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Handout 6: Double-diffusive instability

broad range of applications sea water massive stars in which the burning of hydrogen into helium has
led to a stabilizing gradient of the mean molecular weight.

1 Governing equations

At the technical level, the double-diffusive instability is an extension of the Rayleigh-Bénard problem in
that the density is now a function of not only temperature, but also the concentration of salinity (in the
ocean) or helium (in deeper layers of a star). Thus, the equation of state for ρ includes now an extra
term for this concentration and reads

ρ = ρ00 [1 − αT (T − T00) + αC(C − C00)] (1)

Thus, the momentum equation becomes

(

∂

∂t
− ν∇2

)

∇2uz1 = αT g∇2
⊥

T1 − αCg∇2
⊥

C1, (2)

and for temperature and concentration we have respectively
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∂
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2

)

T1 = βT uz1,

(

∂
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− κC∇

2

)

C1 = βCuz1. (3)

Applying the operators of the left-hand sides of Equation (3) to Equation (2), we have
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)

αCβC
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uz1.

(4)
Assuming solutions to be of the form uz1 = ûz1(z) eσt+ik·x, we have

(

σ + κT k2
) (

σ + κCk2
) (

σ + νk2
)

k2 =
[(

σ + κCk2
)

αT βT −
(

σ + κT k2
)

αCβC

]

gk2
⊥

. (5)

If the principle of the exchange of stabilities were applicable, we would have

κT κCνk6 = (κCαT βT − κT αCβC) gk2
⊥

. (6)

Thus, the condition of marginal stability can be written in the form

k6

k2
⊥

=
αT βT g

κT ν
−

αCβC g

κCν
. (7)

Thus, we see that the difference between two suitably defined Rayleigh numbers has to be big enough.
Moreover, we can envisage two quite different situations:

(i) βT is large (larger than by the usual marginal stability criterion without salinity), but βC is also large
so that the system is being stabilized. In astrophysics, the resulting state is called semi-convection.

(ii) βT is negative (or at least smaller than by the usual marginal stability criterion without salinity),
but βC is now also negative so that the system is being destabilized. In oceanographics, the resulting
state is called thermohaline convection and was discovered by Stern (1960).
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2 Dispersion relation

Let us now work out the dispersion relation:

(

σ + κT k2
) (

σ + κCk2
) (

σ + νk2
)

−
[(

σ + κCk2
)

αT βT −
(

σ + κT k2
)

αCβC

]

g
k2
⊥

k2
= 0. (8)

Thus,

σ3 + σ2(κT + κC + ν)k2 + σ

[

(κT κC + κCν + νκT )k4 + (αCβC − αT βT )g
k2
⊥

k2

]

+κT κCνk6 + (αCβCκT − αT βT κC)g k2
⊥

= 0

It may be more intuitive to define αT βT g = −N2
T

and αCβCg = −N2
C

, so that

σ3 + σ2(κT + κC + ν)k2 + σ

[

(κT κC + κCν + νκT )k4 + (N2
T − N2

C)
k2
⊥

k2

]

+κT κCνk6 + (N2
T κC − N2

CκT )k2
⊥

= 0

Let us now introduce nondimensional units by defining σ/νk2 → σ, κT /ν → κT , κC/ν → κC ,
N2

T
/ν2k4 → N2

T
, N2

C
/ν2k4 → N2

C
, and k2

⊥
/k2 → κ2

⊥

σ3 + σ2(κT + κC + 1) + σ
[

(κT κC + κC + κT ) + (N2
T − N2

C)k2
⊥

]

+κT κC + (N2
T κC − N2

CκT )k2
⊥

= 0.

This equation is now dimensionless, but we still have five parameters to vary! In Figure 1 the dispersion
relation is plotted for the case of an oscillatory onset of convection (so-called semiconvection) for N2

T
=

−1.5 (unstable) and N2
C

= −1 (stabilizing), using k2
⊥

/k2 = 0.5.

Figure 1: Real and imaginary parts of σ for N2
T

= −1.5, N2
C

= −1, for k2
⊥

/k2 = 0.5. Note that Reσ > 0
(unstable) for κC/κT

<∼ 0.1. At the same time, Imσ 6= 0 (oscillatory).
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