{0}+z \phi_{1}+z^{2} \phi_{2}+z^{3} \phi_{3}+z^{4} \phi_{4}+\ldots \tag{12}
\end{equation*}
$$

In order that this satisfies $\nabla^{2} \phi=0$, let us write down the second x and z derivatives,

$$
\begin{gather*}
\phi_{, x x}=\phi_{0, x x}+z \phi_{1, x x}+z^{2} \phi_{2, x x}+z^{3} \phi_{3, x x}+z^{4} \phi_{4, x x}+\ldots \tag{13}\\
\phi_{, z z}=2 \phi_{2}+3 \cdot 2 z \phi_{3}+4 \cdot 3 z^{2} \phi_{4}+\ldots \tag{14}
\end{gather*}
$$

Matching equal powers of z leads to the following recursive relations

$$
\begin{gather*}
\phi_{0, x x}+2 \phi_{2}=0, \tag{15}\\
\phi_{1, x x}+3 \cdot 2 \phi_{3}=0, \tag{16}\\
\phi_{2, x x}+4 \cdot 3 \phi_{4}=0, \tag{17}
\end{gather*}
$$

or, more generally

$$
\begin{equation*}
\phi_{n, x x}+(n+2)(n+1) \phi_{n+2}=0 . \tag{18}
\end{equation*}
$$

Next, making use of the bottom boundary condition $u_{z}=0$, i.e., $\phi_{, z}=0$, we find $\phi_{1}=0$, and, because of Equation (18), all odd terms vanish, i.e., $\phi_{3}=\phi_{5}=\ldots=0$. With this, we can now write ϕ as

$$
\begin{equation*}
\phi=\phi_{0}+z^{2} \phi_{2}+z^{4} \phi_{4}+\ldots \tag{19}
\end{equation*}
$$

Inserting the recursive relations, we have $\phi_{2}=-\frac{1}{2} \phi_{0, x x}$ and

$$
\begin{equation*}
\phi_{4}=-\frac{\phi_{2, x x}}{4 \cdot 3}=+\frac{\phi_{0, x x x x}}{4!} . \tag{20}
\end{equation*}
$$

Let us use $\varphi \equiv \phi_{0}$ as a shorthand, and so

$$
\begin{equation*}
\phi=\varphi-\frac{1}{2!} z^{2} \varphi^{\prime \prime}+\frac{1}{4!} z^{4} \varphi^{(\mathrm{iv})}-\ldots \tag{21}
\end{equation*}
$$

With this, we find

$$
\begin{equation*}
u_{x}=\phi_{, x}=\varphi^{\prime}-\frac{1}{2!} z^{2} \varphi^{\prime \prime \prime}+\frac{1}{4!} z^{4} \varphi^{(\mathrm{v})}-\ldots \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{z}=\phi_{, z}=-z \varphi^{\prime \prime}+\frac{1}{3!} z^{3} \varphi^{(\mathrm{iv})}-\ldots \tag{23}
\end{equation*}
$$

This has to be inserted back into the full time-dependent equation (2). Furthermore, to obey the ordering (1), we define $\epsilon=A / h$ for the amplitude A and $\delta=(h / \ell)^{2}$ for the height. Solving order by order, one arrives eventually at the equation

$$
\begin{equation*}
\zeta_{, t}+c \zeta_{, x}+\frac{3}{2} \frac{c}{h} \zeta \zeta_{, x}+\frac{1}{6} c h^{2} \zeta_{, x x x}=0 \tag{24}
\end{equation*}
$$

to lowest order. Here, $c=\sqrt{g h}$ is the wave speed, and $c \zeta_{, x}$ is just an advection term that can be removed by going into a comoving frame to obtain the KdV equation in its usual form. Higher derivatives would occur at higher order expansions.

