Astrophysical Fluid Dynamics: Solutions to Problem Sheet 1

There is a critical temperature gradient, $\beta_{\text {crit }}=(d T / d z)_{\text {crit }}$, above which the stratification becomes unstable to convection. Show that

$$
\beta_{\mathrm{crit}}=-\left(1-\frac{1}{\gamma}\right) g \frac{\mu}{\mathcal{R}}
$$

where g is gravity, γ the ratio of specific heats, \mathcal{R} the universal gas constant and μ the mean molecular weight. [Hints: use the condition $c_{p}^{-1} d s / d z=0=\gamma^{-1} d \ln p / d z-d \ln \rho / d z$ for adiabatic stratification, write this in terms of p and T using the perfect gas equation $p=(\mathcal{R} / \mu) \rho T$, and eliminate p using the equation of hydrostatic equilibrium, $d p / d z=-\rho g$.]

- Since the entropy s is constant we have

$$
0=\frac{1}{\gamma} \frac{d \ln p}{d z}-\frac{d \ln \varrho}{d z}=\frac{1}{\gamma} \frac{d \ln p}{d z}-\left(\frac{d \ln p}{d z}-\frac{d \ln T}{d z}\right)=\frac{d \ln T}{d z}-\left(1-\frac{1}{\gamma}\right) \frac{d \ln p}{d z},
$$

because $\varrho \propto p / T$. So we have

$$
\begin{equation*}
\frac{d \ln T}{d z}=\left(1-\frac{1}{\gamma}\right) \frac{d \ln p}{d z} . \tag{1}
\end{equation*}
$$

Using hydrostatic equilibrium, we have

$$
\begin{equation*}
\frac{d \ln p}{d z}=\frac{1}{p} \frac{d p}{d z}=-\frac{\varrho}{p} g=-\frac{g}{\mathcal{R} T / \mu} . \tag{2}
\end{equation*}
$$

Combining Eqs. (1) and (2), we have

$$
\frac{d T}{d z}=-\left(1-\frac{1}{\gamma}\right) g \frac{\mu}{\mathcal{R}}
$$

Since we did this calculation assuming $s=$ const (adiabaticity) this is then indeed the critical temperature gradient, $\beta_{\text {crit }}$.

What are Brunt-Väisälä oscillations? What is the relevant restoring force? Estimate, to an order of magnitude, the period $T_{\mathrm{BV}}=2 \pi / \omega_{\mathrm{BV}}$ in years, where

$$
\begin{equation*}
\omega_{\mathrm{BV}}=\left(1-\frac{1}{\gamma}\right)^{1 / 2} \frac{g}{c_{s}} \tag{3}
\end{equation*}
$$

for a cluster of galaxies at a radius R from the centre. Take $\gamma=5 / 3, g=G M / R^{2}$, where $G=$ $7 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}, M=10^{44} \mathrm{~kg}$, and $R=300 \mathrm{kpc}$. Use $c_{s}^{2}=G M / R$. Note that $1 \mathrm{kpc}=3 \times 10^{19} \mathrm{~m}$.

- Brunt-Väisälä oscillations are vertical up \& down motions in a stably stratified atmosphere. The relevant restoring force is gravity or the buoyancy force, $\delta \rho g$.

The Brunt-Väisälä frequency is proportional to

$$
\frac{g}{c_{\mathrm{s}}}=\frac{G M}{R^{2}} \times\left(\frac{R}{G M}\right)^{1 / 2}=\left(\frac{G M}{R^{3}}\right)^{1 / 2}
$$

For a galaxy cluster we find

$$
\left.\left(\frac{G M}{R^{3}}\right)^{1 / 2}=\frac{7 \times 10^{-11} \times 10^{44} \mathrm{~kg}}{\left(300 \times 3 \times 10^{19}\right)^{3}}\right) \mathrm{s}^{-1} \approx 10^{-16} \mathrm{~s}^{-1} \approx 3 \times 10^{-9} \mathrm{yr}^{-1}
$$

With $1-1 / \gamma=0.4$, and hence $\sqrt{1-1 / \gamma} \approx 0.6$, we have $\omega_{\mathrm{BV}} \approx 2 \times 10^{-9} \mathrm{yr}^{-1}$. The period is thus $3 \times 10^{9} \mathrm{yr}$.

Use the continuity, Euler, and energy equations

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\boldsymbol{\nabla} \cdot(\rho \boldsymbol{v})=0 \tag{4}
\end{equation*}
$$

and

$$
\begin{align*}
& \rho \frac{\partial \boldsymbol{v}}{\partial t}+\rho \boldsymbol{v} \cdot \boldsymbol{\nabla} \boldsymbol{v}+\boldsymbol{\nabla} p=0 \tag{5}\\
& \frac{\partial e}{\partial t}+\boldsymbol{v} \cdot \boldsymbol{\nabla} e+\frac{p}{\rho} \boldsymbol{\nabla} \cdot \boldsymbol{v}=0 \tag{6}
\end{align*}
$$

to derive the following equations

$$
\begin{align*}
\frac{\partial}{\partial t}\left(\rho v_{i}\right) & =-\frac{\partial}{\partial x_{j}}\left(\rho v_{i} v_{j}+\delta_{i j} p\right) \tag{7}\\
\frac{\partial}{\partial t}\left(\frac{1}{2} \rho \boldsymbol{v}^{2}+\rho e\right) & =-\frac{\partial}{\partial x_{j}}\left[v_{j}\left(\frac{1}{2} \rho \boldsymbol{v}^{2}+\rho e+p\right)\right] \tag{8}
\end{align*}
$$

Note that summation over double indices is assumed!

- Using the product rule, we have

$$
\begin{equation*}
\frac{\partial \rho u_{i}}{\partial t}=\rho \frac{\partial u_{i}}{\partial t}+u_{i} \frac{\partial \rho}{\partial t} \tag{9}
\end{equation*}
$$

Likewise

$$
\begin{equation*}
\frac{\partial}{\partial x_{j}}\left[\left(\rho u_{j}\right) u_{i}\right]=\left(\rho u_{j}\right) \frac{\partial}{\partial x_{j}} u_{i}+u_{i} \frac{\partial}{\partial x_{j}}\left(\rho u_{j}\right) \tag{10}
\end{equation*}
$$

With this we can write

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(\rho u_{i}\right)+\frac{\partial}{\partial x_{j}}\left(\rho u_{j} u_{i}\right)=\rho \frac{\mathrm{D} u_{i}}{\mathrm{D} t}+u_{i}\left(\frac{\partial \rho}{\partial t}+\frac{\partial}{\partial x_{j}}\left(\rho u_{j}\right)\right) \tag{11}
\end{equation*}
$$

where the last part vanishes owing to the continuity equation, so we just have

$$
\begin{equation*}
\rho \frac{\mathrm{D} u_{i}}{\mathrm{D} t}=\frac{\partial}{\partial t}\left(\rho u_{i}\right)+\frac{\partial}{\partial x_{j}}\left(\rho u_{j} u_{i}\right) \tag{12}
\end{equation*}
$$

Again, using the continuity equation, we can write the total derivative of e as

$$
\begin{equation*}
\rho \frac{\mathrm{D} e}{\mathrm{D} t}=\frac{\partial}{\partial t}(\rho e)+\frac{\partial}{\partial x_{j}}\left(\rho u_{j} e\right) \tag{13}
\end{equation*}
$$

Next, we compute $\rho \boldsymbol{u} \cdot \mathrm{D} \boldsymbol{u} / \mathrm{D} t$, i.e.,

$$
\begin{equation*}
\rho u_{i} \frac{\mathrm{D} u_{i}}{\mathrm{D} t}=\frac{\partial}{\partial t}\left(\frac{1}{2} \rho \boldsymbol{u}^{2}\right)+\frac{\partial}{\partial x_{j}}\left(\frac{1}{2} \rho u_{j} \boldsymbol{u}^{2}\right) \tag{14}
\end{equation*}
$$

This is just mathematics. Next we use the energy and momentum equations, here with some arbitrary flux \boldsymbol{F} added in the energy equation, i.e.,

$$
\begin{equation*}
\rho \frac{\mathrm{D} e}{\mathrm{D} t}=-p \boldsymbol{\nabla} \cdot \boldsymbol{u}-\boldsymbol{\nabla} \cdot \boldsymbol{F} \tag{15}
\end{equation*}
$$

as well as the momentum equation,

$$
\begin{equation*}
\rho u_{i} \frac{\mathrm{D} u_{i}}{\mathrm{D} t}=-\boldsymbol{u} \cdot \nabla p \tag{16}
\end{equation*}
$$

Add the two gives

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(\rho e+\frac{1}{2} \rho \boldsymbol{u}^{2}\right)+\frac{\partial}{\partial x_{j}}\left(\rho u_{j} e+\frac{1}{2} \rho u_{j} \boldsymbol{u}^{2}\right)=-\boldsymbol{\nabla} \cdot(p \boldsymbol{u}+\boldsymbol{F}) \tag{17}
\end{equation*}
$$

Consider the continuity and momentum equations for an isothermal atmosphere with constant speed of sound, c_{s}, and uniform gravity, g, in one dimension,

$$
\begin{gather*}
\frac{\partial \rho}{\partial t}+v_{z} \frac{\partial \rho}{\partial z}+\rho \frac{\partial v_{z}}{\partial z}=0 \tag{18}\\
\rho \frac{\partial v_{z}}{\partial t}+\rho v_{z} \frac{\partial v_{z}}{\partial z}+c_{s}^{2} \frac{\partial \rho}{\partial z}+\rho g=0 \tag{19}
\end{gather*}
$$

where ρ is density and v_{z} vertical velocity.

1. Show that the solution for hydrostatic equilibrium, $v_{z}=\overline{v_{z}}=0$, is $\rho=\bar{\rho}(z)=\rho_{0} e^{-z / H}$, where ρ_{0} is a constant and $H=c_{s}^{2} / g$ is the vertical scale height.
2. Write $\rho=\bar{\rho}+\rho^{\prime}$ and $v_{z}=v_{z}^{\prime}$ and linearise equations (18) and (19) with respect to ρ^{\prime} and v_{z}^{\prime}.
3. Assume that ρ^{\prime} and $v_{z}=v_{z}^{\prime}$ take the form

$$
\begin{align*}
\rho^{\prime}(z, t) & =\rho_{1} e^{i k z-i \omega t-z / 2 H} \tag{20}\\
v_{z}^{\prime}(z, t) & =w_{1} e^{i k z-i \omega t+z / 2 H} \tag{21}
\end{align*}
$$

and show that the linearised equations can be written as

$$
\left(\begin{array}{cc}
-i \omega & {\left[i k-(2 H)^{-1}\right]} \tag{22}\\
{\left[i k+(2 H)^{-1}\right] c_{s}^{2}} & -i \omega
\end{array}\right)\binom{\rho_{1}}{\rho_{0} w_{1}}=\binom{0}{0}
$$

4. Calculate the dispersion relation. Note: it will be convenient to use the abbreviation $\omega_{0}=c_{s} / 2 H$ for the acoustic cutoff frequency.
5. Give a qualitative plot of the dispersion relation.
6. Calculate the value of the period $2 \pi / \omega_{0}$ for the solar atmosphere, assuming $c_{s}=6 \mathrm{~km} / \mathrm{s}$ and $g=270 \mathrm{~ms}^{2}$.

- 1. In hydrostatic equipibrium we have

$$
c_{\mathrm{s}}^{2} \frac{\partial \ln \rho}{\partial z}=g
$$

so $\ln \rho / \rho_{0}=-g z / c_{\mathrm{s}}^{2}$ and therefore $\rho=\rho_{0} \exp \left(-g z / c_{\mathrm{s}}^{2}\right)$.
$2-4$. Need to write down...
5. A plot of the dispersion relation is shown in figure 1.
6. Around 5 minutes.

Figure 1: Dispersion relation.

