Astrophysical Fluid Dynamics: Solutions to Problem Sheet 2

Consider a one-dimensional shock. Use the ideal fluid equations in conservative form

$$
\begin{gathered}
\frac{\partial \rho}{\partial t}+\frac{\partial}{\partial x}(\rho v)=0 \\
\frac{\partial}{\partial t}(\rho v)+\frac{\partial}{\partial x}\left(\rho v^{2}+p\right)=0 \\
\frac{\partial}{\partial t}\left(\frac{1}{2} \rho v^{2}+\rho e\right)+\frac{\partial}{\partial x}\left[v\left(\frac{1}{2} \rho v^{2}+\rho e+p\right)\right]=0
\end{gathered}
$$

where e is the internal energy density per unit mass, and the other variables have their usual meaning. Assume a perfect gas with

$$
p=(\gamma-1) \rho e .
$$

1. Why is it useful to consider a frame of reference comoving with the shock? Show that in a frame comoving with the shock the following three quantities are conserved:

$$
\begin{gather*}
J=\rho v ; \tag{1}\\
I=\rho v^{2}+p ; \tag{2}\\
E=\frac{1}{2} v^{2}+\frac{\gamma}{\gamma-1} \frac{p}{\rho} . \tag{3}
\end{gather*}
$$

2. Eliminate first p / ρ and then ρ, to show that

$$
\frac{v_{2}}{v_{1}}=\frac{2 \gamma}{\gamma+1}\left(1+\frac{p_{1}}{\rho_{1} v_{1}^{2}}\right)-1
$$

where the subscripts 1 and 2 refer, respectively, to the upstream and downstream sides of the shock.
3. Calculate v_{2} for $v_{1}=5, \rho_{1}=p_{1}=1$ and $\gamma=5 / 3$.
4. Calculate ρ_{2} and p_{2}. Sketch the velocity and density profiles indicating the positions of the upstream and downstream sides.
5. State whether the normalised entropy,

$$
s=\frac{1}{\gamma} \ln p-\ln \rho
$$

is increased or decreased behind the shock. Calculate s_{1} and s_{2}.

- Answer

1. In a comoving frame of reference, the solution is statitionary, so we can seek solutions for which $\partial / \partial t=0$. This means that $\rho v=$ const, $\rho v^{2}+p=$ const, and

$$
v\left(\frac{1}{2} \rho v^{2}+\rho e+p\right)=\rho v\left(\frac{1}{2} v^{2}+e+\frac{p}{\rho}\right)=\text { const. }
$$

Since ρv itself is constant, the second terms in parenthesis must also be constant. Also, we can replace $e=(p / \rho) /(\gamma-1)$. Putting $e+p / \rho$ over the same denominator, we find $\gamma /(\gamma-1)$ times $e=p / \rho$, so we obtain Eq. (3) above. The constants J, I, and E are determined from the values of ρ, v, and p on the upstream side of the flow.
2. Solve (2) for p / ρ, so we get

$$
p / \rho=I / \rho-v^{2},
$$

so we have

$$
E=\frac{1}{2} v^{2}+\frac{\gamma}{\gamma-1}\left(\frac{I}{\rho}-v^{2}\right)
$$

and thus

$$
E=\frac{\gamma}{\gamma-1} \frac{I}{\rho}+\left(\frac{1}{2}-\frac{\gamma}{\gamma-1}\right) v^{2}
$$

Furthermore, $\rho v=J$ to eliminate ρ, so

$$
E=\frac{\gamma}{\gamma-1} \frac{I}{J} v+\left(\frac{1}{2}-\frac{\gamma}{\gamma-1}\right) v^{2}
$$

Multiply by $2(\gamma-1) /(\gamma+1)$, so

$$
v^{2}-\frac{2 \gamma}{\gamma+1} \frac{I}{J} v+2 \frac{\gamma-1}{\gamma+1} E=0
$$

For any quadratic equation, written as $0=\left(v-v_{1}\right)\left(v-v_{2}\right)=v^{2}-\left(v_{1}+v_{2}\right) v+v_{1} v_{2}$, with solutions v_{1} and v_{2}, we know that the middle term is $v_{1}+v_{2}$, so here we have

$$
v_{1}+v_{2}=\frac{2 \gamma}{\gamma+1} \frac{I}{J}
$$

Note also that from (1) and (2) we obtain $I / J v=1+p / \rho v^{2}$. Applied to the upstream we have $I / J v_{1}=1+p_{1} / \rho_{1} v_{1}^{2}$, so we find

$$
\frac{v_{2}}{v_{1}}=\frac{2 \gamma}{\gamma+1}\left(1+\frac{p_{1}}{\rho_{1} v_{1}^{2}}\right)-1
$$

Use the Pencil Code to solve nonlinear sound waves using as initial conditions

$$
\begin{gathered}
u=A \sin k x \\
\ln \rho=B \sin k x
\end{gathered}
$$

1. Change the amplitude factors for density and velocity in start.in to make the wave traveling forward or backward. Monitor the wave, e.g., in idl with .r pvid.
2. Increase the amplitude of a traveling wave solution to observe the development of a shock. Increase the viscosity to avoid wiggles. Check that mass and energy are conserved.
3. Change the order of the scheme (itorder $=2$ or 1), to find out the error in energy conservation. You might need to adjust the length of the time step by hand (set dt=1e-5 or something).
4. Use bigger resolutions and consider a Mach number of 10 , i.e., choose $A=B=10$. In that case, use iheatcond='chi-const' together with chi_t=1 and nu=1 for 512 . How well is total energy conserved and how does it change if you use 1024 mesh points?

Figure 1: Time evolution of $E_{\text {tot }}=E_{\mathrm{th}}+E_{\text {kin }}$.

