Problems

1. For a steady spherically symmetric flow of an isothermal gas with constant sound speed c_{s}, the Euler equation with a suitable body force is

$$
\begin{equation*}
u_{r} \frac{\mathrm{~d} u_{r}}{\mathrm{~d} r}=-c_{\mathrm{s}}^{2} \frac{\mathrm{~d} \ln \rho}{\mathrm{~d} r}-\frac{G M}{r^{2}} . \tag{1}
\end{equation*}
$$

The continuity equation is

$$
\begin{equation*}
\frac{1}{r^{2}} \frac{\mathrm{~d}}{\mathrm{~d} r}\left(r^{2} \rho u_{r}\right)=0 \tag{2}
\end{equation*}
$$

(a) Show that the critical radius r_{*} where $\left|u_{r}\right|=c_{\mathrm{s}}$, is $r_{*}=G M /\left(2 c_{\mathrm{s}}^{2}\right)$.
(b) Integrate Eqs (1) and (2), and then eliminate $\ln \rho$ to show that

$$
\begin{equation*}
\frac{1}{2} u_{r}^{2}-c_{\mathrm{s}}^{2} \ln \left|u_{r}\right|-2 c_{\mathrm{s}}^{2} \ln r-\frac{G M}{r}=\frac{1}{2} c_{\mathrm{s}}^{2}-c_{\mathrm{s}}^{2} \ln c_{\mathrm{s}}-2 c_{\mathrm{s}}^{2} \ln r_{*}-\frac{G M}{r_{*}} . \tag{3}
\end{equation*}
$$

(c) Show that Eq. (3) can be written as

$$
\begin{equation*}
\mathcal{M}=\sqrt{C+2 \ln \mathcal{M}} \tag{4}
\end{equation*}
$$

where $\mathcal{M}=\left|u_{r}\right| / c_{\mathrm{s}}$ and

$$
C=4\left(\ln \tilde{r}+\frac{1}{\tilde{r}}\right)-3,
$$

with $\tilde{r}=r / r_{*}$.
(d) Calculate the value of C for $\tilde{r}=10$, and find the corresponding value of \mathcal{M} using three iteration steps starting with $\mathcal{M}=1$. Show your working in all intermediate steps. Sketch the solution for \mathcal{M} against \tilde{r}, and indicate the points where $\tilde{r}=1$ and 10 .
(e) Show that Eq. (4) can also be written as $\mathcal{M}=\exp \left[\frac{1}{2}\left(\mathcal{M}^{2}-C\right)\right]$, and, for the same value of C, iterate for \mathcal{M} starting again with $\mathcal{M}=1$ (use three iterations, show your working). Again, sketch the solution of \mathcal{M} against \tilde{r}, indicate the points where $\tilde{r}=1$ and 10 , and show the direction of the flow. In what area of stellar physics can this model be applied?
2. Use dimensional arguments to determine the form of the energy spectrum $E(k)$ for hydromagnetic turbulence. You may assume that the spectrum can be written in the form

$$
E(k)=C\left(v_{A} \epsilon\right)^{a} k^{b},
$$

where C is a dimensionless constant, v_{A} is the Alfvén speed, ϵ (with dimension $\mathrm{m}^{2} \mathrm{~s}^{-3}$) the energy injection rate, and k the wavenumber.
[Note that $\int E(k) d k$ has the dimension $\mathrm{m}^{2} \mathrm{~s}^{-2}$.]

[10 marks]

3. (a) Start from $\overline{\mathcal{E}}=\overline{\boldsymbol{u} \times \boldsymbol{\nabla} \times(\boldsymbol{u} \times \boldsymbol{B})}$ and show that

$$
\begin{gather*}
\dot{\mathcal{E}}_{i}^{\mathrm{K}}=\epsilon_{i j k} \epsilon_{k l m} \epsilon_{m n p} \overline{u_{j} \partial_{l} u_{n} \bar{B}_{p}} \tag{1}\\
\dot{\mathcal{E}}_{i}^{\mathrm{K}}=\alpha_{i p}^{\mathrm{K}} \bar{B}_{p}+\eta_{i p l}^{\mathrm{K}} \bar{B}_{p, l} \tag{2}
\end{gather*}
$$

(b) Show that

$$
\begin{equation*}
\alpha_{i p}^{K}=\epsilon_{j n p} \overline{u_{j} u_{n, i}}-\epsilon_{i n p} \overline{u_{j} u_{n, j}} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\eta_{i p l}^{\mathrm{K}}=-\epsilon_{i n p} \overline{u_{l} u_{n}} \tag{4}
\end{equation*}
$$

(c) Assume isotropy: $\alpha_{\mathrm{K}}=\frac{1}{3} \delta_{i p} \alpha_{i p}^{\mathrm{K}}$ and show that $\eta_{\mathrm{K}}=\frac{1}{6} \epsilon_{i p l} \eta_{i p l}^{\mathrm{K}}$, so

$$
\begin{equation*}
\alpha_{\mathrm{K}}=\frac{1}{3} \epsilon_{j n i} \overline{u_{j} u_{n, i}}-\frac{1}{3} \epsilon_{i n i} \overline{u_{j} u_{n, j}}=-\frac{1}{3} \overline{\boldsymbol{\omega}} \cdot \boldsymbol{u} . \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\eta_{\mathrm{K}}=-\frac{1}{6}\left(\overline{u_{p} u_{p}}-3 \overline{u_{n} u_{n}}\right)=\frac{1}{3} \overline{\boldsymbol{u}^{2}} \tag{6}
\end{equation*}
$$

