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Lecture 8

• Double-diffusive convection

• Discovered in oceanographic context

• Nowadays many applications

• Here: two diffusivities

• Thermal diffusivity acts destabilizing

• In astrophysics: semiconvection
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Different diffusivities crucial

• kS=1.3 x 10-5 cm2 s-1 (sea water)

• kC=1.5 x 10-3 cm2 s-1

• Le = kT/kC= Sc/Pr=Schmidt/Prandtl

– is large

– temperature in equilibrium, salinity not

• Diffusion can destabilize the system!

– not with single diffusing component
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Two active scalars

• C for concentration of salinity

– avoid S, which we used for entropy

– both aT>0 and aC>0

• Opposing trends:

– if T increases, r decreases

– if C increases, r increases 

 Rayleigh-Benard-like problem

    000000 1 CCTT CT  aarr



4

• Stommel et al (1954)

• Stern (1960)

Origin in oceanography
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Case 1: more salt on top

dT/dz>0 dC/dz>0
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Case 2: salt stabilizes unstable dT/dz

dT/dz<0 dC/dz<0

unstable Stable

Stabilizing!

cold

hot
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“overstable”
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Overstability?

 Hopf bifurcation

(Gough 2003)

Originated from stellar stability 
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Boussinesq equations
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Recall lecture 3, eq.(10) and (11)
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Proceed analogously
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linearized, &

double-curl
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Reduce to single equation

apply
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and use on rhs
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….to obtain
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Do simplest case: stress-free boundaries
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assume that principle of exchange of stabilities applicable
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…works only for nonoscillatory onset
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But we see that that instability is possible if 
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remember:

Either negative T gradient big enough (i.e. 1st term dominant): 

 similar to Rayleigh-Benard convection

but could be stabilized by negative C gradient

salt fingers

or C gradient is positive and big enough (2nd term dominant): 
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Dispersion relation
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Solve numerically
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substitute

 Cubic equation

Onset, nonoscillatory (zero frequency)

also: decaying, oscillatory modes (pair of finite frequencies)
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Salt fingers
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Dispersion relation: opposite case 
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The two

regimes
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Staircase formation
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Staircase formation

Empirical fact, not from linear theory (nor weakly

nonlinear theory)
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• Oceanography

• Geology (magma chambers)

• Astrophysics

• Engineering (metallurgy)

Many applications!
Publications in double-diffusive

Yet, not very highly thought of back in the 1950s
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Astrophysical application: m-gradient
Kato (1966)
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In astrophysics: semi-convection

Layered convection
(Zaussinger & Spruit 2013)

 Lots of current research!
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Backup slides
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“Salt fingers” in magma chamber
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Comparison: the 2 regimes
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Overstability?


