Problems

1. There is a critical temperature gradient, $\beta_{\text {crit }}=(d T / d z)_{\text {crit }}$, above which the stratification becomes unstable to convection. Show that

$$
\beta_{\text {crit }}=-\left(1-\frac{1}{\gamma}\right) g \frac{\mu}{\mathcal{R}}
$$

where g is gravity, γ the ratio of specific heats, \mathcal{R} the universal gas constant and μ the mean molecular weight. [Hints: use the condition $c_{p}^{-1} d s / d z=0=\gamma^{-1} d \ln p / d z-$ $d \ln \rho / d z$ for adiabatic stratification, write this in terms of p and T using the perfect gas equation $p=(\mathcal{R} / \mu) \rho T$, and eliminate p using the equation of hydrostatic equilibrium, $d p / d z=-\rho g$.]

[10 marks]

2. What are Brunt-Väisälä oscillations? What are the relevant restoring forces? Estimate, to an order of magnitude, the period $T_{\mathrm{BV}}=2 \pi / \omega_{\mathrm{BV}}$ in years, where

$$
\begin{equation*}
\omega_{\mathrm{BV}}=\left(1-\frac{1}{\gamma}\right)^{1 / 2} \frac{g}{c_{s}}, \tag{1}
\end{equation*}
$$

for a cluster of galaxies at a radius R from the centre. Take $\gamma=5 / 3, g=G M / R^{2}$, where $G=7 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}, M=10^{44} \mathrm{~kg}$, and $R=300 \mathrm{kpc}$. Use $c_{s}^{2}=G M / R$. Note that $1 \mathrm{kpc}=3 \times 10^{19} \mathrm{~m}$.
[10 marks]
3. Use the continuity, Euler, and energy equations

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\boldsymbol{\nabla} \cdot(\rho \boldsymbol{v})=0 \tag{2}
\end{equation*}
$$

and

$$
\begin{align*}
& \rho \frac{\partial \boldsymbol{v}}{\partial t}+\rho \boldsymbol{v} \cdot \boldsymbol{\nabla} \boldsymbol{v}+\boldsymbol{\nabla} p=0 \tag{3}\\
& \frac{\partial e}{\partial t}+\boldsymbol{v} \cdot \boldsymbol{\nabla} e+\frac{p}{\rho} \boldsymbol{\nabla} \cdot \boldsymbol{v}=0 \tag{4}
\end{align*}
$$

to derive the following equations

$$
\begin{align*}
\frac{\partial}{\partial t}\left(\rho v_{i}\right) & =-\frac{\partial}{\partial x_{j}}\left(\rho v_{i} v_{j}+\delta_{i j} p\right) \tag{5}\\
\frac{\partial}{\partial t}\left(\frac{1}{2} \rho \boldsymbol{v}^{2}+\rho e\right) & =-\frac{\partial}{\partial x_{j}}\left[v_{j}\left(\frac{1}{2} \rho \boldsymbol{v}^{2}+\rho e+p\right)\right] \tag{6}
\end{align*}
$$

Note that summation over double indices is assumed!
4. Consider the continuity and momentum equations for an isothermal atmosphere with constant speed of sound, c_{s}, and uniform gravity, g, in one dimension,

$$
\begin{gather*}
\frac{\partial \rho}{\partial t}+v_{z} \frac{\partial \rho}{\partial z}+\rho \frac{\partial v_{z}}{\partial z}=0 \tag{7}\\
\rho \frac{\partial v_{z}}{\partial t}+\rho v_{z} \frac{\partial v_{z}}{\partial z}+c_{s}^{2} \frac{\partial \rho}{\partial z}+\rho g=0 \tag{8}
\end{gather*}
$$

where ρ is density and v_{z} vertical velocity.
(a) Show that the solution for hydrostatic equilibrium, $v_{z}=\overline{v_{z}}=0$, is $\rho=\bar{\rho}(z)=$ $\rho_{0} e^{-z / H}$, where ρ_{0} is a constant and $H=c_{s}^{2} / g$ is the vertical scale height.
(b) Write $\rho=\bar{\rho}+\rho^{\prime}$ and $v_{z}=v_{z}^{\prime}$ and linearise equations (??) and (??) with respect to ρ^{\prime} and v_{z}^{\prime}.
(c) Assume that ρ^{\prime} and $v_{z}=v_{z}^{\prime}$ take the form

$$
\begin{align*}
\rho^{\prime}(z, t) & =\rho_{1} e^{i k z-i \omega t-z / 2 H} \tag{9}\\
v_{z}^{\prime}(z, t) & =w_{1} e^{i k z-i \omega t+z / 2 H} \tag{10}
\end{align*}
$$

and show that the linearised equations can be written as

$$
\left(\begin{array}{cc}
-i \omega & {\left[i k-(2 H)^{-1}\right]} \tag{11}\\
{\left[i k+(2 H)^{-1}\right] c_{s}^{2}} & -i \omega
\end{array}\right)\binom{\rho_{1}}{\rho_{0} w_{1}}=\binom{0}{0}
$$

(d) Calculate the dispersion relation. Note: it will be convenient to use the abbreviation $\omega_{0}=c_{s} / 2 H$ for the acoustic cutoff frequency.
(e) Give a qualitative plot of the dispersion relation.
(f) Calculate the value of the period $2 \pi / \omega_{0}$ for the solar atmosphere, assuming $c_{s}=$ $6 \mathrm{~km} / \mathrm{s}$ and $g=270 \mathrm{~ms}^{2}$.

