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ABSTRACT

ACCURATE SIMULATIONS OF
CONVECTION IN STELLAR ATMOSPHERES

By

Regner Trampedach

I present the ingredients for high precision, 3D hydrodynamical simulations of
convection in stellar atmospheres, as well as a number of applications. I have devel-
oped a new scheme for evaluating radiative transfer, an improved equation of state
and I have investigated a number of directions for improving the numerical stability
of the convection simulations.

The equation of state (EOS) used for the simulations, is updated by including
post-Holtzmark micro-field distributions and relativistic electron-degeneracy as pre-
viously published. I have further included quantum effects, higher-order Coulomb
interactions and improved treatment of extended particles. These processes (except
relativistic degeneracy) have a significant effect in the solar convection zone, and most
of them peak at a depth of only 10 Mm. I also include a range of astrophysically sig-
nificant molecules, besides Hy and the HJ -ion. This EOS will be used directly in the
convection simulations, providing the thermodynamic state of the plasma, and as a
foundation for a new calculation of opacities for stellar atmospheres and interiors.

A new scheme for evaluating radiative transfer in dynamic and multi-dimensional
stellar atmosphere calculations is developed. The idea being, that if carefully chosen,
very few wavelengths can reproduce the full radiative transfer solution. This method
is based on a calibration against a full solution to a 1D reference atmosphere, and
is therefore not useful for 1D stellar atmosphere modeling. The first tests of the
method are very promising, and reveals that the new method is an improvement over
the former opacity binning technique. The range of convective fluctuations is spanned
more accurately and not only the radiative heating, but also the first three angular
moments of the specific intensity, can be evaluated reliably. Work on implementing
the method in the convection-code, is in progress.

These developments will be employed in the future for a number of detailed
simulations of primary targets for the upcoming, space-based, astero-seismology mis-
sions, and will include o Cen A and B, nBoo, Procyon and g Hyi. Work on a 10 Mm
deep solar simulation was severely hampered by numerical instabilities, but investi-
gating the issue has revealed a number of potential solutions, that will be tested in
the near future. The work on individual stars will soon be super-seeded by an effort
to compute a grid of convection simulations in T,¢,log g and metallicity, [Fe/H], in
the spirit of present-day, grids of conventional atmosphere models.

Regner Trampedach, December 2, 2003.
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Chapter 1

Introduction

Understanding stars is a very multi-faceted endeavor Stars are basically self-gravitating]]
“Great Balls of Fire” (Lewis 1957) with their cores having temperatures and densities
high enough for nuclear fusion to take place, and supply the star with energy. The
stability of the star is provided by the pressure of the gas counter-acting the inward
force of gravity, establishing a hydro-static equilibrium.

This reveals that the equation of state (EOS), supplying the thermodynamical
relations between temperature, density and pressure, must be a key ingredient in or
model of a star. The energy travels out through the star, in one of three ways; either
by conduction, radiation or convection. Simple conduction is only important for very
dense objects, where the gas begins to act as a metal. This happens for, e.g., neutron
stars and white dwarfs, but also in the centers gaseous planets. Radiative transfer of
energy, takes place in all stars and is also a key ingredient for any stellar model. The
opaqueness, or opacity, of the gas determines the ease with which light can travel

through the star. With a higher opacity, the energy cannot escape as freely and the
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interior will heat up, til the energy that escapes matches the energy that is produced
inside, setting up a radiative equilibrium. The opacity is composed of a number
of processes between light and matter. Cross-sections for the various processes are
evaluated from detailed knowledge of the quantum-mechanical wave-functions of all
possible states of the implicated particles. Calculation of these cross-sections is a
field of research in itself, and the vast calculations involved, have only been possible
within the last two decades with the progress of computing-power.

To calculate the opacity, relevant for a stellar model, from the cross-sections
of individual processes, we need to multiply by the number-densities of the involved
particles, and add-up all the processes. The number-densities of the various particles,
and the population of the energy-levels of each kind of particle, is also a result of the
equation of state, which therefore has a dual role.

The equation of state is likewise a major atomic physics project, as the interac-
tions between the particles constituting the gas, has to be accounted for. Although
the gas is electrically neutral on a whole, most of the particles will be charged, being
ionized due to the temperatures. The particles therefore feel each others presence
by their charges, especially at higher densities where close encounters will be more
frequent. In really close encounters quantum effects will have an effect; The par-
ticles will no longer be point-like, but “smeared out” according to the Heisenberg
uncertainty principle, and encounters between identical particles will be governed by
Pauli’s exclusion principle. All of these effect (and many more) has an effect both
on the thermodynamics of the gas, as well as on the ionization-balances and the

population of energy-levels, important for opacity calculations.
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The last mode of energy-transport is convection, which consists of macroscopic
bubbles or flows of warmer than average gas, moving out towards lower temperatures,
shedding its excess heat and sink down to higher temperatures and be recycled. If
the opacity is very high and the energy has a hard time escaping via radiation, the
gas will become instable towards convection and this will take over the transport of
energy.

Convection is inherently a dynamic process, involving a lot of non-linear phe-
nomena. As such, it is not amenable to simplified theories, and a good and relatively
simple description of convection suitable for stellar modeling has eluded us. The
so-called mixing-length-formulation of convection is simple and very suitable for use
in stellar structure codes. It is, however, fraught by it’s assumptions breaking down
where a theory of convection is most needed, and by free parameters that have to be
calibrated from outside the theory.

For envelope convection, i.e., where the convection zone reaches all the way out
the the surface, but not necessarily all the way in to the center, further complications
arise at the surface. Here radiative transport begins to become important again,
as the distance to the surface (where light can escape) becomes comparable with
the mean-free-path of photons. This region is called the stellar atmosphere, the
modeling of which, forms its own field of research. As the gas becomes optically thin,
and photons can begin to escape freely, evaluation of radiative transfer becomes much
more complicated. The radiative transport of energy can no longer be described by
a single opacity, but have to be evaluated at upwards of 10* wavelengths. Combine

this transition between optically thick and optically thin, with the transition between
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convective and radiative transport of energy, and you have a very intractable problem.

The best way of studying this region, is through three-dimensional (3d) hydro-
dynamical simulations, for which a very small number of approximations has to be
introduced. They are based on the same equation of state and opacities also used
in conventional (e.g., 1D) stellar models, but the hydrodynamics of the problem is
solved explicitly, based on the fundamental laws of conservation of mass, momentum
and energy.

Such simulations can be used for the same purposes as conventional stellar at-
mosphere model, e.g., interpretation of observations including abundance analysis,
and as upper boundary conditions for stellar structure and evolution models.

The above sketch of stellar structure, hopefully gives an impression of the inter-
relatedness of all the phenomena participating in making a star, a star, and serves as
the motivation behind the present dissertation.

In chapter 2 the hydrodynamical convection simulations are introduced, and a
stability problem is discussed. In chapter 3 I discuss the atomic physics entering both
the convection simulations and the stellar structure models, presenting the current
state of astrophysical equations of state in Sect. 3.1.1 and 3.1.1, and proposing some
improvements to one particular EOS-project, in Sect. 3.2.5. In Sect. 7?7 I give a
short overview of recent developments in opacity calculations, and expectations for
the near future.

Chapter 4 deals with the evaluation of radiative transfer in the convection sim-
ulations, and how to bring the problem down to tractable dimensions, and yet only

loose a little in accuracy compared to solutions including 2 10° wavelenght-points.
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Chapter 5 presents a few applications of convection simulations in conjunction
with stellar structure calculations. In Sect. 5 the convection simulations are used as
boundary conditions for stellar structure models, which is used in Sect. 5.1.10 for a
calibration of the main parameter, «, of the mixing-length formulation.

A summary and an outlook on the future, is offered in chapter 6, which ends

this dissertation.



Chapter 2

Hydrodynamics

The code for the convection simulations used in this work, was written by Nordlund
& Stein (1990) and is further described in (Nordlund 1982; Stein 1989).

The simulations are of compressible convection, subjected to realistic radiative
transfer including the effect of line-blanketing. The boundaries are transmitting, with
the entropy of the in-flow being adjusted (a constant in time), so as to result in the
desired flux for the given simulation.

A state of the art equation of state, presented in Sect. 3.1.1, is used, together
with equally high quality opacities.

The properties and morphology of the convection in the simulations, is described

by, e.g., (Nordlund & Stein 1991) and Stein & Nordlund (1989).
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2.1 The Navier-Stokes Equations

The conservative or divergence form of the Navier-Stokes equations is

dg

b g . — 1
2+ Vo (ow)=0 ()
dou

— + V- (ouu —0o) = f, (2)
ot

00¢c+o

%;t + V- (ocpotu —ou+q)=f.-u, (3)

where p is the density, €ioy = € + %u2 is the total specific internal energy, w is the
velocity field, g is the heat-flux vector and f. is the external force per unit volume.

The stress-tensor, o, can be written

oc=-PI+T, (4)

where P, is the gas pressure, I is the unity tensor with components I;; = ¢;; and T
is the viscous stress tensor with components T;;.

Expanding Egs. (1)—(3), eliminating occurrences of Eq. (1) and substituting Eq.
(4), we arrive at the following three equations: the equation of mass conservation,

often referred to as the continuity equation,

do
5= "u Ve—oVou, (5)
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the equation of momentum conservation, also called the equation of motion,

B
ga—?:—gu-Vu—l-fe—VPg—l-VT, (6)

and the equation of energy conservation (with E = ge),

OF

o =V (uE)+(T-P)V-u+V-q. (7)

Because the densities and pressures change by 4-5 orders of magnitude from the
top to the bottom of the simulations, it is advantageous to precondition the equations
for use in the highly stratified case of stellar atmospheres. This is done by rewriting

(5) - (7) in terms of logarithmic density, Inp, velocity, u, and internal energy per unit

mass, &:
%:-u-vmg—v-u, (8)
%_‘Z: _u.vwg_%vaJr%VT 9)
and
%:_u.vg+$vu+év-q, (10)

where, for the external force, we use fe/0 =g, the gravitational acceleration, which
is assumed to be constant with depth. These equations are much more well behaved
than Eqgs. (5) - (7) and the various derivatives are also smoother.

As the gradient of a flux is the time-derivative of the quantity transported by

the flux, we define Q,aqg = 071V - @, where Q.q is the specific (radiative) heating.
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2.2 Diffusion

In the energy equation the term in the viscous stress-tensor, T is the dissipation
term, which we will re-write in a manner similar to Qraq: Qvisc = 0 TV - u.
The T term in the momentum equation, is the (velocity-) diffusion. We will

re-write this in component form, to

8ui> [ QUZ] 1 « 0T
= - 0 =-) — & (11)
( ot | ua ; 0z Vi 0z 0 ; 0z
aui
T, = Vi, (12)

Comparing Eq. (9) and (12) we see that the diffusion coefficients, v;, have dimensions
[L?/T].

With the dissipation tensor, T, so defined, the dissipation is

T 1 ou; 0u; ou; 2
isc — —V U= ~— ,Tz = = . 1
QV Y Vo 0 ; ’ Ox] Z g ij Oxj Z (83:] ) (13)

2%

2.2.1 Second Order Diffusion

Similar to Eq. 11, the second-order diffusion for a per-unit-mass quantity f, adds a

contribution of the form

The summation is over directions, j = z, y and z.
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If the order of the numerical differencing is higher than 1, the derivatives will
be oblivious to a two-zone oscillations, as depicted in Fig. 1. It can easily be shown
that the derivative of a smooth interpolating function will be zero at the peaks of a
two-zone oscillation.

For higher than first-order differencing schemes, it is therefore necessary to ex-

pand Eq. (14) into
of 2f (v  Olno\ Of
2. (2 Rl [ 1
ot T ; [”29 a2 * (ax,- T2, ) o (15)

We are using a first-order differencing scheme, but the expansion will nonetheless
prove useful in the subsequent discussion.
The linear finite difference version of the second derivative is
2 AQf . 2 -1 1 . . .
(Azj)” | Rz | () = A°fi = Af(i+3) = Af(1—3) = fi=1) =2f () + f(i+1) . (16)
If the quantity is a pure oscillatory signal with amplitude, §, and a wavelength
of two grid-points (a so-called two-zone oscillation), as shown in Fig. 1, then we have
fic1 = fix1 = —f; = 06 and consequently

Af;  Af;
ij N A.Tj ’

(17)

for a uniform grid. Adding to f, a term proportional to A?f;/Ax;, will therefore
dampen a two-zone oscillation.

In the horizontal directions (z and y) the grid is uniform and therefore the
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f

6_

1—1 i+1

Fig. 1. Schematic of a pure two-zone oscillation. The thin curve is an example of a
smooth interpolating function, illustrating the zero derivatives.

first term in the parenthesis multiplying the first derivative in Eq. (15) is zero. The
horizontal density derivatives are also rather small, leaving the second derivative term
the dominant one.

Similar to the derivation of Eq. (17), we find that the first-order first-derivative
is twice the function, phase-shifted by half a grid-point. The first-derivative con-
tribution to the second-order diffusion is therefore assured to be smaller than the

second-derivative contribution by at least a factor of two.

2.2.2 Fourth Order Diffusion

In order to minimize unduly damping of physical features, we can go to higher order
schemes, which will have a higher ratio of two-zone-oscillations to smoother features.

Fourth-order diffusion adds a contribution of the form

af 1 82 8 f
e 2N p0—L 1
ot g;azg l”‘“" 022 (18)

the sign of which will be justified below.
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The corresponding dissipation is

82’U,Z' 2
Qvisc,4 = Z 127 <8—$?> . (19)

1]

The linear, finite differences version of the third- and fourth-derivatives on a
uniform grid, are
s [AY] 3p0; 1 20 2 p(s
(Ax)" | 5| (0—3) = Af(i—35)=ATf() A f(i—1) (20)

= —fi-2+3f(~1) =3+ [(+1)  (21)
and

(Az)’ [—] () = AF(G) = ATF(i+1)— AR~ ) (22)

= f(i—=2)—-4f(i—-1)+6f@E)—4fGE+1)+ f(E+2). (23)

In the case of a pure two-zone oscillation, we therefore have that A%f; = 8f; and
A*f; = 16f;, or in general AN f; = 2V f;. This is true for the linear difference scheme,
and for third-order differences, it can be shown that the constant is 127/2.

To destroy a two-zone oscillation with the pure fourth-order term, we there-
fore need to subtract a term proportional to A*f;. Using a linear difference scheme,
two-zone oscillation will therefore be four times more prominent in forth-order deriva-
tives than in second order derivatives. But what about physical features like sharp

gradients?
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Fig. 2. Schematic of the response to a step function (solid line with diamonds). The
dashed lined shows the corresponding linear second order difference, and the solid
line is the linear fourth order difference.

Fig. 2 shows the response of second- and fourth-order derivatives to a step func-
tion — the ultimate in large gradients. From the figure, we see how second-order diffu-
sion simply smooth out the large gradient, spreading it over more zones. Fourth-order
diffusion does the same, and more efficiently, but it also introduces some extra peaks
on either side of the gradient. These extra peaks, coupled with the (global) cubic-
spline interpolations and differentiations used elsewhere in the simulations, quickly
and efficiently excite two-zone oscillations. This phenomenon is called ringing, and
it is excited by sharp edges, as well as localized peaks.

We want to keep the gradients as large as possible, and capture as much detail
as possible, with a finite resolution of the simulations. We therefore want a large two-
zone-oscillation to step-function response ratio. For linear second-order derivatives,
this ratio is 4/1, and for fourth-order derivatives it is 16/3=5.3. So we do gain a
little going from second- to fourth-order, but at the expense of extra excitation of

two-zone oscillations.
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2.2.3 Quenched Diffusion

One way around this problem is the so-called quenched diffusion, introduced by
Robert F. Stein and Ake Nordlund in the early ‘90s (private communications). The
quenching consists of using an expression for v4; that involves a (signed) first-order
difference, scaled with the ratio of (unsigned) third-order differences to (unsigned)

first-order differences,

Asf . Af max3\A3f|

= 24
Az;  Az; maxz|Af|’ (24)

centered on 7 — % The maxs-operator takes the maximum value in a three-point

neighborhood of 4, i.e. i—1,4,i+ 1. The third-order difference is defined by Eq. (20).
By scaling the first-order difference in this way one obtains a diffusive flux that has
the sign of the first-order difference, but the order of magnitude of the third-order
difference. In smooth parts of the solution the diffusive flux will thus be quenched
(hence the denomination), and the effect of the diffusion operator will be of similar
magnitude as that of a fourth-order diffusion operator. In steep parts of the solution,
on the other hand, the ratio of the third- to first-order difference will be of the order
unity or larger, and the diffusion will be similar to normal second-order diffusion.

The diffusion contributions are combined into

_ 10 of ,  Asf
=t o (il 2] (25)

where the first part is a second-order diffusion that is active mainly in shocks. The

second part is qualitatively similar to a fourth-order diffusion, but has the advantage



CHAPTER 2. HYDRODYNAMICS 15

that sharp edges and localized peaks do not give rise to the ringing that tends to de-
velop with a normal fourth-order operator. In the combined second- and fourth-order
diffusion, enough second-order diffusion must be present to counteract the tendency
for ringing from the fourth-order operator. Since this tendency is not present when
(25) is used, one can remove the second-order diffusion altogether, except in shocks,
where significant local diffusion is always needed.

With the quenched diffusion, only the shock capturing as term is kept in the
pure second-order part of the diffusion, and all three terms: advection-, shock- and
sound-wave-terms, are included in the quenched part (See Sect. 2.2.4).

The dissipation that corresponds to (25) is

Quisc = Z [% <V2j% + V4jA3ui>] . (26)

ij al'j 83?]'

The diffusion at the top and the bottom are set to zero in both diffusion schemes
to avoid boundary effects. All of the non-local operators take advantage of the
periodic properties in the horizontal directions and are skewed at the top and bottom
boundary.

The quenched diffusion works very well, as long as the two-zone oscillations in
the first derivative is larger than the broader features in the first derivative — that is,
when the two-zone oscillations are centered around zero. Otherwise it fails to pick-up
the two-zone oscillations. The latter is often the case deeper in the simulations, and
was of less concern for the shallow simulations pursued so far. During work on a

10 Mm deep solar simulation, this proved detrimental. The symptoms had also been
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noticed higher in the atmosphere of a number of different simulations, introducing

noise in the radiative transfer calculations and two-zone oscillations in temperature.

2.2.4 A Gallery of Diffusion Coefficients

The various forms of the diffusion coeflicients all contain combinations of three terms

with the following motivation: The

a1 -term is proportional to the fluid velocity to prevent ringing at sharp changes

in advected quantities.

ay -term is is proportional to a finite difference velocity convergence (when posi-

tive), and is necessary to prevent excessive steepening of shocks.

az -term is proportional to the sound speed, and is necessary to stabilize sound

waves and weak shocks. Also needed to stabilize 2-zone oscillations.

The Original Mixed 2+44-Order Version

Az

vaj = (ar|ug| + asAfuy) 5 (27)
where the velocity convergence is defined as
k/2
Af(uj) = 3 [ujio1— ;] >0 (28)
i=1—k/2

If the fluid in two adjacent volume-elements are approaching, A; (u;) is equal to their

relative velocity, in k£ volume-elements around the two.
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The fourth-order diffusion coefficient is

A.Tj

vaj = (daafuy + ases) o5 (29)
where ¢4 is the adiabatic sound-speed.
The Original Form used with Quenched Diffusion
We use a diffusion suppression factor
fo=M1+(o/e)]™" . (30)
The second-order diffusion coefficient is
Voj = %Mfg AZ(%’) ) (31)
and the fourth-order diffusion coefficient is
vy = % [al\uj\ + asf, AF (uj) + agcs] : (32)

2.3 Alternative solutions

Neither of the two diffusion-schemes outlined above, the second plus fourth order
diffusion, or the quenched diffusion, are optimal for the convection simulations. Two-

zone oscillations are excited by the cubic-spline interpolation employed, and these two
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diffusion schemes do not dampen them efficiently without also smoothing physical
features. We need another scheme for either dampening or avoiding these two-zone

oscillations all together.

2.3.1 Subtracting a Smooth Average

One straight forward solution to the problem, is simply to subtract out the physical

variation, to leave the undesired two-zone oscillations exposed:

i+ N
fi=fi— > wifi, (33)

j=i—N

where the weights w; define the functional form of the averaging procedure and
2N +1 is the number of points involved in the averaging. We have chosen a Gaussian

averaging kernel

 ep(=fo))
1= SN e (—(/o)) (39

where o is the width of the Gaussian and the denominator takes care of the nor-
malization. Using a full-width-half-maximum of W = 306v/In2 of three points, has
proven optimal for getting a large signal from the two-zone oscillations. The factor
of three in the expression for W stems from the counting of grid points. Normally
there would be factor of two to result in the width and not just the position, +x, of
half-maximum. In the discrete case, however, we also have to count the point in the
middle.

In choosing N there is obviously a trade-off between the computational expense
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and the “smoothness” of the average. Rather surprisingly a three point average is
very close to a five point average, and a seven point average is indistinguishable from
the five point average. These are the results for real case scenarios, simply going
through a snapshot of a simulation in both horizontal and vertical directions, and
compare f’' for 2N +1 =3, 5 and 7.

Using W = 3 and N =1 therefore results in the weights w = [£, 3, 1], and

fir= —ifi—1 + %fz’ - ifz’+1 ; (35)

which has first order differences

Af'i—3) = fi)-f@E-1)

From Eq. 20, we recognize this as the third order difference of f. The procedure is
commutative, so whether subtracting the Gaussian average before or after the dif-
ferencing, gives the same result. By subtracting out a Gaussian average, we merely
change the first order differences into third order differences, immediately bringing
us back to the problems of Sect. 18. The extra peaks introduced around steep gra-
dients (See Fig. 2), do not depend on the choice of N. This idea has therefore been

abandoned.
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2.3.2 Monotonic interpolation schemes

In Fig. 3 we show how a cubic-spline interpolation across a step-function, generates
oscillations in the derivatives on either sides of the step. A cubic spline, is a series of
piece-wise cubic polynomia, connected by the requirement that the second derivatives
be continous (de Boor 1978). We see from Fig. 3 that the interpolating function is
not monotonic between grid-points, and that this is the reason for the excitation of

two-zone oscillations around sharp edges.

1.2
1.0

0.8 -
0.6 -
0.4
0.2 1

0.0 <=

-0.2

Fig. 3. Cubic-spline interpolation (dashed line) across a step-function (diamonds).
The solid line shows a cubic interpolation where the derivatives have been forced to
be zero (not a spline).

There a number of schemes for calculating monotonic interpolating functions,
of which some are local and compact and others are global in nature. The principle

of the requirement of monotonicity, is illustrated by the solid curve in Fig. 3. This

is a piece-wise cubic interpolation where the derivatives on either side of the step,



CHAPTER 2. HYDRODYNAMICS 21

has been set to zero. This results in a visually much more pleasing behaviour. This
is admittedly a rather subjective criterium for the quality of an interpolant, but
a valuable first test. The deciding test is how the scheme fares when applied to
advection-, shock-tube- and wave-tests with analytical solutions.

There are a great number of monotonic scheme interpolation schemes on the
market (e.g., Fritsch & Butland 1984, and references therein). All of these schemes
would qualitatively result in the same interpolating function in the case shown in Fig.
3, but behave differently when presented with, e.g., triangular functions, Gaussians,
parabolas, multiple step functions and similarely challenging tests.

One monotonic scheme, which is rather pleasing for its simplicity, uses piece-wise
cubic-splines, disconnecting two parts of the spline where the solution is not mono-
tonic between grid-points. This obviously raises the question about the boundary
conditions on the two parts of the spline. The solid curve in Fig. 3 is an example of
this scheme.

The total variation diminishing (TVD) schemes, as introduced by Harten (1983),

use a measure of the overall amount of oscillation of a quantity u

TVu(t)] = ; i1 () — wi(F)] (37)

and require this quantity not to increase with time, ¢. A good presentation of TVD
was recently written by Trac & Pen (2003).
In general, the order of the interpolation goes down across a discontinuity, but

this is a small price to pay for increased stability and a more physical solution in the



CHAPTER 2. HYDRODYNAMICS 22

smoother parts of the simulation.

There are several promising ways of solving the problems of instabilities in the
convection simulations, and future investigations of these will reveal which is the best
solution to the problem at hand.

In parallel with this work, a new version of the code, specifically optimized for
massive parallelization, is being written by Nordlund, Stein, Carlsson & Hansted
(private communications). This new version employs a staggered grid, with energy
and density defined at cell-centers and velocities on cell-boundaries, which will most
likely be stable against two-zone oscillations. Other problems are introduced with
this formulation, though, in particular regarding the stabillity of the upper and lower

boundaries of the simulation domain.
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Input Physics

The atomic physics underlying a model of an astrophysical phenomena is decisive for
the quality of that model.

In Sect. 3.1.1 I present an analysis and comparison between two of the leading
equation of state projects; the so-called Mihalas-Hummer-Déappen (MHD) equation
of state (Hummer & Mihalas 1988; Mihalas et al. 1988; Déappen et al. 1988) and the
OPAL equation of state pursued at Lawrence Livermore National Laboratory (Rogers
1986; Iglesias & Rogers 1995; Rogers et al. 1996, and references therein).

An artificial term, ¥, in the MHD EOS that ensures pressure ionization in cold
and dense plasmas, has been suspected of contaminating this EOS under solar con-
ditions, and maybe even be needed for pressure ionization in the Sun. In Sect. 3.1.1
this term is examined an found “not guilty” of the above charges. It is, however,
still suspicious and indicates a more fundamental flaw in the employed picture of
interactions between neutral particles.

The close scrutiny of the MHD EOS in Sects. 3.1.1 and 3.1.1 has paved the

23
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way for the improvements presented in Sect. 3.2.5 aimed at broadening the range
of applicability and increasing the accuracy of the MHD EOS. This work is equally
aimed at the convection simulations and the general stellar structure and evolution
problem. All of the improvements are important for the latter, but for the convection
simulations the addition of many more molecules will have the largest effect.

The improved MHD EOS, presented in Sect. 3.2.5 will be used as basis for a new
opacity calculation, and in Sect. 3.4 I give a short review of recent progress in the

calculation of absorption coefficients.

3.1 Equation of State

The equation of state is essential in most astrophysical context, both for the thermo-
dynamic relations provided by it, and as the foundation for opacity calculations.
Exploring the differences the main EOS projects, I found that the most contested
part of the solar EOS, the most uncertain and the most extreme plasma conditions,
occur very close to the surface—less than 10 Mm below the photosphere. The deep
10 Mm solar convection simulation will get the whole impact of the improvements
presented in this chapter, but even the shallow, 3 Mm simulations will be affected
to an extend that can be measured by helioseismology (Christensen-Dalsgaard et al.

1988; Basu & Christensen-Dalsgaard 1997; Di Mauro et al. 2002).
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3.1.1 “A Synoptic Comparison of the MHD and the OPAL

Equations of State”

by

Trampedach, R., Dappen, W. & Baturin, V. A., 2003, ApJ, (submitted)

The two favorite equations of state of the astrophysical community, are the OPAL
equation of state, pursued at Lawrence Livermore National Laboratory (Rogers 1986;
Rogers et al. 1996), and the MHD equation of state (Hummer & Mihalas 1988;
Mihalas et al. 1988; Déppen et al. 1988), which is part of the international Opacity
Project (OP), described in the two volumes (Seaton 1995) and (Berrington 1997).

The present paper, (Trampedach et al. 2004c), compares these two equations of
state to set the stage for further developing the MHD EOS in Sect. 3.2.5 (Trampedach

& Déppen 2004a).
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A synoptic comparison of the MHD and the OPAL
equations of state

R. Trampedach'
Department of Physics and Astronomy. Michigan State University, East Lansing, MI 48824, USA
trampedach@pa.msu.edu

W. Dippen!
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and
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vab@sai.msu.su

ABSTRACT

A detailed comparison is carried out between two popular equations of state (EOS), the

Mihalas-Hummer-Déppen (MHD) and the OPAL equations of state, which have found widespread
use in solar and stellar modeling during the past two decades. They are parts of two independent
efforts to recalculate stellar opacities; the international Opacity Project (OP) and the Livermore-
basd OPAL project. We examine the difference between the two equations of state in a broad
sense, over the whole applicable p — T range, and for three different chemical mixtures. Such a
global comparison highlights both their differences and their similarities.

We find that omitting a questionable hard-sphere correction, 7, to the Coulomb interaction,
greatly improves the agreement between the MHD and OPAL EOS. We also find signs of differ-
ences that could stem from quantum effects not yet included in the MHD EQOS, and differences
in the ionization zones that are probably caused by differences in the micro-field distributions
employed. Our analysis do not only give a clearer perception of the limitations of each equation
of state for astrophysical applications, but also serve as guidance for future work on the physical
issues behind the differences. The outcome should be an improvement of both equations of state.

Subject headings: Atomic processes—Equation of state—Plasmas—Sun: interior

1. Introduction

Stellar modeling, and in particular helio- and
asteroseismology, require an equation of state and
corresponding thermodynamic quantities that are
smooth, consistent, valid over a large range of tem-

ITeoretisk Astrofysik Center, Danmarks Grundforsk-
ningsfond, Institut for Fysik og Astronomi, Aarhus Uni-
versitet, DK-8000 Aarhus C, Denmark

peratures and densities, and that incorporate the
most important chemical elements of astrophysical
relevance Christensen-Dalsgaard & Déppen (for a
review see 1992).

In astrophysics, the equation of state plays two
basic roles. On the one hand, it supplies the ther-
modynamics neccessary for describing gaseous ob-
jects such as stars and gas-planets. On the other
hand it also provides the foundation for opac-
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ity calculations, in the form of ionization equi-
libria and level populations. Thanks to helioseis-
mology, the Sun has broadened this perspective.
The remarkable precision by which we have now
peered into the Sun, puts strong demands on any
physics going into a solar model. This, to such
a degree, that we can turn around the argument
and use the Sun as an astrophysical laboratory to
study Coulomb systems under conditions not yet
achieved on Earth.

Although the solar plasma is only slightly non-
ideal, the tight observational constraints prompts
the use of methods normally reserved for studies
of more strongly-coupled plasmas. In this way the
solar experiment addresses a much broader range
of plasmas, e.g., Jovian planets, brown dwarfs and
low-mass stars, as well as white dwarfs (Cauble
et al. 1998).

The two equation-of-state efforts we compare
in this paper are associated with the two leading
opacity calculations of the eighties and nineties.
The MHD EOS (Hummer & Mihalas 1988; Mi-
halas et al. 1988; Dippen et al. 1988) was devel-
oped for the international Opacity Project (OP)
described and summarized in the two volumes
by Seaton (1995) and Berrington (1997), and the
OPAL EOS is the equation of state underlying the
OPAL opacity project at Livermore (Rogers 1986;
Rogers et al. 1996, and references therein).

Another highly successful EOS address the ex-
treme conditions in low-mass stars and giant plan-
ets and include the transition to the fluid phase
(Saumon & Chabrier 1989; Saumon et al. 1995).
In a trade-off between accuracy and range of va-
lidity, this EOS has so far only been computed for
H/He-mixtures, rendering it less suitable for he-
lioseismic investigations. Comparisons with this
EOS should, however, be an essential part of ef-
forts to further develop precise stellar EOS.

The OP and OPAL projects are based on two
rather different philosophies; the chemical picture
and the physical picture, respectively, as detailed
in Sect. 2.1.1 and 2.1.2. The effect of Coulomb
interactions is reviewed in Sect. 2.2, and a cor-
rection, 7, to these, that seems to account for a
substantial part of the differences between the two
formalisms, is explored in Sect. 2.2.2.

Detailed comparisons between the MHD and
OPAL EOS have proved very useful for discov-
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ering the importance and consequences of several
physical effects (Dappen et al. 1990; Dédppen 1992,
1996). In Sect. 3, we extend these comparisons to
a systematic search in the entire T—p plane, and
in Sect. 4 we take a closer look at the EOS under
solar circumstances.

The consensus of the last few years has been
that in helioseismic comparisons the OPAL EOS is
closer to the Sun than the MHD EOS (Christensen-
Dalsgaard et al. 1996) although both are remark-
ably better than earlier theories. However, recent
helioseismic inversions for the adiabatic exponent
71 = (0lnp/d1n g)aq (Basu et al. 1999; Di Mauro
et al. 2002) shows that the MHD EOS fares better
than OPAL in the upper 7% of the sun includ-
ing the ionization zones of hydrogen and helium.
These new developments again highlights the im-
portance of competing equation-of-state efforts
and systematic comparisons such as the present.

2. Beyond Ideal Plasmas

The simplest model of a plasma is a non-
ionizing mixture of nuclei and electrons, obeying
the classical perfect gas law. However, an ideal
gas can be more general than a perfect gas. Ideal
only refers to the interactions between particles in
the gas. The interactions in any gas redistribute
energy and momentum between the particles, giv-
ing rise to statistical equilibrium. In an ideal gas
these interactions do not contribute to the energy
of the gas, implying that they are point interac-
tions. Since the Coulomb potential is not a 4-
function, real plasmas cannot be ideal.

Deviations from the perfect gas law, such as ion-
ization, internal degrees of freedom (excited states,
spin), radiation and Fermi-Dirac statistics of elec-
trons are all in the ideal regime. And the parti-
cles forming the gas can be classical or quantum,
material or photonic; as long as their interactions
have no range, the gas is still ideal. All such ideal
effects can be calculated as exactly as desired.

The ideal picture, is however, not adequate even
for the solar case. At the solar center, an ideal-
gas calculation leaves about 20% of the gas un-
ionized. On the other hand, the mere size of the
neutral (unperturbed) atoms, do not permit more
than 7% of the hydrogen to be unionized at these
densities, provided the atoms stay in the ground
state and are closely packed. At the temperature
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at the center of the Sun neither of these assump-
tions can possibly hold and the mere introduction
of size and packed immediately imply interactions
between the constituents of the plasma and it is
therefore no longer ideal.

In a plasma of charges, Z, with average inter-
particle distance (r), we define the coupling pa-
rameter, ', as the ratio of average potential bind-
ing energy over mean kinetic energy kgT

Z2e2
= ksT(r)

. 1)

Plasmas with ' > 1 are strongly coupled, e.g. the
interior of white dwarfs, where coupling can be-
come so strong as to force crystallization. Those
with T’ < 1 are weakly coupled, as in stars more
massive than slightly sub-solar.

As one can suspect, I' is the dimensionless cou-
pling parameter according to which one can clas-
sify theories. Weakly-coupled plasmas lend to sys-
tematic perturbative ideas (e.g. in powers of T),
strongly coupled plasma need more creative treat-
ments. Improvements in the equation of state be-
yond the model of a mixture of ideal gases are dif-
ficult, both for conceptual and technical reasons.

2.1. Chemical and Physical Picture

The present comparison is not merely between
two EOS-projects, but also between two funda-
mentally different approaches to the problem. The
chemical picture is named for its foundation in the
notion of a chemical equilibrium between a set of
pre-defined molecules, atoms and ions.

In the physical picture only the “elementary”
particles of the problem are assumed from the out-
set — that is, nuclei and electrons. Composite
particles appear from the formulation.

2.1.1. Chemical Picture: MHD EOS

Most realistic equations of state that have ap-
peared in the last 30 years belong to the chemical
picture and are based on the free-energy minimiza-
tion method. This method uses approximate sta-
tistical mechanical models (for example the non-
relativistic electron gas, Debye-Hiickel theory for
ionic species, hard-core atoms to simulate pressure
ionization via configurational terms, quantum me-
chanical models of atoms in perturbed fields, etc.).
From these models a macroscopic free energy is
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constructed as a function of temperature 7', vol-
ume V| and the particle numbers Ni,..., Ny, of
the m components of the plasma. At given T and
V, this free energy is minimized subject to the
stoichiometric constraints. The solution of this
minimum problem then gives both the equilibrium
concentrations and, if inserted in the free energy
and its derivatives, the equation of state and the
thermodynamic quantities.

Obviously, this procedure automatically guar-
antees thermodynamic consistency. As an exam-
ple, when the Coulomb pressure correction (see
Sect. 2.2) to the ideal-gas contribution originates
from the free energy (and not merely as a correc-
tion to the pressure), there will be corresponding
terms in all the other thermodynamic variables, as
well as changes to the equilibrium concentrations.
One major advantage of using the chemical pic-
ture lies in the possibility to model complicated
plasmas, and to obtain numerically smooth and
consistent thermodynamical quantities.

In the chemical picture, perturbed atoms must
be introduced on a more-or-less ad-hoc basis to
avoid the familiar divergence of internal partition
functions (see e.g. Ebeling et al. 1976). In other
words, the approximation of unperturbed atoms
precludes the application of standard statistical
mechanics, i.e. the attribution of a Boltzmann-
factor to each atomic state. The conventional rem-
edy is to modify the atomic states, e.g. by cutting
off the highly excited states in function of density
and temperature.

The MHD equation-of-state is based on an oc-
cupation probability formalism (Hummer & Mi-
halas 1988), where the internal partition functions
Znt of species s are weighted sums

. E;
28 =Yg (<n) . @

Here, is label state i of species s, and Fj, is the
energy and g;, the statistical weight of that state.
The coefficients w;s are the occupation probabil-
ities that take into account charged and neutral
surrounding particles. In physical terms, w;; gives
the fraction of all particles of species s that can ex-
ist in state ¢ with an electron bound to the atom
or ion, and 1 — w;s gives the fraction of those
that are so heavily perturbed by nearby neighbors
that their states are effectively destroyed. Per-
turbations by neutral particles are based on an
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excluded-volume treatment and perturbations by
charges are calculated from a fit to a quantum-
mechanical Stark-ionization theory (for details see
Hummer & Mihalas 1988).

The Opacity Project and, with it, the MHD
equation-of-state restricts itself to the case of stel-
lar envelopes, where density is sufficiently low that
the concept of atoms makes sense. This was the
main justification for realizing the Opacity-Project
in the chemical picture and base it on the Mihalas,
Hummer, Dippen equation of state (Hummer &
Mihalas 1988; Mihalas et al. 1988; Dippen et al.
1988, hereinafter MHD). The Opacity Project is
mainly an effort to compute accurate atomic data,
and to use these in opacity calculations. Plasma
effects on occupation numbers are of secondary in-
terest.

2.1.2. Physical Picture: OPAL EOS

The chemical pictures heuristic separation of
the atomic-physics from the statistical mechan-
ics is avoided in the physical picture. It starts
out from the grand canonical ensemble of a sys-
tem of electrons and nuclei interacting through
the Coulomb potential (Rogers 1981b, 1986, 1994).
Bound clusters of nuclei and electrons, correspond-
ing to ions, atoms and molecules are sampled in
this ensemble. Any effects of the plasma environ-
ment on the internal states are obtained directly
from the statistical mechanical analysis, rather
than by assertion as in the chemical picture.

There is an impressive body of literature on the
physical picture. Important sources of informa-
tion with many references are the books by Ebel-
ing et al. (1976), Kraeft et al. (1986), and Ebeling
et al. (1991). However, the majority of work on the
physical picture was not dedicated to the problem
of obtaining a high-precision equation of state for
stellar interiors. Such an attempt was made for
the first time by the OPAL-team at Lawrence Liv-
ermore National Laboratory (Rogers 1986; Igle-
sias & Rogers 1995; Rogers et al. 1996, and refer-
ences therein), and used as a foundation for the
OPAL opacities (Iglesias et al. 1987, 1992; Iglesias
& Rogers 1991; Iglesias & Rogers 1996; Rogers &
Iglesias 1992).

The OPAL approach avoids the ad-hoc cutoff
procedures necessary in free energy minimization
schemes. The method also provides a systematic
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procedure for including plasma effects in the pho-
ton absorption coefficients. An effective poten-
tial method is used to generate atomic data which
have an accuracy similar to single configuration
Hartree-Fock calculations (Rogers 1981a).

In contrast to the chemical picture, plagued by
divergent partition functions, the physical picture
has the power to avoid them altogether. Partition
functions of bound clusters of particles (e.g. atoms
and ions) are divergent in the Saha approach, but
has a compensating divergent scattering state part
in the physical picture (Ebeling et al. 1976; Rogers
1977). A major advantage of the physical picture
is that it incorporates this compensation at the
outset. A further advantage is that no assump-
tions about energy-level shifts have to be made; it
follows from the formalism that there are none.

As a result, the Boltzmann sum appearing in
the atomic (ionic) free energy is replaced by the so-
called Planck-Larkin partition function (PLPF),
given by (Ebeling et al. 1976; Kraeft et al. 1986;
Rogers 1986)

E; E;
PLPF = 2o [exp (‘k;) o kBZT] ‘

is

The PLPF is convergent without additional cut-off
criteria as are required in the chemical picture. We
stress, however, that despite its name the PLPF is
not a partition function, but merely an auxiliary
term in a virial coefficient (see, e.g., Dappen et al.
1987).

The major disadvantage of the physical picture,
is its formulation in density expansions. Expan-
sions that first of all are very cumbersome to carry
out, which means that only terms up till % in den-
sity have been evaluated (Alastuey & Perez 1992;
Alastuey et al. 1994, 1995). Second, the slow con-
vergence of the problem, means that even this ex-
traordinary accomplishment has a rather limited
range of validity. The chemical picture, on the
other hand, do not need to rely on expansions, and
complicated expressions, possibly with the correct
asymptotic behavior, can be used freely.

2.2. The Coulomb correction

The Coulomb correction, that is, the conse-
quence of an overall attractive binding force of a
neutral plasma deserves close attention, because
it describes the main truly non-ideal effect un-
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der conditions as found in the interior of nor-
mal stars. Already in a number of early papers
(e.g. Berthomieu et al. 1980; Ulrich 1982; Ulrich
& Rhodes 1983; Shibahashi et al. 1983, 1984) it
was suggested that improvements in the equation
of state, especially the inclusion of a Coulomb cor-
rection, could reduce discrepancies between com-
puted and observed p-modes in the Sun. Respond-
ing to this, Christensen-Dalsgaard et al. (1988),
showed that the MHD equation of state indeed im-
proved the agreement with helioseismology. That
the largest change was caused by the Coulomb cor-
rection was not immediately clear, since the MHD
equation of state also incorporates other improve-
ments over previous work.

From early comparisons between the MHD and
OPAL equations of state (Dappen et al. 1990), it
turned out, rather surprisingly, that the net ef-
fect of the other major improvement, the influ-
ence of hydrogen and helium bound states on ther-
modynamic quantities, became to a large degree
eclipsed beneath the influence of the Coulomb-
term. In the solar hydrogen and helium ionization
zones the Coulomb-term is the dominant correc-
tion to the ionizing perfect gas. This discovery led
to an upgrade of the simple, but astrophysically
useful Eggleton et al. (1973) (EFF) equation of
state through the inclusion of the Coulomb inter-
action term (CEFF) (see Christensen-Dalsgaard
1991; Christensen-Dalsgaard & Déappen 1992).

The leading-order Coulomb correction is given
by the Debye-Hiickel (DH) theory, which replaces
the long-range Coulomb potential with a screened
potential, as outlined below.

2.2.1. The Debye-Hiickel approximation

The Debye & Hiickel (1923) theory of elec-
trolytes, describes polarization in liquid solutions
of electrons and positive ions. This description
also applies to ionizing gases. Assuming the parti-
cles can move freely, the electrons will congregate
around the ions, and the ions will repel each other
due to their charges. With their smaller mass and
higher speeds, the paths of electrons are deflected
by the ions increasing the chance of finding an
electron closer to an ion. This screening by the
electrons decreases the repulsion between the ions,
acting as an overall attractive force in the plasma.

The fundamental assumption of Debye and
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Hiickel is that of statistical equilibrium, according
to which the local density of particles of type j
(including electrons) immersed in a potential 1
around an ion, 7, can be expressed as

n;(ri) = (nj) exp(—Zjey(ri)/ksT) ,  (3)

where Zj;e and (n;) are the charge and mean den-
sity of the particles and n;(r) are the perturbed
densities. 1(r) is the plasma-potential or the ef-
fective (screened) inter-particle potential. Over-all
charge neutrality dictates that

Y n)Zi=0 & ()= (n)Z. (4)
J Jj#e
With these perturbed densities, the corresponding
charge density is

plri) = > Zie(ny)e GV rI/eT & Zies(r;)
J

ie

resulting in the Poisson equation

Vih(r;) = —dme | Y Zy(n;)e 71V TIBT 1 Z:5(r;)
J

(6)
And now comes the most critical of Debye’s ap-
proximations: To make Eq. (6) more tractable,
the exponential is expanded in a power series, and
only terms up to first order are retained. The zero-
order term is the net-charge, Eq. (4). Solving Eq.
(6) with the remaining first-order terms results in
a screened Coulomb potential—the Debye-Hiickel

potential

pr) = Zoemrlrom, ™

where Apy is the Debye-length

4me?

oh = Zin; .
ADH kBT ; in (8)

The approximation of disregarding higher order
terms affects the low temperature and high den-
sity region where the inter-particle interactions be-
comes too large to be described by just the first or-
der term. This is a manifestation of the problems
with the classical, long-range part of the Coulomb
field in a plasma.

Z Zje(n;) [e_Zfe”’(”)/kBT - e“/’(”)/kBT] + Z;ed(r(p
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Investigations taking the physical picture point
of view indicate that the original potential defined
in (6), is a good choice for a plasma potential
(Rogers 1981b), and only the truncation of the ex-
ponential resulting in the Debye-Hiickel potential
is of limited validity (Rogers 1994)

At high densities the effect is in fact over-
estimated by using the Debye-Hiickel potential
(7). The relative Coulomb pressure in the Debye-
Hiickel theory, expressed in terms of the coupling
parameter, ppu/ksT = —T3/2/4/12, is a negative
contribution to the pressure. At very high densi-
ties, the over-estimation of the Coulomb pressure
can be so severe as to result in a negative total
pressure. The negative pressure differences seen
in the comparison plots in Sects. 3 and 4, sug-
gests that the amplitude of the Coulomb pressure
is larger in OPAL than in MHD. This statement
is true when the 7-correction, mentioned below, is
applied to the MHD EOS.

To get a feeling for the behavior of the Coulomb
pressure, we use the perfect gas law to obtain the
approximate expression

T OCRl/Su_1/3<Z2)1/3 , (9)

where p is the mean-molecular weight. This leads
us to anticipate differences between OPAL and
MHD, stemming from different treatments of the
plasma interactions, to increase with R, and that
such differences will be somewhat reduced when
we mix in helium and metals.

2.2.2. The T correction in DH theory

As they were investigating electrolytic solutions
of molecules under terrestrial conditions, it was
natural for Debye and Hiickel to consider elec-
trolytes made up of hard spheres. Assuming there
is a distance of closest approach, rmin to the ion,
Eq. (7) is modified to

Ze e—(r=Tmin)/ApH
1+ min/ApH T
for r > ryin and constant, ¥ (rmin), inside, remov-
ing the short range divergence. To obtain the free
energy, we apply the so-called recharging proce-
dure detailed in Fowler & Guggenheim (1956) to

Eq. (10), and get the result without rpi,, multi-
plied by the factor

P(r) o (10)

(@) = 3[ln(1 + 2) — 7 + %xz]x_3 A
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where £ = rpin/Apu. In short, the recharging
procedure consists of varying all charges in the
potential and integrating from zero to full charge.
Equation (11) is the analytical result of this inte-
gration and is based on the assumption that rmyin
is independent of the charge of any particles. The
T-factor goes from one to zero as z increase, re-
ducing the Coulomb pressure which was overesti-
mated before. With the 7 correction we can avoid
the negative pressures mentioned above.

Graboske et al. (1969) proposed to use

F3/2(ne)
F1/2(77e)

for stellar plasmas, and it was later used in the
MHD EOS but not in OPAL. This choise of 7min 18
merely the distance of equipartition between ther-
mal and potential energy of electrons approach-
ing ions. Since the charges are opposite there
are, however, no classical limits to their approach.
Also notice that since this choice of rmin depends
explicitly on charge, the recharging procedure will
result in a different form of 7.

Tmin = (Z)€? [kBT ]_1 , (12

A thorough and critical review of the Debye-
Hiickel theory can be found in Fowler & Guggen-
heim (1956), Chp. IX, and a very clear presen-
tation is found in Kippenhahn & Weigert (1992),
though the latter does not mention 7.

2.2.3. Other higher-order Coulomb corrections

Obviously, the 7 correction is just one particu-
lar higher-order Coulomb correction. We can use
it as a model for developing more general expres-
sions, by allowing some liberty in the choice of
Tmin- Let us begin by asking about the distance
of closest approach for quantum-mechanical elec-
trons. Heisenberg’s uncertainty relation puts firm
limits on how localized particle can be — it is
smeared out over a volume the size of a de Broglie
wavelength A = #/p. This de-localization elimi-
nates the infinite charge densities associated with
classical point-particles, and hence the short-range
divergence of the Coulomb potential.

Based on that, we can tentatively suggest a dis-
tance of closest approach which is the combined
radii of the electron and ion: %)\e + %()\ion). The
diffraction parameter, v;;, between two particles
i and j, emerging from a more careful quantum-
mechanical analysis implies the use of the De-
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Broglie wavelength in relative coordinates

Tmin = Xj = (B°/2pikpT)'/? o T2 (13)
where p;; is the reduced mass. Comparing the
7-function with the quantum diffraction modifica-
tion in Fig. 5 of (Rogers 1994), we see a similarity
in the functional form. The asymptotic behavior
differs though: 7(z) — 27! for £ — oo in the
hard-sphere model, whereas quantum diffraction
goes as £~ /2. The two functions are very close
up to x ~ 1, though, suggesting that preliminary
investigations of quantum diffraction effects in the
MHD EOS could be carried out by means of the
7-function and a new rm;n as given by Eq. (13).

Dividing Eq. (13) by Apn, we find that the cor-
rection is now a function of g only. That is, going
from a hard-sphere model of interactions, to in-
cluding quantum diffraction, the factor alleviating
the short-range divergence of the Coulomb poten-
tial becomes a function of p instead of R.

Abandoning the hard-sphere ion correction for
the benefit of quantum diffraction, still leaves us
with only the first term of the Coulomb interac-
tions. Could the higher order terms be represented
by 7 in some form? It turns out that 7 would only
fit in a very limited range, and it would be more
fruitful to use proper expressions. The present
analysis however, shows that the effect of includ-
ing higher-order Coulomb terms, is much smaller
than has previously been estimated by the MHD
EOS. Tt therefore might be a fair approximation
to leave them out for at least the solar case.

3. The EOS landscape in p and T

For this comparison, we have computed MHD
EOS tables with exactly the same p/T-grid points
as the OPAL-tables (Rogers et al. 1996), to en-
sure that the equation-of-state comparison is not
influenced by interpolation errors. We do actually
use the respective interpolation routines to access
the table-values, but by interpolating on the ex-
act gridpoints for identical mixtures, we should
not lose precision in the process.

We compare tables with three different chem-
ical mixtures, successively adding more elements
to the plasma: Mix 1 is pure hydrogen, mix 2 a
hydrogen-helium mixture and mix 3 is a 6-element
mixture that, besides hydrogen and helium, also
includes C, N, O and Ne. In Table 1 we list
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the exact mixtures, both by mass abundance, Xj;,
of chemical element, ¢, and as logarithmic num-
ber fractions relative to hydrogen [N;/Ng]. The
choice of mixtures is that of the currently available
OPAL-tables, to avoid interpolations in X and Z.
In the comparisons of this section, we have omit-
ted the radiative contributions.

The MHD equation of state now includes rel-
ativistically degenerate electrons, (Gong et al.
2001b) as do the new version of OPAL (Rogers
& Nayfonov 2002). This, of course, is significant
for stellar modeling and important for helioseismic
investigations of the Solar radiative zone (Elliot &
Kosovichev 1998). For the present paper, however,
it is irrelevant due to the lack of controversy on
the subject, and we will therefore limit ourselves
to dealing with non-relativistic electrons.

All plots of differences in this paper present ab-
solute differences. Since the absolute quantities
span less than an order of magnitude and as they
have quite complicated behaviors, we found that
normalizing the differences would confuse more
than illuminate. The solar track (also presented
in Sect. 4) overlaid on the surface plots is not hid-
den behind the surface, so as to give an idea of the
behavior in otherwise obscured regions.

While the MHD tables and the pure-hydrogen
OPAL table have the same resolution, Mix-2 and
Mix-3 OPAL tables have three times higher reso-
lution both in 7" and p. This can only affect the
comparisons of the solar Mix 2 and 3 cases, Sect. 4,
where it might introduce some extra interpolation-
wiggles in the OPAL-MHD differences. The ta-
ble comparisons are all done on the low resolution
grid.

For the case of pure hydrogen (Mix 1) we
plot the logarithmic absolute pressure, but for the
other mixtures we plot the logarithm of a reduced
pressure, P/(oT'), to make it easier to identify non-
ideal effects and the location of ionization zones.
This choice will of course not affect the differences
of the logarithms.

Apart from the actual pressure we also investi-
gate the three derivatives

_(O0lnP _(OlnP and B
Xeo = Blng T7 XT = 9InT Q: ot 1=

(14)
where ~; is the adiabatic derivative often called
I'y. These three derivatives form a complete set

(

dln P
OlnT

).
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TABLE 1
CHEMICAL MIXTURES 2 AND 3 (SEE TEXT)

element Xz(%) [Nl/NH] Xl(%) [NZ/NH]
H 80.00  0.00000 80.00  0.00000
He 20.00 -1.20098 16.00 -1.29789
C 0.00 — 0.762643 -3.09693
N 0.00 — 0.223398 -3.69693
O 0.00 — 2.171950 -2.76693
Ne 0.00 — 0.842053 -3.27923

and fully describe the equation of state.

3.1. Pure hydrogen

We start with the simplest mixture, that is,
pure hydrogen (Mix 1). The case of hydrogen is,
however, far from simple, not the least because of
its negative ion and molecular species. All in all
five species of hydrogen: H, HY, H~, Hy and HF
are included in both EOS.

The number of negative hydrogen ions does
never exceed a few parts in a thousand compared
to the other hydrogen species. Already at mod-
erate temperature, they dissociate into hydrogen
atoms. Despite its low abundance, H™ does have
an impact on the electron balance since it is the
only (significant) electron sink. The heavy ele-
ments with their low abundances are most affected
by this. Apart from this indirect effect on the
heavy elements, the most important feature of the
H™-ion is of course its bound-free and free-free
opacity, which is the primary source of opacity in
atmospheres of G, K and M stars.

The positive and neutral hydrogen molecules
can be seen in the low-temperature-high-density
corner of the tables, where their abundance
reaches up to 28% of hydrogen, by mass. At
slightly lower densities, which is of greater as-
trophysical interest, these molecules only become
important at temperatures below those considered
here.

The most important feature in the hydrogen-
EOS landscapes of Figs. 1-4 is, by far, the ioniza-
tion (from atom to positive ion), seen as a curved
rift in all the derivatives. It is hardly visible in
the surface-plot of the full pressure (Fig. 1), but

becomes obvious in those of the reduced pressure
(Figs. 5 and 9).

The OPAL-team introduced the quantity

R=Tgo™", (15)
where Tg = T/10°, as a convenient quantity to
describe the approximate ¢ — T-stratification of
many stars. This is clearly seen in Fig. 1 where
we also plotted three iso-R tracks, bracketing the
solar track. In the lower panel of Fig. 1 these iso-
R tracks also highlight the main feature in the
differences: A sharply rising ridge, bell-shaped in
logT and centered around logT" = 5.5, lying along
logR ~ 0. This ridge is a signature of differences in
the pressure ionization. The sign of AP in Fig. 1
tells us that MHD has a more abrupt pressure ion-
ization than the softer OPAL. The reason for this
difference is still not completely clear. It might
be related to differences in the treatment of the
short-range suppression of the Coulomb forces, as
mentioned in Sect. 2.2.2 and 2.2.3, or it could be
a result of differences in the mechanism of pres-
sure ionization (Iglesias & Rogers 1995; Basu et al.
1999; Gong et al. 2001a).

We now turn to the logarithmic pressure deriva-
tives, x, and xr, displayed in Fig. 2 and 3, respec-
tively. In both figures, the ionization zone is easily
recognized as the canyon or ridge starting in the
low-temperature-low-density corner, slowly bend-
ing over to follow the solar track and disappear at
about logT = 6.

In quite a large region of the ¢ — T" plane both
derivatives are equal to one reflecting that the gas
is a perfect gas. In this region the differences are
very small (i.e. less than 0.03%), confirming that



)

CHAPTER 3. INPUT PHYSICS

both the chemical and the physical picture con-
verges appropriately to the perfect gas case.

At low temperatures x, and x7 are dominated
by temperature ionization, which is about an order
of magnitude more prominent in x7 than in yx,.
This region is a fairly well known regime and here
we can directly compare the two pictures. The dif-
ferences are indeed small in this region, less than
1% and less than a tenth of the differences in the
high-R ridge.

The rise of xr in the low-T-high-p corner is
due to Hao-molecules. About 28% by mass, of the

ME D

Fig. 1.— Comparison of log;oP in the two pure
hydrogen tables. The upper panel shows the ab-
solute value from the MHD EOS and the lower
panel shows the difference; OPAL minus MHD.
The strange boundaries of the surface simply re-
flects the shape of the tables. We also overlay the
solar track from Sect. 4 for comparison. On this
plot alone we also show iso-R tracks (dotted lines)
for logioR = —2,-1,0, going from low to high
densities.
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hydrogen atoms are bound in molecules in this re-
gion, but at higher densities they quickly pressure
dissociate. The fact that the differences increase
while the absolute value decreases indicates that
MHD is pressure dissociating faster than OPAL.

The differences are again dominated by the
sharp ridge at high R, but in contrast to pressure
(Fig. 1), the differences in x, and x7 return to
zero for high temperatures and densities. As for
pressure, the solar track falls over or climbs the
R-edge in the middle of the ionization zone, as it
is traversing the iso-R at logR ~ 0.

These high-R differences occur in a region
where there is competition between the Coulomb
terms and electron degeneracy. This makes the
interpretation much more difficult. Two possible
reasons are the previously mentioned short-range

= o=

Fig. 2.— The logarithmic pressure derivative with
respect to density x, = (0ln P/01n p)r for pure
hydrogen in the upper panel, and its differences
(OPAL minus MHD) in the lower panel.
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part of the Coulomb interactions and the changes
induced in the internal atomic states by the dense,
perturbing surroundings.

In the MHD EQS, all energy levels of internal
states are assumed to be unaltered by the plasma
environment. That is, the effect of the perturba-
tion by surrounding neutral and charged particles
on the internal state is restricted to a lowering of
the occupation probability of the given state only.
In the OPAL EOQOS, the net result looks similar, but
there the relative stability of energy levels to per-
turbations is not merely postulated but the result
of in-situ calculations of the Schrédinger or Dirac
equation for each configuration of nuclei and elec-
trons, based on parameterized Yukawa potentials
(Rogers 1981a), as mentioned in Sect. 2.1.2.

Looking at v, in Fig. 4 we immediately no-

VS St

Fig. 3.— The logarithmic pressure derivative with
respect to temperature xr = (0ln P/0InT), for
pure hydrogen in the upper panel, and its differ-
ences (OPAL minus MHD) in the lower panel.
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tice how well this quantity displays the ionization
zones while leaving out everything else. This prop-
erty is also reflected in the differences, which here
are of about the same magnitude in the ionization
zone as in the high-R ridge. The high-R differ-
ences have also changed characteristics, changing
sign periodically, while retaining the overall bell-
shape in logT of the amplitude. We mention, how-
ever, that at least some of this behavior might be
due to the numerical differentiation scheme used
in the OPAL EOS (see Sect. 5 and Fig. 25).

3.2. Hydrogen and helium mixture

The effect of helium in the thermodynamical
quantities is revealed by the addition of 20% he-
lium and comparison with the pure-hydrogen case.

.o1°

= =

<
= - o<

Fig. 4.— The adiabatic logarithmic pres-
sure derivative with respect to density v,
(0lIn P/d1n g)s for pure hydrogen in the upper
panel, and its differences (OPAL minus MHD) in
the lower panel.
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The first thing we notice from Fig. 5 is how well
the reduced pressure P/(oT) reveals all the dis-
sociation and ionization zones (except H™); The
Hs-formation in the low-T-high-p corner and the
prominent ionization of hydrogen together with
the two He ionization zones, the first eventually
merging with the H ionization. The effect of de-
generate electrons is evident in the high-T-high-p
corner.

We also notice another thing: while the pure
hydrogen OPAL-table was cutting the high-p, low-
T corner, leaving a little less for the comparison,
the mixture OPAL-tables allow a full comparison
since they have the same boundaries as the MHD
tables. The slightly larger table reveals a new fea-
ture in the differences. For pure hydrogen, the
pressure difference drops suddenly in the high-p,
low-T' corner, due to faster molecule formation in
OPAL as compared to MHD. But in the slightly
larger tables used for the remainder of this section,
this difference suddenly goes to zero before it falls
down the high-R edge.

In the pressure differences, one can just barely
identify the first helium ionization zone, whereas
the second is too faint to be seen here. The high-R
differences are a little smaller than for pure hydro-
gen, as anticipated from Eq. (9) and the discussion
following it. This can be most clearly seen by com-
paring the dip in the hydrogen ionization zone.

The addition of helium is also evident in the
logarithmic pressure derivatives in Fig. 6 and 7.
First we see the deep rift (ridges in Fig. 7) of the
hydrogen ionization zone. Then comes a small
groove from the first helium ionization zone, a
groove which, when it widens and gets shallower
at higher densities, eventually merges with the hy-
drogen ionization zone, as is the case for the so-
lar track. Widely separated from the hydrogen
and first helium ionization zones, we find the sec-
ond helium ionization zone. It seems to disappear
at the low density edge of the table, but that is
only so because the ridge gets very sharp and is
unresolved in temperature, at low densities. Hot-
ter stars, that is, stars shifted towards lower R,
will clearly exhibit three, more distinct ionization
zones when compared with the Sun.

Apart from the two helium ionization zones, the
differences in the pressure derivatives are very sim-
ilar to the pure hydrogen case. The high-R dif-
ferences are somewhat smaller though, as are the
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differences in the hydrogen ionization zone. The
differences in x, also displays a very small ripple
along logR ~ —4, which might be due to differ-
ences in the differentiation technique (see Sect. 5).

From the differences in xr (Fig. 7), we see
that the absolute differences in the three ioniza-
tion zones are just about the same. If we instead
compare the differences relative to the size of the
respective ionization ridges, we get 0.16% and 3%
relative differences for the hydrogen and helium
ionization zones respectively. That is, MHD and
OPAL have about 20 times better agreement on
hydrogen than on helium.

In Fig. 8, 71 appears like what we would antic-
ipate from the pure hydrogen case in Fig. 4. The
first helium ionization zone is only visible at low
densities, as it merges with the hydrogen ioniza-

b/
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Fig. 5.— The reduced pressure, P/(oT), for the H-
He mixture in the upper panel, and its differences
(OPAL minus MHD) in the lower panel.



CHAPTER 3. INPUT PHYSICS

tion zone shortly before the solar track is reached.

The differences, however, exhibit a much more
complicated structure. Along each of the ioniza-
tion zones, there is a deep valley in the differences,
and along the bottom of these valleys runs a very
sharp ridge, bringing the differences up to posi-
tive values. This is a clear sign of a broad neg-
ative peak minus a sharp negative peak, mean-
ing that MHD temperature ionize faster than does
OPAL. In the beginning of this section, we found
that MHD was also pressure ionizing faster than
OPAL, so all in all OPAL is the softer EOS of the
two. The ridge-in-the-middle-of-the-valley picture
is also found in the pure hydrogen case (Fig. 4),
but as the hydrogen ionization zone is not fully
covered at low densities, the low-T side of the val-
ley is missing.

Fig. 6.— x,, the logarithmic pressure derivative
at constant temperature, for the H-He mixture in
the upper panel, and its differences (OPAL minus
MHD) in the lower panel.
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3.3. H,He,C,N,O and Ne mixture

In this section we add the last four elements
considered, namely carbon, nitrogen, oxygen and
neon. Comparing Figs. 9-11 of this section with
the corresponding Figs. 5-7 of the previous sec-
tion, hardly any differences appear, neither in the
absolute values nor in the differences between the
two EOS.

For a few points on the high-R boundary of
the tables, differences in x, and 7; have increased
dramatically. At least some of these odd points
are the same for x, and 7. This might indicate
that these points are spurious, possibly associated
with convergence problems in either EOS in this
difficult region.

The heavy elements are just barely discernible
in the differences of x, (Fig. 11). However, for v,

by
Q 0 0 0 0 0 0 O

\

\

Fig. 7.— xr, the logarithmic pressure deriva-
tive at constant density, for the H-He mixture in
the upper panel, and its differences (OPAL minus
MHD) in the lower panel.
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in Fig. 12, the heavy elements appear clearly both
in the absolute 1 and in the 7, differences, espe-
cially along the low-g edge of the table. Between
the first and second ionization zones of helium (cf.
Fig. 8), we notice some wiggles, which are likely
resulting from the third ionization zones of car-
bon and nitrogen, and the second ionization zones
of oxygen and neon. Above the second ionization
zone of helium, we can see all the ionization zones
from the fourth ionization zone of carbon right up
to the tenth ionization of neon, although they are
not all resolved in this g-T-grid. A rough estimate
reveals that the relative difference between MHD
and OPAL for the heavy elements is of about the
same magnitude as the one for the helium ioniza-
tion zones, i.e. 3%, or about 20 times worse than
the 0.16% agreement for hydrogen.

This unexpectedly large discrepancy for the
heavy elements might be a hint that these differ-

Fig. 8.— v for the H-He mixture in the upper
panel, and its differences (OPAL minus MHD) in
the lower panel.

13

Nogp

38

ences are primarily caused by differences in the
lower excited states. For hydrogenic ions, there
are analytical solutions for all states. This might
explain the small discrepancy for hydrogen. For
ions with more than one electron there are no an-
alytical treatments, except for their higher states,
which become nearly hydrogenic. So it might
well be that the lower lying states of the non-
hydrogenic ions are responsible for the differences
noticed here. The Yukawa potentials (Rogers
1981a), which are used to describe bound electron
states in OPAL, are fitted to give the correct (ex-
perimental) ionization energies. MHD uses exper-
imental results for the energy levels. It is no sur-
prise therefore to get quasi-perfect agreement on
the location of the ionization zones (confirmed by
the ridge-in-the-middle-of-the-valley picture in the
v differences), whereas the energies of lower ly-
ing excitation levels might differ These differences
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Fig. 9.— Reduced pressure for mixture 3 (¢f. Tab.
1) in the upper panel, and its differences (OPAL
minus MHD) in the lower panel.
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propagate into the partition functions and affect
the course of ionization. In addition, the differ-
ences in the adopted micro-field distribution, and
the mechanism by which they ionize highly excited
states, might play a role in this region (Nayfonov
& Dappen 1998; Nayfonov et al. 1999). Since the
differences occur at the low-p edge of the table,
we expect however, that they mainly reveal dif-
ferences in the thermal ionization, not in pressure
ionization.

Let us return to pressure and have a closer look
at the non-ideal effects in the high-T-high-p cor-
ner. From the dotted iso-R lines in Fig. 9, it is
clear that the non-ideal effects are not functions of
R alone. Instead it turns out that they are largely
functions of ¢?/T3. Comparing the perfect gas
pressure and the fully degenerate, non-relativistic
electron pressure

Ve

Fig. 10.— x,, the logarithmic pressure derivative
at constant temperature, for the full mixture in
the upper panel, and its differences (OPAL minus
MHD) in the lower panel.
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T 1/ 3\*? p2

Pperf = i]{;‘;u and Pedeg = g (8_7-‘-) m_e ( 0
we see that the two pressures compete along g% o
T3-lines. This means that relative to high-R
(Coulomb) effects, there are more degeneracy ef-
fects in the high-T-p corner of the table, which
reveals the nature of the sharp rise of both P
and X, in this region. The correlation with larger
OPAL—MHD differences (See lower panel of Fig.
9) prompted us to perform a direct comparison
between the Fermi-Dirac integrals from the two
codes. We found non-systematic differences a re-
assuring eight orders of magnitude smaller than
the EOS differences we observe in this region.

An alternative explanation could be the lack of
electron exchange effects in the MHD EQOS. This
is a combined effect of Heisenberg’s uncertainty

\

O 0 0 0 0 0 0 ©°

\

Fig. 11.— xr, the logarithmic pressure derivative
with respect to temperature, for the full mixture in
the upper panel, and its differences (OPAL minus
MHD) in the lower panel.
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relation (Heisenberg 1927) and Pauli’s exclusion
principle (Pauli 1925): Due to the former, electron
wavefunctions are extended, but due to the latter,
the wavefunctions of two close electrons with same
spin cannot overlap. This results in the combined
wavefunction either having a bulge or a node at
the mid-point between the two electrons, giving
rise to two different kinds of contributions to the
Coulomb interactions. In the fully ionized, weak
degeneracy limit, the first-order e-e exchange pres-
sure (DeWitt 1961, 1969) is negative and propor-
tional to ¢?/T. Analyzing the differences in solar
solar case, we actually find in Sect. 4, that those
powers of g and T' are the ones best describing the
differences above T ~ 2 x 10K

Fig.
derivative, 7, for the six element mixture in the
upper panel, and its differences (OPAL minus
MHD) in the lower panel.

12— The adiabatic logarithmic pressure
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4. Comparisons in the Sun

To study the EOS under solar conditions, we
have evaluated the MHD and OPAL EOS on a
o — T track that corresponds to the Sun using
the respective interpolation routines. Obviously,
this is a simplified comparison, not of evolutionary
models of the Sun, but merely of the equations of
state for fixed solar-like circumstances. As demon-
strated elsewhere, such a simplified procedure is
well justified (See e.g. Christensen-Dalsgaard et al.
1988).

We use the three chemical mixtures from Table
1, bearing in mind that Mix 3 has about twice so-
lar metallicity. In contrast to the comparisons of
the previous section, we now include radiative con-
tributions. This will of course not change the dif-
ferences of thermodynamic quantities, since both
formalism use the well-known additive radiative
contributions (Cox & Guili 1968).

In all the figures of this section, we notice that
the MHD and the OPAL EOS differs very little at
temperatures below 20 000 K and above 10° K, but
they differ significantly in between. And though
the differences are small, above 20000 K they look
intriguingly systematic.

The wiggles in the differences, most noticeable
in the region between log7T'=4-4.5, are almost cer-
tainly due to the interpolation schemes. They
become quite dominant in the ; difference. As
mentioned in Sect. 3, the tabular resolution of the
OPAL tables for Mix 2 and 3 is about three times
better than that of the corresponding MHD tables.
This means that most of the interpolation wiggles
comes from MHD. The exception is the pure hy-
drogen case (Mix 1), where the tables have the
same (low) resolution and the respective interpo-
lation errors are of the same order.

4.1. Pure hydrogen

If we take a look at the absolute pressure in Fig.

13 a), we notice a bend at logT = 6.4. This marks

the bottom of the convection zone. Inside the con-

vection zone, that is below logT = 6.4, there is adi-

abatic stratification of pressure and temperature,
71 — Xe

i.e. SloeT
og
V = =
“d (fﬂogP)ad MXT

When the gas is nearly fully ionized, essentially
Vad = 2/5, evidenced as the straight-line part of

(16)
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the curve in Fig. 13 a). In the ionization zones
(the outer 0.02Rg), Vaq is lowered to about 0.11
at logT" ~ 4.1, again clearly evidenced as a de-
pression in the pressure curve. V.4 comes back
to 2/5 at logT ~ 3.76, but this happens at the
top of the convection zone where there is a down-
ward bend to a radiative stratification. The depth
of the convection zone is about 0.285R s, and just
slightly higher, at a depth of 0.25R g, hydrogen fi-
nally gets fully ionized (fewer than 1in 10° are still

The Solar case
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Fig. 13.— The logarithmic pressure along a solar
0,T-track for pure hydrogen. The upper panel
shows the absolute values of the MHD (solid line)
and the OPAL (dashed line) pressure. We also
plot the MHD pressure, using 7 = 1 to show the
effect of omitting this correction (¢f. Sect. 2.2.2).
These three pressures are indistinguishable unless
we look at the lower plot, showing the difference
OPAL minus MHD. Here we show, apart from the
normal MHD, also the version with 7 = 1, which
seems closer to OPAL, and a version where we
have halved the argument of 7.
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neutral), at a temperature of logT = 6.3. For com-
parison, hydrogen is 99.88% ionized in the middle
of the convection zone at logT = 6. So, although
it is reasonable to say that the hydrogen ioniza-
tion zone is confined to the outermost 2% of the
Sun, one should also bear in mind the long tail of
unionized hydrogen that is extending almost to the
bottom of the convection zone. This tail has an
especially large effect on the opacity, since in the
visual and UV only bound states can add opacity
to the constant “background opacity” from elec-
tron scattering.

In the upper plot of Fig. 14 we can actually see
the differences between the absolute values of x,.
It is evident that OPAL has a much smoother and
broader ionization zone than the somewhat bumpy
MHD. Turning off the 7-correction (dashed lines),
almost centers MHD on OPAL, but the bumps re-

The Solar case

1.0 09 0.8 0.5 0.0
o5 R ; X
1.00

» 0.95
0.90 4 - - - OPAL L
........... MHD(=1)
0.85 -
4 5 6 v
logT
r/R
1.0 0.9 0.8 0.5 0.0
0.005 AN .
] RN
] N b)
0.000 i\ ' : ’m\
T N O A o
o ]
< ]
-0.010 E
] —__ OPAL-MHD
~0.015 - - - - OPAL-MHD(7=1) o
1V OPAL-MHD(7(%x))
~0.020 4 -
4 5 6 7
logT
Fig. 14.— The logarithmic pressure derivative

with respect to density, x,, along the solar track
for pure hydrogen. a) the absolute value, b) the
difference (OPAL minus MHD).
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main the same. These bumps were also noticed
by Nayfonov & Déppen (1998) and their analysis
showed that in the region where log7 = 4.2-5.2
the bumps are caused by excited states in hydro-
gen. In this part of the Sun, hydrogen is 30% in-
creasing to 97.8% ionized, so even a small amount
of neutral hydrogen can have a significant effect
on the EOS.

At logT 2 6.5 we see how degeneracy sets in,
increasing x, towards it’s fully degenerate value
of 5/3. In the lower plot, we notice that degen-
eracy is accompanied by an increase in the differ-
ences. This could be attributed to the MHD EQOS
not including electron-electron exchange effects, as
pointed out in Sect. 3.3.

The behavior of xr (Fig. 15) confirms the pic-
ture obtained from Fig. 14, that is, MHD ionizing

The Solar case
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Fig. 15.— The logarithmic pressure derivative

with respect to temperature, yr, along the solar
track for pure hydrogen. a) the absolute value, b)
the difference (OPAL minus MHD).
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faster and being more bumpy than OPAL. How-
ever, since the dynamic range of xr is much larger
than that of x,, the bumps, which have still about
the same size as those of x,, are now being dwarfed
by the much larger ionization peak in x7. Com-
paring the differences shown in the lower plots,
we notice that the overall differences are about
twice as large as for x,, but the ionization peak
in the respective upper plots is about 10 times
larger for xr than for x,. We also notice that in
XT, as a likely result of the higher dynamic range,
the interpolation-wiggles at logT" < 4.6, are much
more prominent than in x,.

We can also distinguish MHD from OPAL in
the absolute values of v, (Fig. 16 a)), although
they are much closer than in the x’s of Fig. 14
and 15. This is confirmed in the differences shown

The Solar case
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in panel b), which are overall smaller by an order
of magnitude compared to the P-, x,- and x7-
differences. In contrast to our experience with P,
Xe and xr, here diminishing the 7-correction in
MHD (dashed and dotted lines) does not lead to
any better agreement with OPAL. This is again
convincing evidence that v, is a very efficient filter
for high-R effects. The differences that we see are
therefore due to the physics of ionization, except at
low temperatures, where interpolation errors seem
to dominate.

4.2. Hydrogen and helium mixture

The effect of helium is very hard to see in the
reduced pressure shown in Fig. 17 a), and in the
shape of the differences in Fig. 17 b). However, a
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Fig. 17— The reduced pressure in the H-He-
mixture along the solar track. a) the absolute
value, b) the difference (OPAL minus MHD). The
thin horizontal line in panel a), indicates the fully
ionized, perfect gas pressure.
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comparison with the pure hydrogen case (Fig. 13),
allows us none the less to see a few changes to the
differences in the lower panels; The peak around
logT' = 4.7 gets considerable smaller by adding
helium, except for the 7 = 1 case, where the dif-
ference actually increases in this region. Also, the
differences outside the high-R region decrease by
adding helium, independently of the choice of 7.
In general, adding helium does not alter the
shape of the differences in P, x, or x7, and the
changes due to composition are only manifest by
a change of the amplitude of the peak around
logT = 4.7. This is surely due to the fact that
most of the ionization in the Sun takes place in
the high-R region, so that the first-order high-
R differences due to the ionizations themselves
simply dwarf the second-order effects due to de-
tailed partition functions, among other. The solar
track does follow the ionization zones to some de-

The Solar case
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Fig. 18.— x, for the H-He-mixture along the so-
lar track. a) the absolute value, b) the difference
(OPAL minus MHD).
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gree, and only enters the hydrogen ionization zone
“head on”. With the solar track curving along the
hydrogen ionization zone in this way the ionization
features will be smoothed out over a much larger
temperature interval than if we had examined an
iso-chore. This smoothing leads to more blending
of ionization zones from various elements, hamper-
ing analysis. The shape, merging and smoothing
of the ionization features is best seen in Figs. 9-11.

This behavior is clearly illustrated in, e.g., X,
(Fig. 18 a), where we observe a rather sharp onset
of ionization followed by a much slower transition
to full ionization. The second ionization of helium
appears as part of the bump around log7T = 5. The
bump is somewhat more pronounced than in the
pure hydrogen case. A more careful comparison
with the pure hydrogen case (Fig. 14) reveals the
first ionization zone of helium as a slight extension
of the hydrogen peak, on the side towards higher

The Solar case

r/R
1.0 09 08 05 0.0
22" et . -
2.0 —— MHD a) [
] - OPAL
L Y . MHD(7=1) C

O'B _. T T T T -

4 5 6 7
logT
7/R
1.0 0.9 08 05 0.0
0.040 4 — ! -
— OPAL-MHD b)
0.030 -

- -~ OPAL-MHD(7=1)

0.0204 [\ e OPAL-MHD(7(%x)) =
% 0.0107 -

N T LTES

0.000 = U :

—0.010 = =
_0.020 E T T T T -~

4 5 6 7

logT

Fig. 19.— xr for the solar track and the H-He-
mixture. a) the absolute value, b) the difference
(OPAL minus MHD).
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temperatures. Helium gets almost fully ionized
at logT = 6.0, where 1.77% is singly ionized and
98.23% doubly ionized. It only ionizes slowly fur-
ther at higher temperature, until at log7 = 6.75
it suddenly becomes fully ionized. This happens
at a depth of 0.63Rg, at the edge of the hydrogen
burning core. At logT" = 6.5, just slightly above
the temperature where hydrogen gets fully ionized,
there is finally no more neutral helium left.

For x (Fig. 19 panel a), the bump at logT ~ 5
is a clear sign of the helium added, as opposed to
the similar but more entangled bump in x, (cf.
Fig. 14 and 18). The second He ionization zone is
very distinct in v, (Fig. 20 a), and the first ioniza-
tion zone is manifested by a widening of the hydro-
gen ionization zone towards the high-T side. The
differences (panel b) are just as entangled as for
pure hydrogen (Fig. 16) but with lower amplitude.
On the descending part, just above logT = 5, there
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are some large interpolation errors, caused by the
change to the coarser grid. We also notice a pecu-
liar bump at log7 = 6.6

Looking at the various difference plots in this
section, we see a correlation between a high am-
plitude in the differences and a high R-value, a
property we already inferred from the solar track
(Fig. 1). The minimum in R is found at the base
of the convection zone, where we also find a lo-
cal minimum in the magnitude of the differences
between the EOS. The location of this local min-
imum coincide for all four thermodynamic quan-
tities. This confirms our suspicion that at least
some of the discrepancy stems from 7. The reason
for this conjecture is that the differences between
MHD EOS with different 7 almost vanishes in this
region, whereas they increase in the same way as
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the MHD-OPAL differences grow for intermediate
temperatures.

At high temperatures, above a minimum oc-
curring at logT ~ 6.4, the MHD-OPAL differ-
ences grow, but the differences between the three
7 versions themselves remain small. On the solar
track, logR = —1.8 at the minimum of the MHD-
OPAL difference, and it only rises slightly to -1.4
at logT = 6.8 where the solar track bends to follow
more or less an iso-R line. The constant R value is
attained around logT = 6.15. The differences be-
tween the 7-versions are indeed the same in both
of these regions (this is best seen in the pressure
differences e.g. Fig. 17), which explains why the
three curves with different 7 follow each other so
closely at high temperatures. The MHD-OPAL
difference in this region can therefore not be ex-
plained by the 7-correction. It also turns out that
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in this region, the differences of the p-T plane are
mainly functions of ¢?/T® instead of R. In Sect.
3.3 we suggested that this dependence might arise
from electron exchange effects or maybe from pos-
sibly different evaluations of the Fermi-Dirac in-
tegrals. However, a third explanation might be
based on the quantum diffraction mentioned in
Sect. 2.2.3.

4.3. H,He,C,N,O and Ne mixture

Adding C, N, O and Ne to the H-He mixture has
two main effects: first, it displaces 4% He (cf. Tab.
1), thereby diminishing the helium features, and
second it leads to a slight decrease in the high-R
OPAL-MHD differences due to the increased mean
charge [see Eq. (9)]. Ounly in v, (Fig. 24), can the
heavy elements be observed directly. Comparing
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with the H-He case (Fig. 20), and going from low
to high temperatures, we first notice a slight di-
minishment of the feature associated with the first
ionization zone of helium due to the 4% decrease
of the helium content. This weakening of the He™
feature is counteracted by the second ionization
zone of carbon (24.38eV), as well as that of the
less abundant Ne (21.56eV) and Nt (29.60¢V).
The feature of the second ionization zone of he-
lium is also diminished, but counteracted by the
third ionization zone of oxygen O+ (54.93¢V),
the most abundant heavy element. Ct+, C3t,
N*+ and Net+ adds further ionization in this tem-
perature region. Continuing towards higher tem-
peratures we notice a slight straightening of the
“knee” around logT' ~ 5.3, due to the intermedi-
ate ionization stages of C, N and Ne with ioniza-
tion potentials between 47eV and 240eV. Finally,
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at logT ~ 6.2, we find a broad dip supplied by the
two uppermost ionization stages of C,N,O and Ne,
having ionization energies in the range between
400eV and 1360eV.

The only quantity in which the introduction of
heavy elements is manifested directly is 1, which
is an important key variable in helioseismology
(since it is closely related to adiabatic sound speed
c? = y1p/0)- The promise of these features is that
the presence of heavy elements is well marked in
1. Actually, this marking is so distinct (Gong
et al. 2001a), that in future solar and stellar appli-
cations of the MHD and OPAL equations of state
it might be worth to include more heavy elements
The influence due to our small quantity of heavy
elements is about three times larger than the dif-
ference between OPAL and MHD, though we has-
ten to add that our heavy element abundance of
Z = 4% is chosen too high in order to exhibit the
effects more clearly; they would of course decrease
with a more solar metallicity around Z = 2%.

We have not discussed radiation pressure yet,
merely because of the lack of controversy about
it. However, it is worth a few notes. The ra-
tio between radiation pressure and gas pressure
is constant along iso-R lines the two being equal
around logR ~ —4.5. The largest radiation ef-
fects therefore occur at logT" = 6.4 where there is
also the smallest discrepancy between OPAL and
MHD. The relative size of the effect of radiation
is: 0.0007,—-0.001,0.003, —0.002 for logP, X,, XT
and ;, respectively.

5. Discrepancies due to differentiation

A closer inspection of the derivatives in the per-
fect gas region reveals some discrepancies which
are likely due to the numerical differentiation per-
formed in the OPAL EOS. This is most noticeable
in 7, where the OPAL-MHD differences in the
perfect gas region are as large as 0.03%, which
admittedly is small indeed. Helioseismology will,
however, soon be dealing with such precision. This
difference most probably comes from problems in
the numerical calculation of an adiabatic change
as performed in OPAL (note that MHD uses es-
sentially analytical expressions for vy, x, and xr
Since an adiabatic change is not rectangular in the
T — p plane, such an interpretation is consistent
with the fact that the differences in the derivatives
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with respect to p and T (x, and xr, respectively)
are about one order of magnitude smaller. This
also means, that in the ionization zones where
pressure and entropy are non-linear functions of
o and T, this differentiation noise must be much
larger. On the other hand, the differences be-
tween OPAL and MHD are still at least an order
of magnitude larger than this differentiation noise.
We hope, however, that future improvements will
make OPAL and MHD converge to within that
level of the actual EOS, requiring higher numeri-
cal standards.

The differences in x, and xr have a tendency
to follow iso-R tracks, while the differences in v,
follow isotherms. These two behaviors are still un-
explained. In Fig. 25, the differences following
isotherms are pretty clear, but the iso-R differ-
ences are also visible, well below the rising moun-
tain at high R-values.

Fig. 25.— This is a zoom-in on the fully ionized,
perfect gas region of a pure hydrogen plasma (cf.
Fig. 4), where 4 = 5/3. The upper panel shows
the results for the MHD EOS which uses analytical
expressions for all first- and second-order deriva-
tives. The lower panel shows the same for the
OPAL EOS, where derivatives are calculated nu-
merically on a grid that are much denser in ¢ and
T though, than in the tables published.
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6. Conclusion

The present comparison of the two MHD and
OPAL EOS has revealed the reasons of several dif-
ferences between these equations of state. They
can be summarized as follows (in order of impor-
tance):

a) We find the largest differences at high den-
sities and low temperatures, or more pre-
cisely, at high R-values. From Sect. 2.2.1
and Eq. (9) we know that this property is
indicative of differences in the treatment of
plasma interactions. Comparing the peaks
of the differences in e.g. pressure (See Figs.
13, 17 and 21), we obtain Mix-1-to-Mix-2
ratios of 0.797, and Mix-1-to-Mix-3 ratios of
0.788, which agrees very well with Eq. (9),
and thus further substantiates our interpre-
tation. These differences are lowered dra-
matically when we put 7 =1 in MHD, indi-
cating that it is worthwhile to abolish 7 and
reconsider how to get rid of the short-range
divergence in the plasma-potential (See Sect.
2.2.3).

b) In the high-temperature-high-density corner
of the tables we observe how degeneracy sets
in. Along with degeneracy, we also notice
how some specific differences are growing.
This effect could be due to quantum diffrac-
tion or exchange effects, both included in
OPAL but not in MHD. Quantum diffrac-
tion is the effect of the quantum mechanical
smearing out of, primarily, the electron due
to it’s wave nature. The exchange effect is a
modification of the quantum diffraction aris-
ing from the anti-symmetric nature of two-
particle wavefunctions of fermions.

c¢) Differences also appear in the ionization
zones, and a great deal of them can be at-
tributed to the 7 correction, but not all of
it. The causes for the rest of these differ-
ences are not easily identified. They might
be due to the basic differences between the
physical- and the chemical approach to the
plasma. The treatment of bound state en-
ergies and wave functions might have an
effect in this region. These are highly ac-
curate in MHD but calculated in the iso-
lated particle approximation, whereas they
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are approximate (fitted to ground-state en-
ergies), but varying with the plasma envi-
ronment in OPAL. We have also tried ex-
perimenting with the assumed critical field
strength used in MHD for the disruption of a
bound state [Eq. (4.24) of Hummer & Miha-
las (1988)]. However, this intervention had
only a very small effect. Earlier investiga-
tions by Iglesias & Rogers (1995) indicated
that a change in the micro-field distribu-
tion might have a greater effect, and that
highly excited states are more populated in
the OPAL EOS, although the OPAL EOS
ionizes the plasma more readily than MHD
(Nayfonov & Déappen 1998).

d) The evaluation of thermodynamic differen-
tials is done numerically in OPAL but ana-
lytically in MHD. For the quantities we have
examined here, the difference becomes most
apparent in ;. In the trivial perfect gas re-
gion of the p—T plane, OPAL is rugged on a
0.03% scale (see Sect. 5), as opposed to the
smooth MHD. These 0.03% may sound neg-
ligible, but helioseismology is approaching
that level. In ionization zones, the discrep-
ancies due to differentiation are most likely
larger. On the other hand, physical differ-
ences between the two EOS are still at least
an order of magnitude larger.

For helioseismic studies of the equation of state
it is a very nice property of the Sun that high-
R conditions are found exclusively in the con-
vection zone, where the stratification is essen-
tially adiabatic, and therefore virtually decoupled
from radiation and the uncertainty in the opac-
ity (Christensen-Dalsgaard & Déappen 1992). As
opacity calculations are still subject to errors of
5-10%, we stress the importance of the fact that
opacity effects do not contaminate the structure
of the convection zone. This means that the solar
convection zone is a perfect laboratory for investi-
gations of the most controversial parts of the EOS.

The difference between ; from and EOS and
that of the Sun can be inferred from helioseis-
mology, and that with an accuracy that by far
exceeds the discrepancy between the two of the
best present EOS for stellar structure calcula-
tions (Christensen-Dalsgaard et al. 1988). The
pursuit for a better EOS is therefore not at all
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academic, and we can improve both solar mod-
els and atomic physics in the process (Basu &
Christensen-Dalsgaard 1997).
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3.2 Pressure Ionization in the MHD Equation of

State

We, Trampedach & Déppen (2004b), elucidate the behavior and importance of an
often quoted and questioned term in the Mihalas-Hummer-Déppen (MHD) equation
of state (EOS), the so-called W-term, which provides pressure ionization of neutral

plasmas in the high density/low temperature region.

3.2.1 Introduction

In stellar evolution computations, and in particular in the case of stars more massive
than the Sun, it is generally sufficient to use a simple equation of state. The plasma
of the stellar interior is treated as a mixture of perfect gases of all species (atoms,
ions, nuclei and electrons), and the Saha equation is solved to yield the degrees of
ionization or molecular formation. In the case of low mass stars however, non ideal
effects, such as Coulomb interactions become important.

For such stars, the most useful equations of state, as far as their smooth real-
ization and versatility are concerned, are (i) the so-called Mihalas-Hummer-Déappen
(MHD) equation of state (Hummer & Mihalas 1988; Mihalas et al. 1988; Dappen
et al. 1988), and (ii) the OPAL equation of state, the major alternative approach
developed at Livermore (Rogers 1986; Rogers et al. 1996, and references therein). A
brief description of these two equations of state is given in Sect. 3.2.3.

Although the MHD equation of state was originally designed to provide the

level populations for opacity calculations of stellar envelopes, the associated ther-
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modynamic quantities of MHD can none the less be reliably used even for cores of
low-mass stars (Chabrier & Baraffe 1997a). Low-mass stars harbor the most extreme
plasma-conditions, the gas being far from ideal, due to the high densities and low
temperatures. The Coulomb interaction between particles becomes more important,
as does the destruction of the more fragile excited states. This latter phenomenon
will eventually lead to pressure ionization, which in the MHD equation of state is
achieved through an occupation probability formalism for bound species, as detailed
in Sect. 3.2.2. The neutral-neutral interactions employed are, however, not strong
enough to pressure-ionize a plasma consisting of mostly neutral particles (low tem-
perature), and approximate higher-order terms are therefore included through the
V-term, addressed in the present paper.

Since the MHD equation of state otherwise includes processes important for low-
mass stars and envelopes of white dwarfs (W. Stolzmann, private communication),
e.g., Coulomb pressure and electron degeneracy, the question of the impact and

validity of the W-term is more than academic.

3.2.2 Pressure ionization in MHD

In this paper we examine pressure ionization in the MHD equation of state. As de-
scribed in Hummer & Mihalas (1988), the formalism incorporates perturbations from
the fluctuating fields from the charged particles, and a first-order approximation to
the hard-sphere interactions from neutral particles. It turned out that the approxima-

tive neutral-neutral interaction alone is too weak to overcome the steeply increasing
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energy of the free, degenerate electrons, and thereby cause pressure ionization. This
is hardly surprising.

If, however, there are just a few charged particles present, the fluctuating micro-
fields takes over and pressure ionize without any problems.

The pressure dissociation of hydrogen molecules avoids this problem all together,
as no electrons are released, and pressure dissociation does occur in the MHD equation
of state without any extra help.

The hard-sphere model, or excluded volume model, has the free energy

2
F5 = —kBTZNiln [1 - (%) ZNJ(R% + Rj)3

J

; (38)

where both sums are extended over all states of all species of particles. Expanding

the logarithm in
4dm
£ = (W) > Ni(Ri+ Ry)*, (39)
j

the free energy can be written
Fs =ksT Y N <1§+1§2+i£3+ ) (40)
5 — B i 1 D) 3 24 ..

The first order term is already included in the expression for the occupation proba-
bilities, w;,, apart from a factor of two.

As shown by Fermi (1924), occupation probabilities, w;, as used in the MHD
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formulation for partition functions, Z,
Z = Zwie_Ei/kBT , (41)
i
are accompanied by a term in the Helmholtz free energy

Fy=[ =Y m(0f/on) | (42)

where Inw; = — (0f/0n;) /kgT. In the case that the non-ideal term, f, is linear in the
occupation numbers {n;}, the F,-term vanish identically, making it independent of
the state of excitation. By confining effects that depend on the population of excited
levels, to such linear terms in the occupation probabilities, the equation of state is
reduced to a M x M- instead of a N x N-matrix problem, where M ~ 170 is the
number of species (atoms, ions and molecules) and N ~ 16000 is the total number
of states considered.

The first term in the expansion, Eq. (40), of the hard-sphere free energy therefore
result in no extra terms in the free energy.

Retaining the N x N-order of the problem, the second order term can therefore
only be included in an approximate way, e.g., assuming that all particles of a given

species are in the same state. Using the ground-state, we can therefore write

47
£, = (W) > Nig(Ra + Ri)? (43)
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where v and p label particle species. The second order term is then of the form

F' = —kgT> N,(—afl)

v

= —kgT ) N,In¥,, In¥,=-af . (44)

This artificial term was introduced to allow computation of numerically con-
sistent results for very cold and dense plasmas, just to allow tabulation of thermo-
dynamical quantities in rectangular temperature-density grids, with less regard to
physical accuracy in this difficult region of limited astrophysical interest.

It is a legitimate concern that the presene of the artificial pressure ionization
mechanism, the so-called U-term might contaminate the results for less extreme con-
ditions relevant for stellar interiors. We show with this paper that this is not the case,
and that the pressure ionization in the MHD equation of state, for stellar conditions,
is caused by the decreasing occupation probabilities with increasing density. The
U-term only affects the high density low temperature corner of the (o, T')-plane, and
was merely introduced to ensure numerical stability and convergence in this region.

Before presenting the results of our study, which is based on a systematic switch-
ing on and off of the ¥ term, for the convenience of the reader, we give the specifica-

tions of the MHD equation state and its relation to alternative formalisms.

3.2.3 A brief review of the MHD equation of state

Historically, the MHD equation of state was developed as part of the international

“Opacity Project” (OP, see Seaton 1987; Seaton et al. 1992). It was realized in the so-
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called chemical picture, where plasma interactions are treated through modifications
of atomic states, 7.e. the quantum mechanical problem is solved before statistical
mechanics is applied. It is based on the so-called free-energy minimization method.
This method uses approximate statistical mechanical models (for example the non-
relativistic electron gas, Debye-Hiickel theory for ionic species, hard-sphere atoms to
simulate pressure ionization via configurational terms, quantum mechanical models
of atoms in perturbed fields, etc). From these models a macroscopic free energy
is constructed as a function of temperature 7', volume V', and the concentrations
Ni,..., Ny of the M components of the plasma. The free energy is minimized
subject to the stoichiometric constraint. The solution of this minimum problem then
gives both the equilibrium concentrations and, if inserted in the free energy and its
derivatives, the equation of state and the thermodynamic quantities.

More specifically, in the chemical picture, perturbed atoms must be introduced
on a more-or-less ad-hoc basis to avoid the familiar divergence of internal partition
functions (see e.g., Ebeling et al. 1976). In other words, the approximation of un-
perturbed atoms precludes the application of standard statistical mechanics, i.e. the
attribution of a Boltzmann-factor to each atomic state. The conventional remedy
of the chemical picture against this is a modification of the atomic states, e.g. by
cutting off the highly excited states in function of density and temperature of the
plasma. Such cut-offs, however, have in general dire consequences due to the discrete
nature of the atomic spectrum, i.e. jumps in the number of excited states (and thus
in the partition functions and in the free energy) despite smoothly varying external

parameters (temperature and density). However, the occupation probability formal-
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ism employed by the MHD equation of state avoids these jumps and delivers very
smooth thermodynamic quantities. Specifically, the essence of the MHD equation
of state is the Hummer & Mihalas (1988) occupation probability formalism, which
describes the reduced availability of bound systems when immersed in a plasma.
Perturbations by charged and neutral particles are taken into account. The neutral
contribution is evaluated in a first-order approximation to hard-sphere interactions,
which is good for stars in which most of the ionization in the interior is achieved by
temperature. For colder objects (brown dwarfs, giant planets), higher-order excluded-
volume effects become important (Saumon & Chabrier 1991; Saumon et al. 1995). In
the common domain of application of the Saumon et al. (1995) and MHD equations
of state, Chabrier & Baraffe (1997a) showed that the two developments yield very
similar results.

Despite undeniable advantages of the physical picture, the chemical picture ap-
proach leads to smoother thermodynamic quantities, because they can be written
as analytical (albeit complicated) expressions of temperature, density and particle
abundances. In contrast, the physical picture is normally realized with the unwieldy
chemical potential as independent variable, from which density and number abun-
dance follow as dependent quantities. The physical-picture approach involves there-
fore a numerical inversion before the thermodynamic quantities can be expressed in
their “natural” variables temperature, density and particle numbers. This increases
computing time greatly, and that is the reason why so far only a limited number of
OPAL tables have been produced, and then only suitable for stars more massive than
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3.2.4 Examination of the influence of the U term

To quantify how much the U-term affects the MHD EOS, we have calculated two
tables, including and neglecting ¥, respectively, and plotted the pressure difference
between the two in Fig. 4.

The occupation probabilities in the MHD EOS are very dependent on the pres-

ence of charged particles in order to ionize. At sufficiently large densities and low

Log(p/[g em™])

4 5 6 7
Log(7/[K])

Fig. 4. This figure shows contours of the difference in pressure between including
and ignoring the W-term, in the sense logio|Alog,, P|. We have also plotted tracks
of stellar structure, for stars in the mass range 0.6-1.5M, as indicated above each
track. The dotted contour lines mark the hydrogen and second helium ionization
zones respectively, with contour lines in steps of 10%.

temperatures there are no such seed charges from the temperature ionization, and
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the pressure ionization due to the occupation probabilities can not occur. Even the
slightest amounts of metals, ¢.e. some elements with very low ionization potentials,
will supply seed-charges in a larger region than a pure hydrogen plasma. Introducing
helium will of course work in the opposite direction due to the high ionization po-
tential. To investigate the most extreme case (fewest seed charges) of astrophysical
relevance, we therefore performed the calculations for a hydrogen/helium mixture
with ¥ = 20% (by mass), but no metals.

From Fig. 4 we see that the pressure in the 0.6 Mg model is altered by less than
0.003% by introducing ¥. It looks as if the stellar tracks follows the iso-difference
curves for quite a stretch, but examining the stellar models more closely, we find that
the large temperature and density gradients in the outer parts of the star, causes this
region to be very thin. For the 0.6 M, model, it is centered around a relative radius
of r/R = 0.987, and already at 0.975 and 0.995, this difference has fallen by an order
of magnitude from its maximum.

The extent of the affected region is indeed thin, and the location is below the
super-adiabatic uppermost part of the convection zone and far from the photospheric
transition zone. These regions are even more shallow, but nevertheless very impor-
tant for the stellar structure, as they act as upper boundary conditions for the whole
star (Trampedach et al. 2004d). The thin region affected by ¥ does not have a cor-
responding importance and the implications for the star as a whole are insignificant.

The inner 94% of the star (by radius—99.8% by mass), on the other hand,
pressure ionizes perfectly by means of the occupation probabilities without any in-

tervention by the W-term.
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3.2.5 Conclusion

As can be seen from Fig. 4, the W-term barely affects any stellar models. By ex-
trapolating the stellar model-tracks in the figure a bit, we conclude that the pressure
in a 0.5 M, star is at most changed by 0.01% and for a 0.4 M, star, about 0.03%.
As explained in Sect. 3.2.4 the largest change even occurs in a very thin layer, in a
region of the star which responds linearely to such changes, i.e., hardly affects the
remainder of the star.

We conclude that the W-term is not a cause for serious concern regarding the

validity of the MHD EOS for stars down to masses of 0.4 M.
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3.3 MHD 2000

Prompted by helioseismic analysis and detailed comparisons with the principal com-
peting equation of state (EOS) project, we, Trampedach & Déppen (2004a), here
present an updated MHD (EOS) including a number of new phenomena, as well as
the previously published updates of improved electric micro-field distributions and
relativistically degenerate electrons. The main new features include higher order den-
sity terms in the Coulomb interactions, quantum effects including relativistic effects
and a new formulation of interactions that involve particles with zero met-charge,
abandoning the hard-sphere interactions. These changes expand the region of va-
lidity towards higher temperatures and densities, easily encompassing normal stellar
cores. We also include di- and poly-atomic molecules (in addition to the already
present Hy- and H3 -molecules), in order to include stellar atmosphere in the domain

of the MHD EOS.

3.3.1 Introduction

The equation of state (EOS) is an integral part of most astrophysical analysis, having
the two roles of supplying the thermodynamic state of the plasma, and of serving as a
foundation for opacity calculations by providing ionization- and dissociation-balances
and detailed populations of all electronic states.

In the late 1980s two very successful EOS emerged, both being parts of efforts
to improve on the opacities available to the astrophysical community: The Mihalas-

Hummer-Déippen EOS (Hummer & Mihalas 1988; Mihalas et al. 1988; Déppen et al.
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1988) as part of the international Opacity Project (OP) which is nicely summarized in
the two volumes by Seaton (1995) and Berrington (1997), and the OPAL EOS (Rogers
1986; Rogers et al. 1996), pursued at the Lawrence Livermore National Laboratory,
being the foundation for the OPAL opacities (Iglesias et al. 1987; Iglesias et al. 1992;
Iglesias & Rogers 1991; Iglesias & Rogers 1996; Rogers & Iglesias 1992a).

From detailed comparisons between these two, fundamentally different, approachesj
to the EOS (Déppen et al. 1990; Trampedach et al. 2004¢) and comparisons with he-
lioseismic inversions (Basu et al. 1999), a number of problems with the MHD EOS
have been identified. In particular, experiments with the partition functions (Gong
et al. 2001a), suggested that the fluctuating micro-fields in the MHD EOS were too
efficient at destroying highly excited states. This result was backed by direct com-
parison between a number of formulations for the micro-field distributions, including
those used in the MHD and the OPAL EOS (Iglesias & Rogers 1995). Recent work
by Badnell & Seaton (2003) indicate, however, that the equivalent level-populations
in the OPAL EOS are improbably high at high densities and temperatures. Nayfonov
et al. (1999) introduced an improved treatment of micro-field distributions, dubbed
Q-MHD, which also includes the effects of electrons screening the charges of the ions
(and vice verca). We have implemented our own version of Q-MHD, as detailed in
Sect. 3.3.6.

Helioseismic investigations by Elliot & Kosovichev (1998) showed a clear sign
of the Solar radiative interior not only being slightly degenerate, but also slightly
relativistic. We therefore include the work by Gong et al. (2001b) on relativistically

degenerate electrons, as well as a number of other relativistic effects in Sect. 3.3.3.
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In the Sun, relativistic effects become significant in the radiative zone, increasing
towards the center. Another effect of about the same magnitude at the solar center,
is the exchange interaction between identical particles, which we include in Sect.
3.3.5.

Trampedach et al. (2004c) recommended to introduce quantum diffraction (see
Sect. 3.3.5) and higher order terms in the Coulomb interactions (see Sect. 3.3.5), to
improve the agreement between the MHD and the OPAL EOS. Both these effects
were included in OPAL, but not in the MHD EOS.

In Sect. 9 we present the contributions from the exchange interactions between
identical particles, and derive an expansion for the relativistic exchange integral in
terms of the generalized Fermi-Dirac functions.

In the original MHD EOS, perturbations by neutral particles (atoms) was in-
cluded by means of the hard-sphere model. In order for the problem to remain
tractable this term was only treated up to first order in density, and second order
terms were included in an approximate way, as discussed by Trampedach & Dappen
(2004b). The hard-core interaction model is inherently flawed, as it introduces a di-
vergence for high densities and is undefined for densities higher than the close-packing
density of the spheres.

The interactions involved when neutral particles interact, are obviously still
caused by the charges of the particles constituting the atoms; In close encounters
between atoms, the electronic wave-functions will overlap and the nuclei will there-
fore no longer be completely screened from each other and net-forces arise. We

describe this phenomena by introducing the concept of effective charge in Sect. 3.3.5.
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In Sect. 3.3.7 we describe how we introduce molecules (other than H, and Hj)
into the MHD EOS, through parameterized partition functions. Inspired by the orig-
inal MHD EOS, we derive analytical approximations to the occupation probabilities

of molecules, based on the two molecules, Hy and Hj, that are treated in detail.

3.3.2 Chemical Compositions

In the following sections we will plot comparisons between the original and the present
updates to the MHD EOS. These comparisons obviously depend on the chemical
mixtures used in the calculations, and we therefore introduce the reader to our choices
of chemical compositions, before we proceed to the equation of state issues.

To facilitate comparisons with earlier work (e.g., Trampedach et al. 2004¢) and
with the OPAL EOS, we use a H/He-mixture and a 6-element mixture, as listed
in Tab. 1. We list the abundances in logarithmic abundance relative to hydrogen,
[N;/Nu|, which is normalized to 12. Mix 1 and 2 have helium mass-fractions of
Y = 20% and 16%, respectively, and a hydrogen mass-fraction of X = 80%. In Tab.
1 we also list the ionization potentials for the first ionization stage, xi, to indicate
the temperatures for which they start to add electrons to the plasma.

The 6-element Mix 2 has a metallicity more than twice that of the Sun, Z5 =
1.8% and a distinctly sub-solar helium abundance, Y = 0.245 (Basu & Antia 1995),
exaggerating metallicity effects with respect to most stellar applications. This is of
course useful for analyzing the effects of metals on the EOS.

Next, we need to address the issue of the best solar composition, .e., metal-
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Table 1. Chemical mixtures in [N;/Ny] (see text)

element  Mix 1 Mix 2  GN96  Optimized x;/[eV]

H 12.00000 12.00000 — — 13.59844
He 10.79902 10.70211 — — 24.58741
C — 8.90307 8.55000 8.55884 11.26030
N — 8.30307 7.97000 7.97000 14.53410
O — 9.23307 8.87000 8.87000 13.61806
Ne — 8.72077 8.08000 8.11100 21.56454
Na — — 6.32000 6.32895  5.13908
Mg — — 7.58000 7.58000  7.64623
Si — — 7.56000 7.56000  8.15169
K — — 5.13000 5.13000  4.34066
Fe — — 7.50000 7.65924  7.87052

mixture, to use for the final table calculations. The computational cost increase
drastically with the number of elements and the complexity (atomic number) of
the elements considered, but we also want to preserve the characteristics of the full
mixture. For the full mixture, we use the compilation by Grevesse et al. (1996)
(GNO96). As a measure of the characteristics of a particular composition, we use the

average charge

(Z) = NoZa/ Y N . (45)

where we sum over all ionization stages of all metals. We estimate the population of all
ionization-stages of metals along a solar stratification, using simple Saha-equations
(Saha 1921), with ground-level statistical-weights for the partition-functions. The
approximations here should be immaterial, since we only want an estimate of the

locations and the relative strength of ionization features.
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Fig. 5. The relative difference in mean-electron-mass, u., as a function of tempera-
ture in a solar stratification. The solid line is for the GN96 mixture truncated from
30 to 11 elements, and the dashed line is the optimized 11 element composition, as
listed in Tab. 1.

We truncate the GN96-mixture, and pad the remaining elements to best re-
produce the (Z) of the full mixture, as well as the average mass of particles in the
plasma. The optimization is performed on In{(Z) in order to capture the details of
ionization in the parts of stellar atmospheres where hydrogen is still only a minor
electron donor.

We find that a good compromise between speed and precision can be struck with
a ll-element mixture, comprised of the elements as listed in Tab. 1. The column

labeled GN96 is the GN96-mixture truncated to 11 elements, and the last column
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is the optimized version. The optimized mixture has a RMS-deviation from the
full GN96-mixture of 3.8% We see that most of the padding has been added to iron,
some is added to neon, and the rest is shared between carbon and sodium. Potassium,
with its ionization potential of 4.341 eV, the lowest of all elements up to 3’Rb which
is more than 300 times less abundant, is crucial for reproducing the details at low
temperatures. Leaving it out, results in over-all discrepancies of 22% and approaching
100% at low temperatures.

Optimizing just the four metals of Mix 2, results in an over-all RMS-deviation
of 45%. Below 6300 K the deviation increases rapidly to 100%, i.e., this mixture
supplies none of the electrons donated by the low-ionization-potential elements, like
sodium and potassium of the 11 element mixture. As can be seen from Tab. 1, Mix
2 has no elements with ionization potential below 11.26 eV.

In the rest of this paper, we will refer to the optimized nine metal-mixture as

the solar (metal) composition.

3.3.3 Relativistic electrons

This section is concerned with the consequences of an appreciable fraction of the
electrons having relativistic speeds, i.e., po & mec, where the masses of particles are
always understood to be rest-masses. We let the treatment of relativistic electrons be
dealt with prior to the other EOS improvements of the present paper, as it influences
most of these.

Due to their much larger masses, ions only become relativistic at temperatures
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exceeding 10'2 K. These temperatures are four magnitudes higher than considered in
the MHD EOS at present, and we can therefore safely ignore them for now.
For an ensemble of particles of species «, we use

kT

My C?

Ba (46)

as a measure of the importance of relativistic effects — the ratio of kinetic- to rest-
mass-energy. As mentioned above, we are only interested in relativistic electrons, and
drop the sub-script to simplify notation; 8 = (.. The present section is, however,
kept general, and applies to all fermions. Note that there is a lack of concensus in
the litterature on the definition of ; sometimes the inverse is used.

There are a number of effects arising from particles having relativistic speeds.
First of all, special relativity complicates the relation between momentum, p, and

kinetic energy, E, changing the general distribution function

8 2d
f(p, E)dp = W—Z% (47)
from (p? = 2mkE)
1/2
f(p, B)du = n*% (48)
to (p? = m?c?[(Bu + 1)? — 1])
2 _
o, Eydu =, YT L o (49)

1+ eun
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where u = E/kgT, and the normalization factor is

4
_ 3/2 _ —3
Ny = 3 (2mkgsT)*? = \/7_r/\ (50)
8m/2
= mic 33 (51)

The thermal de Broigle wavelength for particles of mass, m, is

)\0 = h/\/ 27ka'BT y (52)

and the subscript indicates that the thermal average is evaluated at n = 0, i.e., using
Boltzmann statistics.
The two distribution functions, Eqs. (48) and (49) have inspired the definition

of the (non-relativistic) Fermi-Dirac functions

©  y’du
Fy(n) :/0 [P (53)

and the generalized Fermi-Dirac functions

oo u¥y/1 + %ﬂudu
F,(n,8) = /0 e for > -1, (54)
neither of which have analytical integrals. We solve the generalized Fermi-Dirac
functions numerically, as described by Gong et al. (2001), who also lists all derivatives

up to order three. For convinience, we will list the two first-order derivatives, as we



CHAPTER 3. INPUT PHYSICS 70

will need them in Sect. 3.3.4. The differentiation is straight forward, and gives

o0 _ w1+ 36u  du (55)
on —Jo

1+ewn 1+

and

OF,(n,8) 1 peou’y/14356u udu
- Z/0 (56)

8 T+e 1 1+ 1pu’

From Egs. (49) and (54), we see that the number density of relativistically de-

generate particles, is

n = /Ooo f(p, E)dp (57)

= n. [Fia(n, B) + BFspa(n, B)] (58)

which is needed for normalization of ensemble averaged kinetic quantities, as e.g. the
- and O-factors discussed below.

The largest effect of the change of distribution function, is a change of the trans-
lational free-energy of electrons, F3. We follow the formulation of Gong et al. (2001b)
for F3 and its derivatives.

The change of distribution function, also means that ensemble averaged momenta
and energies will change. This has an effect on e.g. the degeneracy factors, . and
©e, modifying the electron screening contribution to the Debye-length, Eq. (61), and
the ensemble averaged De Broigle wavelength, Eq. (68), respectively. These factors
will be treated in detail below.

Yet another effect due to relativistic speeds, is that of retarded potentials, ac-
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counting for the finite speed of propagation of electric fields. It can be shown (See,
e.g., Chapter 8 of Landau & Lifshitz 1989) that the potential produced by a moving
charge, is

(59)

where R is the vector from the charge, to the point of observation.

3.3.4 The Free Energy of the Coulumb interactions

In the original version of the MHD EOS (Hummer & Mihalas 1988; Mihalas et al.
1988; Dippen et al. 1988), the Coulomb free energy, Fj, is approximated by the

Debye-Hiickel free energy

Fou === (60)
where Ap is the Debye length
2= 2T N+ S N, 72 (61)
P kgTV |0 S

Since most expressions involving Ap, does so in negative powers, we introduce the
inverse screening length, kp = Ag'. In the summation in Eq. (61), o runs over all
particles with a net charge, except for the electrons, for which we also include effects
of degeneracy through the f.-term.

The non-relativistic (NR) 6, used in the original version of the MHD-EOS,

GER = F—1/2(77)/2F1/2(77) ) (62)



CHAPTER 3. INPUT PHYSICS 72

is based on the interaction propagators, G, for the electrons (Cooper & DeWitt

1973)

G, 8tV ro pid 1
= 2 =T " pcp , (63)
N, BN, Jo ev1f11+envu

which can be generalized to the relativistic case by using Eq. (49). From Eq. (55) we

now recognize the integral as 0F,(n, 3)/0n, so that

_ 0Fy2(n, B)/0n + BOFy2(n, B) /01
Fiys(n, B) + BF3/2(n, B) ’

0, (64)

which through the recursion relation, (v + 1)F,(n) = 0F,,1/0n, yields the previous
result in the non-relativistic limit. This new expression for 6., however, does not
account for other relativistic effects in the plasma interactions due to, e.g., the retar-
dation of the potential. For lack of a better theory, we choose to limit ourselves to
the relativistic effect on 6,.

In Fig. 6 we show the f.-factor in the non-relativistic limit (solid curve) and
for 4 up to 1.0 in steps of 0.1 (dashed curves). Degeneracy of electrons strongly
inhibits them from contributing to the screening of the ions, i.e., since they can
hardly change state, because none are available to them, the electrons will act more
like a uniform, charged background. Relativistic effects only make the electrons
slightly more effecient at screening.

In the following sections, we will present improvements to the Coulomb free en-
ergy, based on quantum mechanical effects, higher-order density effects, and effective

charges to account for extended particles. The final expression for F) is summarized
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Fig. 6. The two degeneracy factors, 6, Eq. (64), and ©, Eq. (78). The solid
line shows the non-relativistic case, for which 6,(n,0) = O(n,0). The dashed lines
displays the relativistic 6, for § up to 1.0 in steps of 0.1, and the dash-dotted lines
shows the same for ©,. The behaviour in § is monotonic in both cases.

in Sect. 3.3.5.

3.3.5 Quantum Diffraction

In the original MHD EOS, Fpy was multiplied by a correction-factor to account for
limits on the distance of closest approach between two particles. This correction
factor has since been disputed (Trampedach et al. 2004c), and it was suggested to
abandon it for the more physical phenomenon of quantum diffraction.

Quantum diffraction removes the short range divergence of the Coulomb poten-
tial, by means of Heisenbergs uncertainty principle. The wave nature of the particles

results in finite charge densities at the position of particles, thereby leading to zero
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Fig. 7. The quantum diffraction term, as evaluted from Eq. (65) and (66). We

compare with the Padé-formula given by Riemann et al. (1995) and with analytical
expansions for small and large 7.

potential at » = 0. This effect results in a suppresion of the Coulomb interactions at

distances comparable to a de Broigle wavelength, which we accomplish with

1—e>®
(@) = — (65)
where
b
— 14— - 66
. m[ +1+%(W/6] (66)

with coeffecients

a = 1.5393236 and b = 0.22047583. (67)

As is evident from Fig. 7, this form of 7 and z, makes a very good fit to Eq. (10)
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of Riemann et al. (1995), but without the singularity at v ~ 1570. From v ~ 4 and up
to the singularity, the two fits differ by up till 0.6 %, but our fit is much closer to the
large y-expansion than to Riemann et al.’s fit in this region. We suspect that their
fitting coeffecients are merely published with too little precision. The asymptotic
behaviour of 7 for large, as well as for small 7, is the same as given by Riemann et al.
(1995).

The argument, v, is the center of mass de Broigle wavelength in units of a Debye
length. Defining the single particle de Broigle wavelength as A\, = h/pa, we can define
the thermally averaged, relative or center-of-mass de Broigle wavelength between two

particles, as

Xp = A+ N =1 (0 + (057)]

2
- D [%+%] , (68)
L

QkBT mpg

where we use

O, =1 for a # e

0. = (7%)/pa") - (69)

The general expression for (p~2) is

I pf(p, E)dp

O e By 0
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where E is the energy of the particle, p its momentum and f(p, F) is its distribution
function.
For the general case of relativistic Fermi-Dirac-statistics

8t p?

T B3 1 4B (71)

f(p,E)

we introduce the dimension-less energy u = E/kT, resulting in the relativistic ex-

pression for the momentum

p = mey(fu+1)2-1 (72)
dp = me (Bu+1)5du : (73)
(Bu+1)2-1

Using 4/(Bu + 1)?2 — 1 = \/2fuy/1 + pu/2, we can rewrite dp, which is also the main

part of the integrand of the numerator of Eq. (70), as

dp = TTLC\/g 1 +/Fu du (74)

J1+ BujzVu

Realizing that this is the [-derivative of the generalized Fermi-Dirac function, Eq.

(56, we obtain

dp . 8F_3/2 8F_1/2
71+6u"—2mc\/ﬁ[ e + 3 95 ] . (75)

For the denominator of Eq. (70), n(n, 3), We similarely obtain

2
p-dp
71 g = \/5(’[’)’1,0)3ﬂ3/2 [Fl/Q -+ ,BFg/Q] . (76)
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Combining Egs. (75) and (76), we finally obtain

(%) = 2 OF_3)3/0B + BOF_1)3/0p3 .

= 7
mekpT Fija+ BF3)2 (77)

In the non-relativistic limit the terms in § can be left out. The classical limit results

in (pSQ) = (meksT) !, and consequently

28F_3/2/8ﬁ + BOF_1,2/083

O, =
Fijo + BF3)0

: (78)

which accounts for the degeneracy of electrons, in the thermally averaged De Broigle
wavelength. It is trivial to also account for Fermi-Dirac statistics of ions, but because
of the mass difference we have chosen to ignore this, as also stated in Eq. (69). The
behaviour of O, is shown in Fig. 6. We notice that in the non-relativistic limit,
0e(n,0) = O(n,0), which can easily be verified by setting 8 = 0 in Eq. (56) and
compare with the non-relativistic 6, in Eq. (62).

From Fig. 6 we see that the average de Broigle wavelength of electrons decrease
both with increasing 1 and increasing 5. In both cases the momentum-distribution
will be peaked towards higher values and hence decrease the average de Broigle wave-
length. For # = 1, quantum-diffraction of protons will be equally important to that
of electrons at 7, ~ 51. At the 3 < 0.017 explored in the present paper, this does
not become a concern, even for an 7, which is orders of magnitudes larger than the

value above.
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Dividing X, with Ap, we now get

A 0. 051"
= B 79
Tap AV 2kgT lma * mﬂ] (79)

In order to incoorporate this one-component plasma (OCP) quantum diffraction
term into our multi-component plasma, we need to write out xp in the expression for
the Debye-Hiickel free energy, Eq. (60), and relate 7(y,3) to the pairwise interactions

between particles of species a and 3. We rewrite F} as

2\/me3
F NZ2 N 6 ae-i— Nz Z o &0
= T ¢ o72( Zﬁﬁrw (80)

and note that the 7’s has to be squared to come out right in the one-component
plasma case for which 7 was developed. OCP-7, but I would really appreciate some
comments/opinions - RT]

In order to save computing time, we define an average 7, that can be taken

outside the summation over elements

Za ]Vong[\/]VeeeT2 ('Yae) + Eﬁ NﬂZ§T2 (’Yaﬂ)
Ya NaZc%\/Neee + Zﬂ Nﬁzfg

T =

(81)

where the two sums in the denominator have decoupled again, as in the classical
expression for the Debye-Hiickel free energy, i.e., Eq. (60).

A very good fit to the above expression can be made from only two contributions

T~ Ni7(71) + (1= Ni)7(72) (82)
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Table 2. Coefficients, a;;, for Eq. (83).
Y1/ Yee 0 1 2 3 4 5
0 9.1782e-01 -1.1232¢-02 1.7127e-03 -4.2358e-04  6.0588e-05 -2.4894e-06
1 -4.7200e-02  4.3322e-03 -2.6263e-04 8.9617e-05 -1.1236e-05 4.3540e-07
2 1.0418e-02 -8.7279e-04 1.6545e-04 -7.2533e-05 9.7177e-06 -4.1137e-07
3 -1.9114e-03 1.5821e-04 -4.6280e-05 2.2475e-05 -2.9216e-06 1.1581e-07
4 2.1899e-04 -1.2414e-05  4.4749e-06 -2.4821e-06 3.0554e-07 -1.1137e-08
5) -8.6693e-06  2.1068e-07 -1.4091e-07 9.1226e-08 -1.0532e-08  3.4806e-10

where the first contribution is the combined electron-electron and electron-nucleon

contributions and the second is the nucleon-nucleon term.

The RMS deviations of the two-component fits are less than 0.25% throughout

the compositional X /Y -plane.

The three new parameters, N1, 71/%e and 72/7e. can furthermore be fitted to

binomials of order 5 in the X/Y-plane, e.g.,

()
()

Ny

= Z ainin

ij

= S b X'YI

ij

= Zcinin .

ij

(83)

(84)

(85)

We carried out this fitting procedure, using relative metal-abundances from

(Grevesse & Noels 1992), and obtained the fitting coefficients listed in tables 2—4.

Using the «’s and N;’s calculated from Eq. (83-c) results in overall RMS devi-
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Fig. 8. The RMS-deviations of the 7 evaluated from the 5th-order binomial fits,

from the exact expression, Eq. (81). The dotted contours are spaced 0.0125% apart
and solid contours are 0.05% apart.

Table 3. Coefficients, b;;, for Eq. (84).
Y2/ Vee 0 1 2 3 4 5
0 5.0211e-03 1.7181e-04 -7.1055e-05  3.0452e-05 -4.5304e-06 2.6472e-07
1 3.5494e-04 -1.1401e-04 2.4850e-05 -6.1806e-06 9.7417e-07 -4.4853e-08
2 -2.3679e-04  1.2572e-04 -1.4812e-05 3.5951e-06 -6.3073e-07 3.2206e-08
3 1.0054e-04 -4.4103e-05 5.8336e-06 -1.5860e-06 2.7030e-07 -1.3612e-08
4 -1.5879e-05 6.2142e-06 -7.6992e-07 2.2073e-07 -3.6915e-08 1.7905e-09
5} 9.5203e-07 -2.9630e-07 3.1661e-08 -9.4868e-09 1.5661e-09 -7.3255e-11

ations of less than 0.25% and single 7(7.) deviations of less than 2%. The largest
deviations, as seen in Fig. 8, occur at e ~ 10% around X = 0.7, Y = 0 — a rather

rarely encountered region of the X-/Y-plane.
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Table 4. Coefficients, ¢;;, for Eq. (85).

N 0 1 2 3 4 3
0 1.4213e-01  1.2357e-02 -9.3669e-04  6.5955e-04 -8.8170e-05  5.2504e-06
1 2.7666e-02  7.9054e-04 5.8247e-04 -1.9683e-04 2.8651e-05 -1.5253e-06
2 -1.8022e-05 8.3095e-05 -9.2704e-05  3.3238e-05 -4.1539e-06  1.5133e-07
3 5.6812e-04 -1.6656e-05 6.4215e-06 -3.4200e-06 1.6857e-07  7.5673e-09
4 -6.1064e-05 -2.9772e-07 -2.8268e-07  1.2400e-07  2.4253e-08 -2.7578e-09
3 3.0018e-06 -8.9259e-08  7.8630e-09 1.6651e-09 -1.9424e-09  1.4887e-10

For the moment we have neglected electron-degeneracy effects in the fitting of

7, but this can be remedied by using

ne AD\/W \/7 (7ee> (86)
» ADM \F (7) | 7

where the y-ratios are the no-degeneracy fits, that can be fitted with the coefficients
from Tab. 2 and 3 respectively.

This whole procedure might seem a bit complicated, but bear in mind that
the three parameters, Ni, 71/%ee and ¥2/7ee, need only be calculated once for each
composition, and during the bulk of the calculations, the number of 7-calculations

will be reduced by an order of magnitude.
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The Free Energy of the

Exchange interaction

The free-energy of the first-order exchange interaction is

e? 7?2

Fox = ZNaW)\iO [I(ﬂa) + «7(77047 ﬂa)] (88)

(Kraeft et al. 1986), where the sum extends over all particle species. The thermal
de Broigle wavelength, A, [See Eq. (52)], is based on Boltzmann statistics, and all
degeneracy effects are included in the exchange integrals, Z(n,) and J (7, Ba)-

We reformulate Eq. (88) by collecting all 7,-dependent terms in one factor, with

the relativistic effects included as a Taylor expansion

h?e? , 72
Fuoo= —— S N2Z22 ] (s Ba) -
= = eV hgT 2 Vo, JexMa Ba) (89)

In this form, it is easier to recognize the dependence on the independent variables,
particle-mass and -densities, the latter of which indicates the binary-interaction na-
ture of the exchange-term.

The exchange integral, Je, can be written

_ Z(n) + T (n,B)
Jex(na ﬂ) = [F1/2(77’ ﬂ) + ﬂFg/Q("?a ﬂ)P ’

where

Juc(,0) = Lon() = 21 (1)
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is the non-relativistic part. DeWitt (1961) derived an expression for I, amenable

to numerical integration

Loe(n) = I F31/2(77')d771 (92)
ex F12/2 (/]7) I
which is shown as the solid line in Fig. 9.
We find that I, can be approximated by the analytical expression
. B g1-1/B 11— e=An
IeXZQX[C +X] ) X_TT] (93)
using
4
A=1.0129034, B =1.5384386 and C = 94 - (94)

This fit agrees with a numerical integration, within 0.75%. The difference between
our fit and the numerical integration, is shown with the dashed line in Fig. 9, on
the right-hand-side axis. The fit is constructed so as to give the correct asymptotic
behavior in the non-degenerate limit: nli)r_noo Ix = 2, and in the completely degenerate
limit: "15130 I, = 9/(2n). This expression is an alternative to Eqgs. (39) and (40) of
Kovetz et al. (1972).

Following Kovetz et al. (1972), we write the integrals as

r2dxzy % g2dz,
e m+1Jo e¥2 41

% [ 2 1 n <y1y2—1+x1m2>]
iy  TiYiTaYs \YiYe— 1 —xi20 )|

I+J = 52/000
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Fig. 9. The exchange integral, Je (7, 3), as function of degeneracy parameter 7.
The upper solid line shows the numerical integration of I.(n), indistinguishable from
the fit of Eq. (93). The dashed line (right hand axis) is the relative deviation between
the numerical integration and the fit for Io,. The other lines show the behavior of
Jex with increasing f (in steps of 0.1) going from top to bottom. The fit of Eq. 103
is shown with dashed lines, but only discernible above 1 ~ 30.

where z; = p;/me,y; = /1 + 22 and u; = ;/kgT are the dimension-less momenta,
energies (including rest-mass) and kinetic energies for the two interacting (identical)

particles. We re-write in terms of u; and get in the general case

o0 duq 00 dus
1+ = | /
+J 0 e M4 1Jo e¥2 41 (96)

% {4Bm\/l+%ﬁu1\/l+%ﬂu2—ln.ﬁl ,
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where the argument of the logarithm is

A= Buiug + uy + ug + 2\/1@\/1 + %ﬂul\ﬂ + %&Q
Buiug + uy + ug — ZM\/l + %,@ul\/l + %ﬁUQ

(97)

From Eq. (54), we recognize the first term in the square-bracket of Eq. (96) as

In the non-relativistic case we get

- du, / Qo (98)
0 enm41Jo e¥2M41

with

.ANR _u + ug + 2\/“1”2

= ) 99
U + Ug — 24/U1Us (99)

Since the non-relativistic part has been solved through Egs. (91) and (92), we

only seek the relativistic correction

J = 4BFi)(n,B) (100)

_ /oo du1 /OO d’LLQ ln( A )
0 e m4+1Jo ewzm41 \ANR/ °

This integrand lends itself to expansions in the non-relativistic Fermi-Dirac in-
tegrals, as carried out by Kovetz et al. (1972). Since our code already evaluates rela-
tivistic Fermi-Dirac integrals, we instead perform the expansion in terms of F,(n, 3),

Taylor-expanding
A/ANR
\/1 + %5”1\/1 + 3Bus ’

(101)
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in u; and us.
After collecting terms with the same combinations of powers of u; and uy, we

finally obtain

T8 = 36, 0) + 56 F . 5) Eyln, )
+ 4—1853 [7F32/2(777 B) + 15F2(n, ﬂ)Fs/z(naﬁ)] (102)

_ %m (95F32(n, B) Fs2(n, B) + 105Fo(n, B) Frja(n, B)]

to the fourth power in (.
This Taylor expansion is, however, only valid in a rather small regime. In order

to improve on this, with only a slight sacrifice of accuracy, we generalize Eq. 102 to

T, 0) = eBFun,B)+ e Fija(n, B)Fs(n, 5)
+ 8% [eaF)5(n, B) + esFipa(n, B) Fipa(n, B)] (103)

- B [6495F3/2(77,5)F5/2(77a5)+€5F1/2(77aﬂ)F7/2(77,5)] ;

and perform a y?-minimization fit for the coefficients. The result is listed in Tab. 5.

Derivatives of 7 are listed in App. ?7.

Coulumb interactions beyond Debye-Hiickel

Going beyond the Debye-Hiickel theory is rather cumbersome, due to the long-range

nature of the Coulumb interactions. Density-expansions of the equation of state now
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Table 5. Coefficients for Jo, Eq. (103)

1 €;

1.51561928
0.26835826
0.01595827
-0.06476090
0.00468264
-0.00243785

Tt W NN~ O

reach n (DeWitt et al. 1995), but subsequent terms will take an even larger effort
to derive.

As an alternative, one can employ Monte-Carlo- and Hyper-Netted-Chain-simulations]j
of the one-component-plasma (OCP) to determine the deviations from the Debye-
Hiickel free-energy, Fpy. The main result from these simulations, is the internal
energy, U, which can be integrated to give the free-energy: F(T) = [y U(T)dI"/T,
where I' = (A%/3)'/3 and the plasma-parameter (for a particular particle species, a)

Zoz€?

Ay = .
ApkT

(104)

We express the free-energy as a harmonic average of the Abe cluster-expansion
(Abe 1959) for low density and the free-energy of a fluid, Fg, as found by Stringfellow

et al. (1990), plus a bridging-term and the zero-point, Fy, of the fluid-term,

1 1 1
_ n 105
g(A)  gabe ga+ go+ bsAe (105)
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Table 6. Coeffecients for g(A), Eq. (106)

1 bz €;

1 1.87077570 -1/3
2 -4.53518904 7/9
3 -0.18176156  -11/9
4 2.33750105 -1.72492756
5  3.59275987 —
6 0.48894000 —

where g, = F,(A)/Fpn, with DH denoting the Debye-Hiickel-term. We differentiate
this expression with respect to I', to obtain the corresponding gy = U/Upg. This
we then fit to the Monte-Carlo results of Slattery et al. (1982) for I' = [1;150],
Stringfellow et al. (1990) for I' = [150;200] and hyper-netted-chain simulations for
I' =[0.1;0.9]. For I' < 0.06 we fit to the Abe-expansion.

The best fit of the fluid-phase by Stringfellow et al. (1990) combined with our

fit, results in

ga + 90 + b4Ae4 = blAel + b2A€2

b5 + b6 InA

+ bgA% + by AT+ =

(106)

with coeffecients as listed in Tab. 6.

We need to check for self-consistency of the plasma potential, in the sense that

the potential energy of ion m in the field around ion n has to be the same as that of
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Fig. 10. The effect of higher order correlations on the free energy. The solid line is
our fit to g = F/Fpy, Eq. (105) and the dashed line is the corresponding gy = U/Upp.
The long-dashed line diverging at -0.5, is the Abe cluster expansion (Abe 1959), and
the dot-dashed line is the fit to the fluid-phase free-energy presented in Stringfellow
et al. (1990). The vertical dashed line shows the location of the transition to the
crystalline phase.

n in the field around m. This means that

OV, (0)  0Vi,(0)
oz. 07,

(107)

where n and m refers to single ions, not species of ions. Writing V,,(0) = eZkpg(An),

the derivative is

(108)
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If g contains powers of A, different from 0 or 1, we see that A, can not depend
explicitly on Z,. Also the average charge, z, from Eq. (104), need to be a root-mean-
square average, in order for the differential to be proportional to ZnZm, as in the
Debye-case.

Comparing with Eq. (104), we then obtain our choise for A,

|4 =3

Ao=A= )
47 Niot P

(109)

consistent with e.g., Graboske et al. (1975). Using this A in the expression for the

Debye-Hiickel free energy, we can re-write Eq. (60)

FDH - —%NtothTA (110)

Including the quantum diffraction from Sect. 3.3.5 just adds another term, also
proportional t0 Z,Zm, as Ynm only depends on Z through kp [c¢f. Eq. (79)]. This
also means that both methods, an average 7 or explicit 7(vnm), Will be equally self-
consistent.

The complete free energy of coulomb interactions is then

Fy = — Ntk TAg(A)T + Fox (111)
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Shielding by bound electrons

Z refers to the effective charge including the contribution from partly shielded core
charges of atoms or incompletely stripped ions, shielded by the bound electrons.
Assuming a simple exponential (s-orbital) distribution of electrons in the atoms/ions,
the effective charge felt at distance r is

1 T ,
Zo(r) = Zoa+AZ, (1 — ﬁ/o r?e™" ﬁ"‘dr')

(112)
—r/T 1 2
= ZO,a + AZae « 5 (—) + — 41

where AZ, is the atomic number of particle & minus its net charge, Z;,. We then
average this over the volume V' and obtain the average effective charge, felt by ho-

mogenously distributed particles,

3

~ Ry
Ty = R_g/o 72 Z,(r)dr

= Zoo+ AZy x (113)

(6003 — 2222 (1 + 3p, + 1002 + 2003 +202)] |

where p, = 74/Rs and R3 = 3V/(47N,). The term inside the bracket, makes the
transition from 0 to 1 in the interval p = 0.03-3.

In the previous version of the MHD EOS, the interactions with neutral particles,
were accounted for by means of a first order approximation to hard sphere model.

As this could be done, using the occupation probabilities, it was possible to include
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the effect of highly excited atoms, having large radii.

The second order term was also included, although assuming all particles to be in
their groundstate, through the W-term, analyzed by Trampedach & Dappen (2004b).
This rather ad-hoc term can now be abandoned.

The hard-sphere model is an unphysical model, as the model is undefined for
high densities. Apart from wrecking havoc with numerical schemes for solving the
equations, this is also unphysical as the interactions at small distances should merely
approach the Coulumb interactions between the bare charges of the nuclei. This is

exactly what is described by using the effective charge, Z, from Eq. (112).

The new F}

We summarize our changes to the Coulomb free energy,

Fy = g(A)TFpu + Fex , (114)

where g(A) accounts for the higher-order terms in the Coulomb interactions, arising
from the long-range nature of the Coulomb potential. The quantum diffraction-term,
7, accounts for the overlapping of particle wave-functions in close encounters, effec-
tively removing the short-range divergence of the Coulomb potential. The exchange
free energy, F,y, accounts for the interactions between wave-functions of identical
particles.

In addition to these changes, we have also changed all occurences of particle

charges from their net-charge, Z,, to an effective charge, Z.,, of particles of species a.
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This effective charge is the volume-averaged charge, assuming s wave-functions for
all electrons bound in species «, going from Z, at low density, to the charge of the
bare nucleus for inter-particle distances much smaller than the extent of the electron
orbitals.

Using this effective charge, supplies small seed-charges, which are needed for the
pressure ionization to set in, via the occupation probabilities. Using just the fixed
net-charge, Z, the plasma cannot pressure ionize at low temperatures and the original
MHD EOS therefore included a hard-sphere-term in the occupation probabilities, plus
an ad-hoc approximation to higher-order hard-sphere interactions, W. The latter
term was analyzed by Trampedach & Déppen (2004b) and found to be of very little

consequence for stars more massive than about 0.4 M.

3.3.6 Improved micro-field distribution

The occupation probabilities of the MHD EOS is based on the ionization of excited
atoms by fluctuating electric fields, as described by Pillet et al. (1984). The proccess
is itterative and goes as follows: The Stark splitting of levels moves the electron up
while the next higher level is moved down, crossing the occupied level and allowing
the electron to cross over. The field then changes sign, moving the level with the
electron, up to meet the next, down-shifted level, and the procces continues till the
atom is ionized.

The effeciency and range of this proccess clearly depends on the distribution

of amplitudes of this fluctuating electric field. A higher probability for large fields
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will make it less likely for even low lying states to survive, and will make pressure-
ionization very effecient and wvice verca.

The original MHD EOS use a linear approximation to the Holtzmark micro-field
distribution, which itself (Holtzmark 1924) is the result for an interaction free plasma,
i.e., the low density limit. Nayfonov et al. (1999) implemented analytical fits to a
higher order theory, and we, in turn, have implemented their work as part of the new
MHD EOS.

Our implementation differs a little from that of Nayfonov et al. (1999), in that
it is not optimized for speed but for flexibility. Our modular approach allows for
any formulations of the micro-field distribution to be employed in the occupation-
probabilities.

Following Hummer & Mihalas (1988), the propability of an electronic state 7 in

particles of species s to survive despite fluctuating electric fields, is

Fer

Wiy = /0 " P(F)dF = Q(FY) (115)

where FfF is the critical field-strength for ionization of this state, and P(F') is the
microfield distribution-function, and Q(F) is the accumulated microfield distribution-
function.

The field-strength is usually expressed in units of the field-strength due to pre-

turbers at the average ionic distance from the perturbed particle, Fy, i.e., § = F/Fy.
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In the MHD EOS the approximation

1 2 1/3
b ) | (116)

FO = a%Ne <9T

is used, with Njoy = 324 2e Vo, and ag being the Bohr radius.
The critical field-strength for ionization of level i of particle-species s with

ionization-energy x;s, is

—2/3

I(isX2 /64

Bis = 1673228 1N N, . (117)
Z’L +1 a;ée

The quantum-correction factor, K;s, as given in Hummer & Mihalas (1988), is

16( n )2 n+7/6
— n>3J
1 n<3

where n is the principal quantum-number of state 3.

The original MHD formulation used a rough fit to the Holtzmark distribution

—3/2

Qorig(ﬂi&) = e_ﬂis ) (119)

whereas Nayfonov et al. (1999) introduced

— f(ﬂisazsaa)
L+ f(Bis, Zs, a)

Q(Gis) (120)
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with
PG 2y ) = — TP (121)
1+ Cy(Zs, a)3;,
where
C1(Z,a) = P/(X + PsZ,a%) (122)
and
Co=PX, X=(1+Pa)™. (123)

The coeffecients were fitted to calculations based on the micro-field distribution func-
tions by Hooper (1966; 1968).

The resulting derivatives are listed in App. ?7.

3.3.7 Including more molecules

We wish to include more molecules in this EOS, in order to be able to use it as
a foundation for calculations of atmospheric opacities. The current calculations of
atmospheric opacities are often based on crude and old fashioned EOS, sometimes
lacking thermodynamic consistency. Also, the bound-free metal opacities are often
outdated, which we wish to remedy, by merging the metal opacities from the opacity
project (OP) and the improved calculations carried out as part of the iron project
(IP) (Hummer et al. 1993) with those of modern molecular line databases Parkinson
1992; Jgrgensen 2002, and references therein).

Molecules other than Hy and its ion, will necessarily exist in much lower con-

centrations, and will therefore have a smaller net effect on the thermodynamics. We
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therefore relax our precision requirements a little, and settle for parameterized parti-
tion functions, instead of including a detailed treatment of all bound roto-vibrational
and electronic states.

The entropy associated with a partition function ) is
TS =E+ NkgTInQ (124)
and therefore the Helmholtz free energy is
F=FE-TS=N|[Ey— kgThQ)], (125)

where Fj is the dissociation energy of the molecule with respect to the zero-point of

the implicated elements. For CH,, for example, we have

Ey(CHz) = Do(CHz) + Eo(C) + 2Ey(H)

= Dy(CHy) + Dy(Hs) ,

as neutral atoms are the zero-point for carbon and H, is the zero-point for hydrogen.
Sauval & Tatum (1984) give five-term expansions and coefficients for the parti-

tion functions of 300 diatomic molecules, expressed as

4
log,, @ = Z an(logo 0)", (126)

n=0

where § = (kIn10)~'/T ~ 5040 KeV~'/T. Irwin (1981) merged this list, with the
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JANAF list of poly-atomic molecules. By computing the EOS and opacities with the
full set of molecules, he determined which of these molecules are significant for various
stellar chemical compositions. Of these, we selected the 414 molecules containing only
one or two different chemical elements including, e.g., HoO, HyS and CH3;. Among
the molecules we consider, 315 are diatomic.

We reformulate the fitting formula, Eq. (126) in terms of the natural logarithm,
b, = (In10)!"a,, to simplify the derivatives (See App. ??). This gives the bound

state contribution, F5, to the free energy from molecules of type k, as

FQ,k(Q) = Ny |Eo — kgT i bin (InG)" | . (127)

n=0

We model pressure dissociation by multiplying the partition function at zero

density, (g, by a density dependent term

3 _1
fQ = (algfl/3 + a7 Qez) + 1] , (128)

so that

Q=@Qo[1— fole,T)] . (129)

This expression fits the pressure-dissociation of the H,- and Hy -molecules, which is
obtained from explicit accounting of 348 and 472 roto-vibrational levels, respectively,
treated in the same way as the atomic and ionic species as described in the rest of
the present paper.

In our approximate treatment of molecules, we neglect dependencies of the pa-
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rameters ag, as, e; and e, on chemical composition, and fit them to a table of Hy- and
Hj -partition functions calculated for our Z = 0.04-mixture (See Sect. 3.3.2). This
results in

ep =—4.15 and ey = —0.117 (130)

The dissociation reactions are

nxX +nyY +— XnXYny . (131)
which gives rise to the stoichiometric relations
oF oF oF
— —ny—=0. 132
ONx, v, “ONx Y ONy (132)
The number conservation equations now read
Jx
Z Nkm N + Z Njk = aNio (133)

where index, m runs over all molecules containing atoms of species k£, and j runs over
all ionization stages of species k. a4 is the normalized number fraction of species k
including all stages of ionization/dissociation.

In Fig. 11 we show the number densities of all species considered in a ¥ =
0.24, Z = 0.04-mix with the metals comprised of C, N, O and Ne. The various line-
styles were employed to make it easier to follow the individual species, which are

labeled at their maximum density. The thin, solid lines are the results using the EOS
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of the Uppsala-package, which is part of the MARCS stellar-atmosphere-code.

We see that the two versions are fairly close on the scale of Fig. (11), but we also
notice that the Uppsala-package systematically under-estimates most of the molecules
by 10-30% and the NH-molecule by a full 100%. The electron- and H™-ion densities,
on the other hand, are over-estimated by about 5%, as seen in Fig. (12). The com-
parisons are performed on a solar model and the vertical dashed lines in both plots,
marks the solar Toq = 5777 K.

The differences are mostly due to the update of molecular dissociation-energies

and partition-functions, going from those of Tsuji (1973) to those of Irwin (1981).

3.3.8 Energy levels of the Hy- and Hj-molecules

In the original MHD EOS (Mihalas et al. 1988) the empirical anharmonic-oscillator
and vibrating rotator constants by Herzberg & Howe (1959) were used, resulting in
284 roto-vibrational levels of the ground electronic state (it was found that excited
electronic states would only have a marginal impact on the EOS). For the present
work, we employ the 305 levels observed by Dabrowski (1984), supplemented by 43
levels from the ab initio calculations by Waech & Bernstein (1967), as presented in
Irwin (1987).

Level-energies for the Hj -ion was based on the dynamical constants evaluated
by Vardya (1966), adjusted to obtain agreement with the calculation of Hunter et al.
(1974) for the higher levels. We presently use 472 levels from ().

These changes have a rather marginal effect on the EOS in the solar case—even
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on the scale of helio-seismology. The effect on pressure and yx, is to lower them by less
than 10~° in bumps around temperatures of 5000 and 25000 K, and  is increased
in a similar fashion, by up to 5 x 107°. The adiabatic exponent, 7, is lowered by
5 x 1075 in the solar atmosphere, below 7000 K and displays some ten times smaller

wiggles around zero, up to 70000 K.

3.3.9 Conclusion

The improvements to the MHD equation of state, presented in the present paper,
extend the range of applicability, compared to the original domain of stellar envelopes.
In Sect. 3.3.7 we include 315 diatomic and 99 poly-atomic molecules and molecular
ions, extending the range of this EOS to also include stellar atmospheres. Both in
itself, and as the foundation for calculation of new atmospheric opacities, this will
have implications for stellar atmosphere modeling. It also opens up the possibility of
using the exact same EOS (and later also opacities) for detailed atmosphere modeling
as for stellar structure and evolution calculations.

The treatment of quantum effects, i.e., quantum diffraction (See Sect. 3.3.5)
and exchange interactions (Sect. 9) improve the performance of the EOS for higher
densities and in stellar cores. Of the two quantum effects, the exchange terms has the
largest effect on a solar stratification, changing both the pressure and the adiabatic
exponent in the radiative core.

We include relativistic effects, in the spirit of Gong et al. (2001b), but we also

include relativistic effects in the degeneracy factors 6, and O, affecting the screening
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length and the de Broigle wavelength of electrons, respectively. Relativistic effects
are also included in the exchange integral, presented in Sect. 9. These changes only
affects the high-temperature region, and has a measurable effect in the solar core.
The key ingredient in the MHD EOQOS is the occupation probabilities, determin-
ing the probability that a given state of an atom or ion is so heavily perturbed by
collisions with other particles, that it is destroyed. The original occupation probabil-
ities (Hummer & Mihalas 1988) included perturbations by charged particles, through
the distribution of amplitudes of the fluctuating electric micro-field, approximated
by a linear fit to the Holtzmark distribution. In Sect. 3.3.6 we include the work by
Nayfonov et al. (1999) on a micro-field distribution that also accounts for correlation
effects from the screening of ions by electrons. This introduces a lot of new structure
in the EOS along a solar stratification, and will have consequences for inversions of
solar p-modes (Christensen-Dalsgaard & Dappen 1992; Basu & Thompson 1996).
The original occupation probabilities also included a hard-sphere term, to ac-
count for perturbations by neutral particles. Since this term was only linear in density,
an approximate second-order term, ¥ was included to ensure pressure ionization in
cold plasmas. We have abandoned both of these terms for the more physical concept
of effective charges (See Sect. 3.3.5); A neutral atom is not a hard-sphere, but a
nucleon with a fixed charge, a some smeared-out distribution of electrons around it,
resulting in a zero net-charge. Interactions between neutral atoms arise from close
proximity, causing the electron wave-functions to overlap and only partially screen
the nuclear charge. By introducing this concept all particles can be treated on an

equal footing in the MHD EOS. This has a rather small effect in the Sun, close to the
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top of the convection zone, but changes the EOS at lower temperatures and higher
densities.

The single most important change is the incorporation of higher-order terms
in the Coulomb interactions, which extends the validity of the EOS towards higher
R, and brings the EOS in the solar convection zone closer to that of the OPAL
EOS. There are still differences, however, and it will be interesting to see how the
present work and the newly updated OPAL EOS (Rogers & Nayfonov 2002), fare in
helioseismological inversions.

This new version of the MHD EOS will have a direct effect on stellar and solar
structure calculations. If the changes cause an improved agreement with a helio-
seismological structure inversion, it might be relevant to re-visit the seismological
determination of the solar helium abundance (Basu & Antia 1995) and convection-

zone depth (Christensen-Dalsgaard et al. 1991; Basu & Antia 1997).
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3.4 Opacity

In the early 1990’s the astronomical community witnessed a quantum-leap in atomic
physics. The OPAL-team (Rogers & Iglesias 1992a; Rogers & Iglesias 1992b) and
the “Opacity Project” (OP) (Seaton 1995; Berrington 1997) published independant
calculations of opacities for astrophysical applications. They were based on the OPAL
EOS and the MHD EOS, respectively, which are compared in detail in Sect. 3.1.1.
The level of sophistication in the calculations were hitherto unheard of—mo more
semi-classical approximations and hydrogen-like ions.

The two decades since then have seen an explosion in research in this field, both
theoretical and experimental:

Aguilar et al. (2003) have measured the absolute photo-absorption by the Mg™-
and Al**-ions, Kjeldsen et al. (2002b) that by the Fe-ion, Kjeldsen et al. (2002a)
that by the NT- and O*-ions and Kjeldsen et al. (2001) that of the C*-ion. These
measurements are very impressive, and once and for all demonstrate that the very
complicated and intricate structures in photo-absorption coefficients that we have
been treated to since the OP- and OPAL-opacies were first published, are actually
real—not a mere figment of imagination of a quantum mechanic.

One of the main improvements in the ab initio calculations of absorption co-
efficients, is the inclusion of relativistic effects. The calculations are performed by
means of the close-coupling R-matrix method (Seaton 1987), as was implemented in
the OP work. As part of the iron project (IP) (Hummer et al. 1993), these calcu-

lations were extended to also include relativistic effects in the so-called Breit-Pauli
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(BP) approximation and all-together this is called the Breit-Pauli R-matrix method
(BPRM). The BP approximation includes spin-orbit interactions, which breaks the
LS symmetry and gives rise to fine-structure and can even cause resonance lines
below the ionization-treshold.

A detailed comparison between BPRM-calculations and experiment has been
carried out by Nahar (2003) for the first four ions of oxygen. The agreement between
theory and experiment is in general very impressive. The various resonances are not
only in qualitative, but most often also in quantitative agreement, both with respect
to position and strength.

Badnell & Seaton (2003) present a comparison between the original OP Rosse-
land opacity and a new calculation also including inner-shell absorption by C, O, S
and Fe (a mixture chosen for comparison with OPAL). The comparison shows up to
a 25% increase of the Rosseland opacity around T = 4 x 10° K and largest for high
densities. These opacities are based on the Q-MHD (Nayfonov et al. 1999) formula-
tion for the micro-field distribution, P(F'), as is also the case with the improvements
to the MHD EOS presented in Sect. 3.2.5, the two therefore being compatible and
consistent with each other. In the opacity work, P(F') is used both for evaluating the
occupation probability and hence the populations of the electronic levels of atoms
and ions (See Sect. 4 of “MHD 2000” on p. ??), as well as for computing the Stark
broadening of lines of hydrogenic ions.

Since MHD 2000 also includes molecules, we here have a chance to compute
the first set of consistent, unified opacities, with monochromatic opacities at low

temperatures, suitable for detailed atmosphere calculations, as well as Rosseland
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opacities for stellar structure calculations. The former will of course be a valuable
improvement for the convection simulations too.

The last decades opacity improvements also include a number of density effects.
Allard et al. (1994; 1998) evaluated the electric dipole moment of two hydrogen atoms
passing close to each other, and found that interactions with the bound states in the
Hjy-molecule introduced resonances in the wings of the Lyman lines of hydrogen,
as well as provided a natural cut-off of the line-wings. The resonances are density
dependent, some linear and some quadratic in density, and were soon found in the
spectra of white dwarfs (Koester et al. 1996).

The dipole moments from hydrogen molecules or a helium atom and a hydrogen
molecule passing each other, results in broad continous opacity (Borysow et al. 1989;
Borysow & Frommbhold 1989) dubbed Collision-induced absorption (CiA).

Both of these should be fairly trivial to include in the final opacities, greatly
broadening the range of applicability, matching the range of the underlying EOS.

In light of the improvements to the high-density EOS and corresponding opaci-
ties, it would be interesting to continue the work by Ludwig et al. (1994) on simula-
tions of convection in white dwarfs. Here the convection zone is so thin that it can be
fully contained in the simulation domain, including convective overshoot at the base
of the convection zone. Since there are several categories of pulsating white dwarfs,
such convection simulations could be coupled with a seismological analysis to further
constrain models of white dwarf structure, as well as their cooling history.

As work on the improved MHD EOS is not completed yet, the calculation of

corresponding opacities is a project that will be organized in the near future.



Chapter 4

Radiative Transfer

4.1 Opacity sampling for 3D convection simula-

tions

We, Trampedach & Asplund (2004), present a method for performing opacity sam-
pling on a very small number of wavelengths, applicable for multi-dimensional and
dynamic cases such as, e.g., 3D simulations of convection. We show that we can
reduce the number of sampled wavelengths by a factor of 2000 and still be within a

percent of the result with 10° wavelength-points.

4.1.1 Introduction

In radiation-hydrodynamical 3D simulations of convection in stellar atmospheres,
the coupling with radiation is crucial in determining the efficiency of convection

(Nordlund 1985; Nordlund & Dravins 1990). A realistic treatment of radiation is
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therefore important, and should as a minimum include the effects of spectral lines in
some way. So far this has been done by binning the total (continous+lines) opacity
according to strength and using as a source function, the accumulated source function
of the wavelengths belonging to each bin (Nordlund 1982). We explain this opacity
binning in more detail in Sect. 4.1.2.

Solar simulations show good agreement with line-profiles and bi-sectors, with-
out the need for the usual macro- and micro-turbulence parameters (Asplund et al.
2000a). Also the use of a horizontally- and temporally-averaged simulations, matched
with a 1D solar model for the interior, greatly improves the agreement with observed
high-degree p-modes (Rosenthal et al. 1999). There is also at least a superficial agree-
ment with the granulation structure, although a more quantitative analysis has yet
to be carried out. Simple Fourier-analysis is not adequate, as shown by Nordlund
et al. (1997).

There is, however, still some disagreement with limb-darkening data, hydrogen
Balmer-line profiles and the cores of strong lines. We also see a little too much flux in
the ultra-violet. These minor, but significant remaining problems have prompted us
to look into improvements to the scheme for solving the radiative transfer problem.

The most direct way of evaluating radiative transfer is to discretize in wavelength
and use enough wavelength-points, Ny, to capture the physics of the full calculation.
This is the brute-force method, but it also is the only way to ensure convergence to
the complete calculation. The method is called opacity sampling (OS) (Sneden et al.
1976) and is elaborated on in Sect. 4.1.3.

Since Ny = 10° are needed for randomly distributed wavelength-points to repro-
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duce the full calculation, opacity sampling is prohibitive for multi-dimensional and
dynamic cases. This has lead us to investigate whether a small number of wavelength-
points can be carefully chosen so as to reproduce the main-effects of the full radiative
transfer. In Sect. 4.1.4 we describe our method for choosing wavelengths and we
compare (in 1D) the Ny ~ 10° OS-case, with our new N, ~ 50 case in Sect. 4.1.5.
We call our new method sparse or selective opacity sampling (SOS).

The motivation behind this work, is the anticipation that a more direct method
for evaluating the radiative transfer, i.e., using actual opacities and source functions
instead of binned quantities, will more accurately span the range of a convective
atmosphere. We address this issue in Sect. 4.1.6 where we compare the opacity
sampling, the opacity binning and our new method, for a vertical slice of a solar
simulation.

This is a continuation of work presented in (Trampedach & Asplund 2003).

4.1.2 Primer on Opacity Binning

Currently the simulations employ an opacity binning, or multi-group scheme, as
described in detail by (Nordlund 1982). This scheme relies on a monochromatic,
forward calculation performed on the average structure of the simulation; the cal-
ibration stratification. Wavelength-points are then grouped together depending on
their opacity and the result of the of the 1D radiative-transfer calculation performed

on the calibration stratification.
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The discretized version of the radiative heating is
Ny
/ KI)\(J)\ — B)\)d/\ >~ K'sz(‘]z — Bz)wz s (134)
A i
where we have defined the relative opacity
Ty = Ka/K (135)

with respect to k, the standard opacity is defined in Eq. (141) below.
The next step is a reordering of the wavelength points into groups, i, where j(7)
is the set of wavelength points that fall in bin 7. The bins of relative opacities are

chosen to be logarithmically equidistant
r; = 10 (136)

with 7 = 0,1,2,3 and @ = 1. A wavelength j belongs to bin 7 if 7,; reaches unity
within the interval 7 — % <logT < i+ % of the standard optical-depth, d7 = pkdz.

The weight of bin 7 is simply

w; = Zu»\j . (137)

The approximation inherent to the opacity-binning scheme, consists of assuming the
z; of all members, j(¢) of bin 7, to display the same behaviour with depth. In that case

the average opacity, x;, and the average source-function of the bin, can be de-coupled
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to yield the pseudo Planck functions

Byw; = ZBAijj ) (138)
()
This approximation is obviously rarely ful-filled. If the members of a given bin,
correspond to lines of ions/atoms with similar excitation/ionization characteristics,
the approximation will likely be valid. With a mix of molecular, and high- and
low-excitation-potential atomic and ionic lines the approximation will not hold.
The pseudo Planck functions are functions of temperature only through the
temperature dependence of B,, since the bin-membership of a wavelength is fixed for
the whole temperature-/density-area covered by a given simulation.
To calculate the standard opacity, we observe that in optically thick layers the
diffusion approximation holds and radiative transfer can be described in full by a

single opacity, the Rosseland mean opacity

o0 1 0B,
—d\
/0 Kx + O oT
© 0B, ’
—=d\
o OT

(139)

R =

where scattering, o, is included. For 7 — 0, on the other hand, the intensity
weighted mean

(k)J = /0 7 kadadA (140)

without scattering, reproduces the fluxes of the monochromatic solution (Mihalas

1978, Chapter 3.2). An ad-hoc bridging function is used to interpolate between the
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two cases, resulting in the standard opacity
k=e 0 (k) + (1 — e 7)R". (141)

The * furtermore indicates that Eq. (139) is evaluated from the continuous opacity

only, excluding lines, and

—Tx. /2
D hdae i wy,

_J

- —7Tx. /2
> T
J

(k)" (142)
is weighted towards optically thin wavelengths.

The (pseudo) source-functions and the interpolated opacity are then used for
the radiative transfer in the 3D simulations. The angular integration to obtain the
mean intensity is evaluated by keeping the simulation box fixed and interpolating it
to a tilted grid, exploiting the periodic horizontal boundaries. Only the rectangular
part of the box having standard optical depth 7 < 300 is used for the radiative
transfer calculations, and this part is furthermore rescaled to optimally resolve the
temperature structure.

For each angle, the radiative transfer is thus solved Ny, times; we typically
use Npin = 4, and Ny = 2 and N4 = 4 for the latitudinal and azimuthal angular
resolution, respectively.

There are a number of weak points in the method, as implemented: The bin-
membership is determined from the 1D average structure of the simulation, which

will most likely not correspond to the stratification experienced by any of the rays
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of light going through the simulation. Since radiative transfer is a highly non-linear
problem, the heavy reliance on this reference stratification is troublesome.

The choice of bridging function between the optical deep and the optically thin
opacities is rather arbitrary. The right limits are of course ensured with this expres-
sion, but the details of the transition are not.

Instead of the actual opacities of each bin 3 ;) zx;wy;, the log-equidistant opac-
ities, z;, are used. This approximation was used to minimize the size of the table, in
the early days of these simulations, and can be abandoned now (Skartlien 2000).

Another weakness of the implementation of the opacity binning, is the calculation
of Rosseland mean-opacities. The bf-(bound-free-)opacities are calculated for the
whole table, whereas the bb (line-) contribution is only included in the 1D calibration
stratification. The effect of lines is then extrapolated to the rest of the table, assuming
the same ratio between opacities with and without lines along iso-7 contours. It
turns out that points in the simulations that have the same optical depth, are highly
correlated in p and 7T, and fall along a narrow line.

There is no reason that the factor correcting for lines, should depend in any
simple way on the optical depth, but the bridging function between optically thick
and thin, should, and we simply employ the same extrapolation scheme for both.

We abandon most of these approximations in our SOS method, except for the
reliance on a 1D calibration stratification. We show that the SOS method depends
more weakly on the calibration model, than does the opacity binning, thus resulting
in a more accurate local radiation field in the simulations. This will be addressed in

Sect. 4.1.6.
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4.1.3 Primer on Opacity Sampling

Opacity sampling (OS) consists of performing monochromatic radiative transfer for
a large number of random wavelengths. It is a statistical method because of the
random selection of wavelengths (in practice, equally spaced in, e.g., log)). Because
of the extremely complicated behavior of stellar opacities, more than 10* wavelengths
are needed before the procedure converges. For early type stars and metal-poor stars
a larger number of wavelengths is needed, in order not to miss the rather few but
important lines in their spectra. Full OS is therefore prohibitively expensive for 3D
hydrodynamical simulations.

Conventional 1D stellar atmospheres have been modeled with opacity sampling

by, e.g., Plez et al. (1992), Kurucz (1995) and Asplund et al. (1997).

4.1.4 SOS

Our aim is to reproduce the NP ~ 10° OS solution, with orders of magnitude
smaller number of wavelengths, NJ©% ~ 50. The straight-forward method, of going
through all combinations of NY°% wavelengths, and finding the set with the smallest
RMS deviation from the full solution, is rather prohibitive; It would require the

N3® RMS-differences. We therefore have to perform some pre-

computation of (NQ5)
conditioning of the problem to make it tractable. We do this by dividing the spectrum
into Neg Tegions and each region into Ny, bins, and then choose one wavelength that

best represents the total of the bin. The RMS fitting is then carried out only within

a bin or between two bins, reducing the dimension of the problem to the order of
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NP5 /NSOS or (NP5 /NSO%)?, with NOS = Nigg X Npi.

Our scheme for selecting the NY95 wavelengths is performed on the 1D reference
stratification, and proceeds as follows:

1) We divide the spectrum into Ny, regions, by requiring each region to radiate
the same amount of energy at 7 = 1.

2) In each region, the member-wavelengths are grouped together, or binned,

according to the position of the minimum of the monochromatic radiative heating,

g\ = Ii)\(J)\ - B)\) y (143)

where J), is the usual zeroth moment of the monochromatic intensity and B) and k)
are the monochromatic Planck-function and opacity, respectively. Note that this ex-
pression includes scattering despite the absence of the actual source function (Mihalas
1978).

The location of the maximum cooling (minimum of g, ) is calculated as the center-
of-mass of all cooling above 7, = 1 (i.e., 7» < 1), and wavelengths with no cooling
above that, are counted as continuum bins, i.e., having cooling peak around 7, ~ 1.

The limits of the bins are determined for each region, depending on the distri-
bution of loci of heating minima. With equidistant bins, some bins will invariably
turn up empty, but we also want to make sure that even sparsely populated regions
of the 7-scale are represented well.

Our solution is to fit Ny, Gauss-functions, to the logarithm of the distribution

function, substituting -2 for log(0), to make any non-zero regions of the distribution
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function stick out prominently against the background. We also add in a small
repulsive potential between the Gaussians, in order to avoid degeneracy. The limits
of the bins are evaluated as the mid-point between the centers of the Gaussians. The
whole procedure has proven very robust in real applications.

3) We have now chosen the Nreg regions and the Ny, bins, and need to decide
on the criteria for choosing the NJ©% wavelengths representing these bins. The key
quantity for the simulations, is the radiative heating/cooling, ¢, which directly deter-
mines the effect of the radiation field on the hydrodynamics. We also need to ensure

a physically meaningful connection to the equilibrium state and observables, in this

case the flux. In principle the radiative flux can be determined from integration of

SOS
rad

0S

aq Will in general fluctuate

the heating, but since the spatial deviation of ¢33 from ¢
wildly, a separate constraint on the flux is important. Secondarily, we also want to
be able to calculate consistent radiative contributions to the pressure and internal
energy of the stellar plasma. For this we need the zeroth and second moments of the
radiation field; J and K, respectively. We also find it useful to demand that the total
Planck function is close to the nominal B = oT™*/w. A sixth quantity that could
prove useful, is the Rosseland averaged opacity. This turns out to result automati-
cally for 7 2 1 when the five previous quantities have been fitted for, as is evident

from Fig. 13.

We consequently fit for

f

o(r) H(r) B(r) J(r) K(7)
{\min(q)\’ He ' J(102) J(102) K(102)} ’ (144)
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where Heg = 0Ti/(47) and o is Stefan-Boltzmann’s constant. The normalizations
in Eq. (144) are necessary in order for the different quantities to carry similar weight
in the fitting. The use of J, K and B at 7 = 100 is somewhat arbitrary, but it seems
to result in a fair weighting compared to H and gq.

4) We define the weight of bin j of region i, as

wi; = Y, wy (145)

)\Ebini]’

and

fijwg = Y fawx, (146)

A€bin;
and we similarly define w; and f; of region i.

5) For each region, we find the two bins with most members and fit the Ny, — 2
other bins individually, minimizing RMS(f;; — f»), and using the weight, w;;, on the
resulting representative of that bin, f7.

6) The two remaining bins, j; and js, of region 7, are optimized jointly to repro-

duce the remainder of the region

Nbin

firowine = fi = Y fiowig, = [efiy 4+ (1 — €) fiylwine (147)
k=3

where w; 12 = wj; +w;2 and € = {0,0.2,0.4,0.6,0.8,1}. For each combination, {ji, j2},
we compute the RMS deviation for the six values of ¢, find the interpolated mini-
mum and the associated €min(j1,J2). The smallest of these interpolated minima then

determines j; and js and is used with €y;, to finally find fifu-
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7) This ends the task of finding the Ny, wavelengths A(7, jx), & = {1,..., Npin},

reproducing region ¢, and the whole procedure is simply repeated for the other regions.

8) In the end, we refine the fit by optimizing the weights, w;; — w;;, by means of
a x*-minimization performed on the logarithmic weights (to ensure positive definite
weights) and enforcing conservation of the total weight, 3=, wi; = Z{V *wy,. This last

fSOS

step does improve the agreement between f©5 and , and we prefer to leave it in,

despite the weakening of the definition of the weights.

4.1.5 1D radiative transfer

We have carried out the wavelength selection procedure, detailed in Sect. 4.1.4, on a
number of MARCS models (Gustafsson et al. 1975; Asplund et al. 1997), as shown
in Fig. 1. The atmosphere parameters are listed at the top of the plot. We have
plotted both the full 10° wavelength MARCS results and our corresponding results
with just 50 wavelengths, but the differences are only immediately visible in Kgoss for
which we did not fit. For the other quantities we also plotted the differences (dashed
lines, right hand axis). The photospheric dip in the heating, gr.q, arise from the
transition from convective to radiative transport of the flux. In the second plot from
the bottom, 3K is larger than B, which is larger than J, only diverging above the
photosphere. In this plot we only plot the .J-differences, which is representative of the
B- and K-differences too. We see that our method is successful in reproducing the
full radiation field to within a percent. The metal-poor atmosphere (middle-right)

is easiest reproduced with few wavelengths, whereas the red giant (left) causes more
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Fig. 13. Heating ¢, flux H, J, B, 3K and Rosseland opacity for four of the

test cases (horizontally). In the three upper panels, the dashed line (right axis) is
the differences in the sense SOS — monochromatic. In the lower panel the dashed
line is the Rosseland opacity from our method. The horizontal dotted lines are the
zero-points for the differences, and the vertical ones show the location of 7 = 1.
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problems due to the many molecular lines in the rather cool atmosphere.

Notice that this is opposite the case for pure opacity sampling. The reason
being that with SOS, we have the freedom to choose our wavelengths to cover the
few but prominent lines, whereas with OS the wavelengths has to be chosen randomly.
The SOS method is obviously not interesting for conventional 1D stellar atmosphere
models, as it relies on a full OS evaluation of the radiative transfer in the reference

stratification, as detailed in Sect. 4.1.4.

4.1.6 Spanning convection

In Fig. 14 we test the old and the new method on the heating in a vertical slice of a
solar simulation snapshot (Stein & Nordlund 1998; Stein & Nordlund 1989; Asplund
et al. 1998). We plot deviations from the “monochromatic” calculation, averaged
over the horizontal dimension of the slice. Solid and dashed lines denote plain- and
RMS-averages respectively, and the old opacity binning is shown with thin lines, and
the new SOS method is shown with thick lines. The reference (“monochromatic”)
model in this case is based on the ODF's used in the ATLAS atmosphere-models of
Kuruez (1992¢), with 230 ODFs of 12 points, corresponding to 2760 “wavelength”-
points. This is a far smaller set of wavelengths to choose from, and the fit for the
1D average of the slice is about 10 times worse than what we saw in Fig. 13 for the
MARCS models (Note that this does not say anything about the accuracy of MARCS
or ATLAS models). In the future, the plan is to base our wavelength selection on a OS

calculation for the 1D average stratification of the simulation with 10° wavelengths,
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Fig. 14. Comparison of the heating from the opacity binning (bin, thin lines) and
our new method (SOS, thick lines), with the “monochromatic” case (see text). A
(-..) denotes horizontal averages over a 1.5x6 Mm, 82x200 point vertical slice from a
solar simulation (solid). RMS denotes the corresponding horizontal root-mean-square
averages (dashed lines).

but for now, we can test our new method on the ODF case. The accuracy should
increase with more choices of wavelengths.

From Fig. 14 we see that our wavelength selection is more stable against convec-
tive fluctuations than the opacity binning method. Some of that is due to our new
method explicitly fitting for ¢(7) of the average structure, whereas the opacity bin-
ning is a forward calculation, with no feed-back mechanisms (i.e., no iterative fitting
scheme). We see that both the average- and the RMS-deviations over the slice are

smaller with our new method.



CHAPTER 4. RADIATIVE TRANSFER 124

The transition from convective to radiative transfer of the flux, is accompanied by
a radiative cooling-dip. In Fig. 13 we see the difference between the monochromatic
and the binned case, exhibiting both a positive and a negative “bump” around logr ~
1. This is the tell-tale sign of the cooling-dip in the binned solution is located (on
average) a little higher in the atmosphere, than is the case in the full OS solution.

Such a feature is not present in the SOS solution.

4.1.7 Conclusion

This first feasibility analysis has shown that

1. It is indeed possible to find 50 wavelengths that can represent the radiative

transfer of a full OS calculation with 10° wavelengths.

2. Both the heating and the first three moments of the intensity J, H, K are well

reproduced.

3. Although the Rosseland opacity does not enter in our fitting criteria, it is

reproduced to within 1% in the optical deep layers.
4. The proposed selective opacity sampling method is more stable against the

convective fluctuations than the opacity binning.

We have yet to implement the new method in the 3D convection simulations, but

these first tests are very promising.



Chapter 5

Improvements to stellar structure
models, based on 3D convection

simulations

As a part of the grander scheme, to better understand stars, improved models of
stellar structure and evolution are obviously key ingredients.

In chapter 3 I presented an analysis of one of the leading equation of state
projects, as well as some improvements aimed at broadening the range of applicability
and increase the accuracy of the MHD equation of state. This work is equally aimed
at the convection simulations and the general stellar structure and evolution problem.

These equation of state improvements are to be followed up by new calculations
of opacities, as outlined in Sect. 3.4, which likewise has implications for both the

convection simulations and stellar structure models.
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With the progress in the evaluation of atomic physics, by far the most uncertain
aspects of stellar structure models, are those involving dynamical processes which
typically lead to mixing. As convection directly affects the structure of the star (not
only through mixing) this is important dynamical process. This has been realized
for almost a century, but the preferred formulation of the problem is still the rather
simplified picture of the mixing-length formulation (MLT) (Béhm-Vitense 1953;
Bohm-Vitense 1958). In Sect. 5.1.10 I explore some of the reasons why MLT, after all,
does a pretty good job at describing convection, and I point out some of the differences
between MLT and what we have learned from 3D simulations of convection. Since
the MLT formulation has a (principal) free parameter, «, a first step towards a better
description of convection in stellar models, is a calibration of « against the convection
simulations, as undertaken in Sect. 5.1.10.

In order to be able to perform this calibration of «, everything other than the
actual convection, had to be the same in the stellar structure models and the con-
vection simulations. That means equation of state, opacities and the atmosphere.
The problem of stellar atmospheres is computationally very expensive, and cannot
be incorporated directly into stellar structure calculations. Instead, the results from
atmosphere calculations can be used in the form of T-7 relations; temperature as
function of optical depth, as confirmed in Sect. 5. T-7 relations are derived from the
simulations and applied to the stellar structure models, to facilitate the calibration
of o in Sect. 5.1.10. The T-7 relations from the simulations have also been fitted in
the atmosphere parameters so that they can readily be used in stellar modeling.

One of the short-comings of conventional stellar atmosphere models is their re-
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striction to 1D space, with some dynamical effects included after the fact, e.g., micro-
and macro-turbulent velocities. These atmosphere models also use the MLT for de-
scribing convection, but as the largest deviations between the MLT picture and the
3D simulations occur in the atmosphere, the structure of an atmosphere that incor-
porates MLT-type convection, is unlikely to resemble a real stellar atmosphere in any
detail.

Using the combination of the a-fitting and the 7-7 relations in stellar structure
and evolution calculations, carries the promise of more reliable stellar models, at least
in the solar neighborhood of the HR-diagram. The implications for stellar evolution

will be studied in a future paper (Trampedach et al. 2004b).
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5.1 T-7 relations from convection simulations

T-7 relations are normally used for describing the photospheric transition from opti-
cally thick to optically thin in stellar models. This is well justified, but the importance
of the T'-7 relationrelation as an upper boundary condition for stellar envelops seems
not to have been fully appreciated. We assess the effects of employing often used as-
sumptions about 7-7 relations on stellar models and illustrate the interplay between
atmospheric stratification and the depth of an outer convection zone. Convection in
stellar structure models is often described by the mixing-length theory (MLT). We
present calculations of 7-7 relations based on 3D radiation-coupled hydrodynamical
(RHD) simulations and give simple fits to our results for easy use in stellar structure

calculations.

5.1.1 Introduction

The calculation of stellar atmospheres is so complex that it has formed its own
sub-discipline. Most complications arise because radiative transfer in the transition
from optically thick to optically thin is hard to treat in a simplified manner without
losing essential features. To treat this region properly, the radiative transfer has to
be solved for hundreds of thousands of wavelength points. This obviously renders
atmosphere calculations time consuming and impractical to incorporate directly in
stellar evolution codes.

A solution to this problem is to use the results of stellar atmosphere modeling

(semi-empirical or fully theoretical) as upper boundary conditions for stellar struc-
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ture models. Since T-7 relations can be derived from limb-darkening observations,
the use of semi-empirical models based on such observations often has been consid-
ered the safest choice. Knowing pressure and opacity as functions of g and 7', and
assuming hydrostatic equilibrium, the system of equations can be closed by the T-7
relation without having to solve the frequency dependent radiative transfer — i.e.,
the stratification of the detailed atmosphere calculation can be recovered with a grey
opacity, as described in Sect. 5.1.2. We proceed by giving a short overview of the 1D
structure calculations in Sect. 5.1.3, where we also elaborate on the implementation
of T-1 relations.

Theoretical T-7 relations from 1D stellar atmosphere models have been published
in connection with, e.g., the ATLAS (Kurucz 1992¢; Kurucz 1995), the MARCS
(Gustafsson et al. 1975; Asplund et al. 1997) and the NEXTGEN (Hauschildt et al.
1999a; Hauschildt et al. 1999b) grids of stellar atmospheres. These are grids in
effective temperature, surface gravity and metallicity and dense enough that simple
interpolation is safe. The level of sophistication is very impressive, the only weak
point left, being the treatment of convection.

In late type stars the modeling of photospheres is further complicated by convec-
tion. Not only are the atmospheres no longer one-dimensional, but the fluctuations
are also well outside the regime of linear perturbations. So far, the only way to deal
with the combined problem of radiation-coupled convection in stellar photospheres,
is to perform realistic radiation hydrodynamic (RHD) simulations. We describe such
3D convection simulations in Sect. 5.1.4 and go through the various ways of ex-

tracting the average structure from the simulations in Sect. 5.1.5. In Sect. 5.1.6, we
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compare the results of our “high-precision” solar simulation with 7-7 relations from
the literature.

In Sect. 5.1.7, we present a single fitting formula for 7°(7), which works well for all
the simulations. We furthermore give a list of fits, linear in log7.g and loggs,.s, of all
the coeflicients, for use in stellar structure calculations. We apply the T-7 relations,
derived from the simulations, to stellar structure calculations in Sect. 5.1.9. We
compare the effects of using some of the most common combinations of 7-7 relations
and opacities, and point out some of the often encountered inconsistencies. We also
explore how changes to the physics in the atmosphere changes the depth of the outer
convection zone.

This paper is the first in a series dedicated to the improvement of stellar structure
and evolution calculations. These improvements are based on lessons learned from
3D radiation-coupled hydrodynamical simulations of convection in the atmospheres
of a handful of solar-like stars. Here we present results on the radiative part of
the mean-stratification of the simulations in the form of 7-7 relations. Paper II
(Trampedach et al. 2004a) deals with the convective part of the mean-stratification
by calibrating the mixing-length and presenting results easy to implement in stellar
structure codes. The radiative and the convective parts of the problem are strongly
interdependent, as discussed in the two papers, but we also show that separating the
two parts is possible and has a significant effect on stellar structure models. Paper
III (Trampedach et al. 2004b) will address the consequences of applying the above
improvements to stellar evolution calculations.

The effect of T-7 relations on stellar evolution, has also been studied by Chabrier
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& Baraffe (1997b) for low-mass stars with solar composition. They argue that the use
of T-7 relations imply grey radiative transfer in the atsmophere. From our analysis
in Sect. 5.1.2 we show that this is not the case; a 7T-7 relation relation can fully
describe a non-grey atmosphere, but the zeroth, Eq. 152, and first, Eq. 153, moments
of the transfer equation are modified. These modifications imply the use of Rosseland
opacities, also being the natural choice for the stellar modeler. Chabrier & Baraffe are
rightfully concerned about the proper implementation and interpretation of the 7-7
relation in the transition between radiative and convective zones—an issue which
is often overlooked. We hope that our discussion in Sect. 5.1.2 below will clarify
matters, and justify the use of T-7 relations, even in this region.

Ludwig et al. (1999) have performed a similar, but employing a completely in-
dependent method, calibration of the mixing-length based on 2D simulations of con-
vection. Their T-7 relations are computed and implemented in a way similar to what
we present here. Paper II provides further comparisons between the two methods

and the results.

5.1.2 The Basis for 7T-7 relations

We describe the 1D, plane-parallel, radiative transfer in terms of the usual moments

of the radiation field

1
17 =3 [ i (148)

where the intensity, I, only depends on the angle with the surface normal, y = cos 6.

Dependence on optical depth, 7, is implied throughout this section. Extension to the
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3D case is dealt with in Sect. 5.1.5.

The first three moments are also called

Fra
n=10, TE=H =1 ad K=1. (149)

The transfer equation is

d/y ()
dT)\

= Ix(w) = Sx, (150)

where the source-function, S, is isotropic.

The corresponding radiative heating (cooling when negative) is

Qrad,)\ = 4795)\(!])\ - S/\) ) (151)

where the 47 comes from the angular integration of an isotropic quantity and Qraq
is the extensive version (per volume) and ¢raqg = Qraa/0 is the intensive quantity. A

solution in radiative equilibrium obviously obeys Qraq = [f5° @raa,xdA = 0.

Grey Radiative Transfer

In a grey atmosphere, the opacity is independent of wavelength, and we can drop all

the A-subscripts. Integrating the transfer equation over angle then gives

dH _ 1 dPu
dr  4r dr

=J-5, (152)
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whereas the first moment of the transfer equation gives

dK F rad UT% E conv)
dr 4 47 ( Fo /)7 (153)
or
oT% T Feony (7')
AK = Tt (1 _ / Zeom AT ) g 154

where the integral contains the convective effect. The convective flux is the sum of
the enthalpy and the kinetic energy fluxes.
It turns out that we are only interested in AK(7) = K(r) — K(0), and are
therefore not concerned with the constant, K (0), from the integration of Eq. (153).
Assuming local thermodynamic equilibrium (LTE), as we do in both the simu-
lations and the stellar structure calculations, we have S = B = oT*/7. Multiplying

both sides of Eq. (154) by 47S/(3AKoTy;) therefore results in the T-7 relation

4 1T \* S T Fone(T")
4 2 e [ e T) ) 155
3 (Teff) 3AK lT /0 Frot dT] (155)

The 7/AK-factor is convergent, since AK increase approximately linearly in 7 and
we can therefore describe finite temperatures. Using K instead of AK, would have
introduced an extra term for the temperature at 7 = 0.

All subsequent references to the 7-7 relation will only deal with the radiative

part,

4 /T \* S
4 __° 1
3 (Teﬁ> 3AK (156)
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unless otherwise noted.

Average Radiative Transfer

If, on the other hand, the opacity does depend on wavelength, integrating Eq. (153)
over wavelength gives

B B
oky dz 4

0

where we substituted d7), = gk dz. Fi.q and H are just the results of direct integra-
tion over wavelength. As J, — Sy and K, — %J)\ for 7\ — o0 and Sy = B, in LTE,

Eq. (157) leads us to the usual definition of the Rosseland opacity

oo 1 dBy
L _do n ) (158)
KR 0 dByq)
0SS 0 4T

(We can interchange differentiation with respect to z and T as they are monotonic
functions of each other.)

From this, we can now define

dK ~ 1 dK F.,
= KRoss / Ay =g = (159)
0

- ;
dTRoss KX dTRoss 4

where d7Tress = 0KRossdz defines the Rosseland optical depth. The tilde refers to
quantities that are averaged over wavelength in a way that makes them obey the

grey transfer equations, Eqgs. (152) and (153). In a similar way, the zeroth moment
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of the transfer equation gives

= KRoss

H © 1 dH
d / LA =y, (160)
0

dTRoss R dTRoss

where we again substitute S = B.

We see that the tight link between the zeroth and first moments of the averaged
radiative transfer is broken as H # H in general. We do, however, obtain the same
expression for the 7-7 relation, Eq. (155), by substituting K and Tregs.

With the radiative temperature being given by Eq. (156), and the temperature
from the simulations by Eq. (155), we can reduce the temperatures from the simula-

tions to the purely radiative ones by

~1/4

T '
Trad = TTl/4 [T — / FLL(T)ChJ] . (161)
0 Fiot

This is the stratification in the case of no convective flux. Deriving T;,4(7) from the
simulations does, however, retain secondary convective effects, ie, the radiative equi-
librium, as influenced by convection. As mentioned earlier, T;,q4 is the temperature

to be used in T-7 relations.

5.1.3 The 1D-envelopes

The T-7 experiments have been performed on models of stellar envelopes (Christensen-J
Dalsgaard & Frandsen 1983), that each cover the range from a relative radius of

r/R = 0.05 and out to an optical depth of 7 = 10"*.
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All time dependent and composition altering processes, e.g., nuclear reactions,
diffusion and settling of helium and metals, have been left out. This renders the
envelopes functions of the atmospheric parameters, Teg and gg,s (and composition)
only, but it also rules out any abundance gradients. Helium and metals slowly drop-
ping out of the convection zone build up an abundance gradient, just below the
convection zone, which is counteracted by diffusion. As diffusion and settling only
generate abundance gradients below the convection zone, our results on the 7-7 re-
lation and the a-calibration should be independent of these processes, whereas the
depth of the convection zone might be affected slightly. Radiative levitation of high-
opacity elements, on the other hand, would have the largest effect in the photosphere
and the change in composition would alter the opacity and equation of state so as
to change the efficiency of convection. From the 3D simulations, however, we know
that the convective overshoot sustain velocities-fields, at least out to 7 ~ 10~* that
would immediately wipe-out any chemical gradients in the atmospheres of the stars
we have explored here.

For the envelopes, we have used the same equation of state (EOS), chemical
composition, and, for T < 10* K, the same opacities as for the simulations (cf. Sect.
5.1.4). For higher temperatures, we used the OPAL opacities (Rogers & Iglesias
1992a). The difference between the two opacities is generally small at this tempera-
ture, and the transition is smoothed and always takes place in the adiabatic part of
the convection zone, minimizing the impact on the structure of the model.

Convection is treated using the standard MLT as described in Bohm-Vitense
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(1958), using the standard mixing length
| = aHp (162)

and form factors y = % and v = 8.
The T-7 relations are supplied through Eq. (168) (See Sect. 5.1.7), and different

choices for the coefficients then constitute the various cases listed in Tab. 7 below.

Implementation of the 7T-7 relation

The Hopf function, ¢(7), introduced by Henyey et al. (1965), is part of the T-7

relation
4

LY i) 47+ o). (169

In the spirit of Eq. (155) we distinguish between the convective Hopf function,
Geonv(7), which is the integral from Eq. (155), and the purely radiative Hopf function,
q(7). The radiative part is convergent, ¢(7) — ¢ for 7 — 00, and recovers the
diffusion approximation.

In deriving the 7-7 relation in Sect. 5.1.2 we make the transformation from ac-
tual to radiative T-1 relation by changing 7', as shown by Eq. (163). In the envelope
calculations we need to re-introduce convection in the T-7 relation, this time de-
scribed by MLT. This is done with the inverse transformation, which is accomplished

through a modification of the optical depth

d# = fudr , (164)
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so that

a(7) +7 =q(7) + T + Geonv(7) - (165)

Differentiating both sides of Eq. (165) with respect to 7, we get

q'(7) + 14 qlony ()
q(7)+1

fr = : (166)

where primes indicate differentiation with respect to the argument and 7 is found
from solving Eq. (165).

Employing hydrostatic equilibrium and, as usual, defining the radiative gradient
as the gradient that would be caused by radiative transport of energy alone, i.e.,

assuming that 7" is given by ¢(7) + 7, we find

v1rad =

<BlnP> _ £p 3F (1+q) . (167)
rad

dlnT g 160T*

The actual gradient, V, can similarly be found by using Eq. (165) and the transfor-
mation to 7, resulting in f, = V/V aq.
With these relations the T-7 relation can be used throughout the stellar envelope

model, without the (common) artificial transition between atmosphere and interior.

5.1.4 The 3D-simulations

The fully compressible, transmitting boundary, RHD simulations are described by
Nordlund & Stein (1990; 1989). Since the matching to 1D envelopes demands a

high degree of consistency between the simulations and the envelopes, we found
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it necessary to bring the micro-physics up to the same level as that used for the
envelopes. Direct comparison to observations of the Sun also necessitated an update.
We therefore revised most of the opacity sources and added a few more sources, as
described in detail in Trampedach (1997). The line opacity is supplied by the opacity
distribution functions (ODFs) of Kurucz (1992a; 1992b), and the EOS is changed to
the Mihalas-Hummer-Déppen (MHD) EOS (Hummer & Mihalas 1988; Déppen et al.

1988).

Table 7. Parameters and derived convection zone depths for the seven simulations.

name Star A aCenB Sun aCen A Star B 7 Boo Procyon
Spectral class M5IV K1V G2V G2V F8V GOIvV F5IV-V
Tett 4851 K 5362 K 5801 K 5768 K 6167 K 6023 K 6470 K
gsurf/lem?s~1]  1.243-10*  3.604-10* 2.740-10* 1.970-10* 1.084-10* 5.668-10° 1.084-10*
M /Mg 0.600 0.900 1.000 1.085 1.240 1.630 1.750
@ 1.8705 1.8313 1.8171 1.8032 1.7360 1.7383 1.7193
dez, 0.5600 0.3063 0.2861 0.3070 0.1966 0.2087 0.1035
dcyz, solar 0.5616 0.3085 0.2861 0.3057 0.1870 0.1927 0.0925
dcz 5000 A 0.5505 0.2971 0.2647 0.2795 0.1552 0.1618 0.0639
dcz, HSRA 0.5498 0.3016 0.2705 0.2866 0.1579 0.1623 0.0692

We have performed simulations for seven sets of atmospheric parameters, five of

which correspond roughly to actual stars, as listed in Tab. 7. The Star A-simulation

was added to get a better coverage in the Teg/gsurt-plane and Star B was a simulation

of Procyon that turned out too cool (they therefore have the same ggyf).

Mostly for historical reasons, we used a hydrogen fraction by mass of X =

70.2960 % and a metal fraction by mass, Z = 1.78785%. Each of the simulations was

performed on a 50 x 50 x 82-point grid and covers about 4-6 granules horizontally

and 13 pressure-scale-heights vertically, with 20% being above (T) = Teq.

After
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relaxation to a quasi-stationary state, we calculated mean models as described in

Sect. 5.1.5.

5.1.5 Averaging procedures

We evaluated T-7 relations for both the Rosseland optical depth, Tress, and the 5000 A
monochromatic optical depth, 75000, €ach with three different averaging procedures.

The convective fluctuations in density and especially temperature are so large
that the opacity and the EOS (e.g., gas pressure, FP,) are non-linear in the fluctu-
ations, which has the consequence that (P;) # P,({0),(T)). This means that the
average gas pressure is, in general, not related to the average density and temper-
ature through the EOS. The relative difference amounts to about 5% in the solar
photosphere. This effect is much larger for the opacity where the relative difference
reaches more than 90%. This has led us to evaluate the three averaging procedures
compared in Fig. 15, and detailed below.

Case a): Calculate optical depth-averaged models by interpolating temperature,
T, onto iso-7 surfaces, equidistant in log,, 7, and averaging over these surfaces. These
T-averages were then subjected to temporal averaging and we denote this procedure
(O

The radial p-modes, which are excited in the simulations, are to a large extent
filtered out by this method because of the dependence of opacity on density and
temperature. With increased temperature and density, the opacity and optical depth

increase, moving the 7-scale outwards with respect to the z-scale, in much the same
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way as the column mass scale. The temporal RMS-fluctuations of gas-pressure on a

Sun: 7,= 5770 and g,
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9000 4 :
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T/[X]

6000 -

5000

Fig. 15. The effect of various averaging techniques applied to a solar simulation
(See text for details). Notice how cases a) and b) follow closely in the atmosphere
down to (T') = Tug, at log;, 7 ~ —0.2.

T-scale are about 10 times smaller than on a fixed height-scale. This effect is also
clearly seen in the results of Georgobiani et al. (2003a), where the p-modes excited
in a solar simulation are very prominent in temperature, sampled at a fixed height,
but almost vanish when sampled on the undulated iso-7 surface.

This averaging procedure is motivated by the form of the radiative transfer
equation, Eq. (150). Since 7 is the only quantity entering the radiative transfer
equation in a non-linear way (a division), this is also the only quantity that cannot
merely be replaced by its horizontal average. We therefore recommend this averaging
method for use in conventional 1D stellar models, and it is the method used for the

rest of our analysis. This averaging procedure corresponds to observations of the
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“radial” or disk-center T'(7) in the sense that it is the average of T'(7) along radial
rays. Also, looking at disk center, it is not possible to “observe” the height-scale—
only the 7-scale.

Case b): Calculate geometrically averaged models by mapping the horizontal
averages onto a column mass scale and performing the temporal averaging on this
scale instead of on a direct spatial scale. This approach filters out the main effects
of the p-modes excited in the simulations. We refer to this procedure as Lagrangian
averaging, (... )1

This Lagrangian averaged 7" as a function of the Lagrangian averaged 7 corre-
sponds in a sense to limb observations, observing the Sun “horizontally”, instead of
“radially” on an optical depth-scale. Real limb observations would also contain a
case a) component due to the Sun’s sphericity. As noted above, this method is not
compatible with the radiative transfer equation.

Case c) Calculate (T)y, as function of a 7, based on integration of K({(T)r, (o)1) #
(k). The non-linearity of the opacity is taken into account by this method. If Py,
and the non-linear effects on P, were known, the correct g, T, P-structure could be
recovered with such a 7T-7 relation. This method mixes the convective and optical
parts of the problem, though, making it more difficult to improve their treatment in
stellar structure calculations in a consistent way.

From Fig. 15 we see that the T-7 relation can be derived fairly unambiguously
from limb-darkening observations, for (T") < T.g. There the inhomogeneities are small
enough for the opacity to be linear on the scale of the fluctuations, rendering the three

averaging procedures equivalent. At greater depth this is no longer the case as the
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inefficient convection at the top of the convection zone causes large and non-linear
fluctuations, splitting case a) and b) apart. The 7-7 relation still has a significant
effect on the envelope model at these depths, though, requiring us to make a specific
choice. Based on Sect. 5.1.2 we choose case a), as also advocated by Ludwig et al.

(1999).

5.1.6 The solar 7-7 relation

Apart from the simulations of the seven stars presented in Tab. 7, we also made
a simulation for direct comparison with solar observations. This simulation has a
slightly different composition: Y = 0.245 in accordance with helioseismology (Basu
& Antia 1995), and Z, /X, = 0.0245 in agreement with meteoritic and solar pho-
tospheric metal to hydrogen ratios (Grevesse & Noels 1992). This ratio results in
the hydrogen mass-fraction, X = 73.6945% and the helium-hydrogen number ratio,
He/H=0.0837, instead of the often assumed He/H~ 0.1. The latter ratio is what we,
for historical reasons, used for the seven other simulations, listed in Tab. 7.

The Z/X ratio is reduced by about 4% from the other simulations, primarily
decreasing the line-blocking by metals, resulting in a decreased ¢q. Helium, being
an inert element, contributes little to the opacity. Its own opacity is very small
in the solar atmosphere, and the high ionization potential means that no electrons
are donated for the formation of H™-ions, which is the most important source of
continuum opacity in the Sun. The larger X (lower Y) therefore leads to increased

opacity and the lower Z leads to less line-blocking. These changes to the composition
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also alter the mean molecular weight, p, which enters both in Eq. (177) for the

convective flux and in the hydrostatic equilibrium through its effect on the pressure.

Sun: 7,= 5770 and g,,=2.74e+04
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Fig. 16. Comparison of the T-7 relation from the simulation, with some often
used solar T-7 relations. a): The difference in Rosseland 7T-7 relations between the
simulation and an Atlas9 atmosphere model (Kurucz 1993; Castelli et al. 1997). b):
Differences, on a Tspgp-scale, between the simulation and an Atlas9 model, and four
semi-empirical atmosphere models: The model by Holweger & Miiller (1974), the
classical fit by Krishna Swamy (1966a; 1966b), the HSRA model (Gingerich et al.
1971) and the VAL model (Vernezza et al. 1981).

The effective temperature of the solar simulation is Ty = 5777 £ 9K, which
is in excellent agreement with irradiance observations (Willson & Hudson 1988):
5777+ 2.5 K. The horizontal spatial resolution of this simulation is twice that of the

seven other simulations ie, 100 x 100 x 82 points.
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We compare the resulting 7-7 relations with various 1D models, in Fig. 16.
Panel a) shows temperature differences on the 7g.g-scale and panel b) is for the
Tso00-scale. The vertically hatched area around the zero-line (in both panels) shows
the temporal RMS-scatter of the 7-7 relation of the simulation, confirming that all
the differences are statistically significant. Panel a) also shows the difference between
the temperature measured on the two 7-scales for the simulation (dot-dashed curve),
the sign of which means that we can see deeper into the Sun at 5000 A than on
(a Rosseland) average, and therefore that the Rosseland opacity is larger than the
5000 A opacity.

The past decade or so of work on compiling and computing line-data for atoms
and molecules has added a lot of line-opacity in the UV, which has increased the
Rosseland opacity with respect to the 5000 A opacity. This in turn has increased the
difference between 7g.s and T5000. This is clearly expressed in the 200 K difference at
T~ % This difference is two times larger than the corresponding differences among
modern atmosphere models (c¢f. Fig. 16b), so it is no longer justified to assume the
two 7-scales to be equal.

For stellar structure calculations, it has been common practice to use a T-Txgq
relation combined with a Rosseland opacity. With the current opacities and today’s
demand for accuracy, this no longer seems a valid approximation and we recommend
not using it.

For the theoretical Atlas9 atmosphere models (Kurucz 1993), both monochro-
matic and Rosseland 7'-7 relations can be obtained, illustrated as the dashed line in

both panels of Fig. 16. The peculiar wiggles in these curves are features from the
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Atlas9 model. Using the “overshoot”-option, later rejected by Castelli et al. (1997),
these wiggles combine to a larger but smoother dip, compared to the simulation.
The rather close agreement in the radiative part of the atmosphere is expected, since
the same line-opacities were used, and since the convective fluctuations have only a
small effect on the averaged T-7 relation above the convection zone (i.e., all averaging
methods give the same results, ¢f. Fig. 15).

The model by Holweger & Miiller (1974) presented in Fig. 16 (solid line) is about
100 K warmer than the simulation above the photosphere, on both 7-scales. For this
model the T-difference between the two 7-scales is, however, less than 60 K, so below
7 =~ 0.5 the behavior in the two panels differ by the (Tress — T5000)-difference for the
simulation. The Holweger-Miiller model is hotter by up to 300 K on the 7y -scale,
but is very similar in the photosphere and getting increasingly cooler with depth on
the T5g09-scale.

The two other semi-empirical atmosphere models presented in Fig. 16, VAL C
for the quiet Sun (Vernezza et al. 1981) and the Harvard-Smithsonian solar reference
atmosphere (HSRA) (Gingerich et al. 1971), differ significantly and essentially in the
same way from the simulation results. High in the atmosphere, the differences can
most likely be attributed to non-LTE effects, heating from a hot corona and possibly
also magnetic fields in the atmosphere, none of which is included in the simulations.
It could, however, also be due to misinterpretation of temperature proxies. Since
the UV Planck-function, ionization balances and level populations in atoms and ions
involve exponential terms in 7', the temperature derived from spatial and temporal

averaged quantities will be higher than the correspondingly averaged temperature,
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as shown by Carlsson & Stein (1995) in the dynamic 1D case. This is irrespective
of our finding from Fig. 15, that the convective fluctuations have little effect on the
average 1-7 relation above the photosphere. Individual lines and the UV brightness
can still behave non-linearly.

The immediate outcome of this would be larger 7', but as the opacity increases
strongly with 7', the T-scale could easily change enough so as to result in a lower 7-7
relation than the actual, as we find in Fig. 15.

The differences between the HSRA, the Holweger-Miiller and the VAL models
may be due to temporal variations in the solar atmosphere between the observa-
tions, ten years worth of improvement in the handling of non-LTE effects, as well as
differences in the opacities used for the 7-scale.

At intermediate optical depths, from 7 ~ 0.1 down to (T") = Teg, the agreement
between both theoretical and semi-empirical atmospheres and the simulation is very
good. Differences are also smaller than the difference between the 5000 A and the
Rosseland T'-1 relation from the simulation. This agreement is reassuring, as all four
approaches to the solar atmosphere should be about equally valid in this region: 3D-
effects are small, the velocity-field only contributes a small turbulent pressure to the
hydrostatic equilibrium, the convective flux is less than a percent of the total flux,
non-LTE effects are small and we are far away from the hot corona.

With the onset of convection, the T-1 relations in Fig. 16 diverge, with the var-
ious 1D-models, sharing the MLT-formulation of convection, all differing from the
simulation in more or less the same manner. Below (T) = T.4, 3D-effects become

important and the turbulent pressure contributes up to 14% of the total pressure,
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rendering the simulation the best choice for an atmosphere model. The validity of
the simulations in this region has to be assessed from comparisons with more di-
rect observations of the Sun, e.g., measurements of the flux-spectra, limb-darkening
and line-profiles. This serves to stress that 7-7 relations from semi-empirical mod-
els are not observations and are only unambiguous with respect to the underlying
limb-darkening observations above the point where (T') = T,g. This, of course, rests
on the assumption that we have complete knowledge of the opacities in the atmo-
sphere, which, despite the last decades progress (Kurucz 1992b), still seems a rather
unrealistic assumption (Kurucz 1992e; Lester 1996).

The last T-7 relation presented in Fig. 16 is the one by Krishna Swamy (1966a;
1966b), which is still used as an upper boundary in some stellar model codes. It is
interesting to note that the behavior below the photosphere is opposite that of the

more modern 7T-7 relations.

5.1.7 Fitting formulas

T-7 relations for seven individual stars are of rather limited value when concerned
with stellar structure calculations in general, unless there is a way to interpolate
between these individual stars.

We have therefore fitted the individual 7-7 relations, through the corresponding

Hopf functions, Eq. (163), to expressions of the form

q(1) = 1 + e =" (log T — ¢5) + 1 [g5 — q7] (168)
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where

—Gconv (T)
q(T) + T + Geonv(T)

n= (169)

is the negative ratio of convective to total Hopf function [¢f. Egs. (155) and (163)].
This definition makes 7 increase with increasing convective ratio of the total flux.

The first term serves to give the limit of optical deep layers with radiative energy
transport. At large optical depths, the Rosseland opacity suffices to describe the
transport of radiation and the stratification is therefore that of a grey atmosphere,
provided all the energy is transported by radiation. In terms of the Hopf function,
q(7), this means that ¢(7) — ¢, mimicked by the ¢; + 7 term in Eq. (168).

In optically thin layers, the transport of radiation can no longer be described by
a single opacity, and the T-7 relation deviates from the grey case. The go(logq 7—¢s5)
part of the second term provides the asymptotic behavior for 7 — 0, and the e~(@37)%-
factor interpolates smoothly between the two cases. None of the simulations show
any sign of leveling off to an isothermal atmosphere, which must be due to the cooling
by very strong lines, extending further out than the simulation domains. Therefore,
we have not included an isothermal term, as is normally done. We still, however,
encourage the use of an isothermal boundary condition at 7 = 0 in stellar structure
models. Proper non-LTE calculations would most likely produce temperature min-
ima for all seven atmospheres, which would be closer to the photosphere than the
transition to an isothermal atmosphere, but the global influence on stellar structure

models will be small.

If some of the energy is transported by convection, the T-7 relation will be
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cooler than the grey case at large optical depth, which is described by the last term
in Eq. (168). This term therefore describes the transition from radiative to convective
energy transport. It should not be used with normal stellar models, as these often
assume a purely radiative 7-7 relation (set g¢ = g7 = 0 in that case), and incorporate
convection subsequently.

It might seem natural to use the same method as in the envelope models, and
use the effective optical depth, 7, as given by Eq. (164). This, however, turns out to
underestimate the effect of the transition to convection. The reason is that, as pointed
out by Nordlund & Stein (2000), the high temperature sensitivity of the opacity hides
the warm up-flows (granules) from our view, thereby cooling the T-7 relation in the
convection zone. This is a pure 3D effect due to the large in-homogeneities at the
top of the convection zone, which are maintained by the sharp increase in opacity
with temperature. The horizontal average of the temperature in the simulation is
therefore higher than in the 1D-models, although it is lower on a 7-scale. That this is
actually the case for the Sun has been supported by comparison with helioseismology
(Rosenthal et al. 1999). In 1D models, the n-terms should be considered part of
Geonv- Whether they could be included with 7 calculated from the 1D fluxes, without

compromising consistency, is not resolved.

5.1.8 Results and Discussion

The 7- and time-averaged temperatures for each of the simulations were fitted to

Eq. (168) with standard deviations of 3-7K (except for Procyon which could not be
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Table 8. Coefficients for Eq. (170).

Une A1 Gn2 dane/dY

0.87029  -0.78450 0.17643  0.00256
-1.14200  -0.24250 0.06275 -2.28313
0.44612  -0.94208 -0.70312  4.71555
0.75131  -3.25925 0.21293 -3.29934
2.38410 -11.25957 1.44532 33.49655
1.30317 -82.75698 5.98615  2.66277
1.65473 3.80075 -0.68706  1.86574

O U R W =3

fitted to better than 14 K—we comment on this below), yielding the coefficients gy, .

Each of these coefficients were then fitted to expressions

Teff

Sur: d n
+ gy log L0t 4 CIn0(y_yy (170)

fn = ane + ay1log
" © eff,® GJsurf,® dY

where the f,,’s are related to the coefficients in Eq. (168) through

n fit forn=1,4,5,6
Jn = (171)

log g, 5t forn=2,3,7.
The numerical values of the coefficients are given in Tab. 8, and the standard deviation
between the actual 7T-7 relations and the global fit is 10 K. The relative deviations

are everywhere less than 40K (¢f. Fig. 17).

With 10 parameters, it is not trivial to make unambiguous fits to Eq. (168). A
lot of effort has therefore gone into splitting degeneracies in parameter-space. We

furthermore performed the fitting in two different ways: first by fitting the individual

T-1 relations and then fitting the resulting 70 parameters to Eq. (170), and second by
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fitting the T-7 relations directly from Eq. (170), i.e., making global fits that assume
the f,’s to be linear in T,g and gg,¢. We iterated between the two methods, using the
results from the first method in the second method and vice versa, until the two sets
of results converged. We used four iterations. The accuracy of the fits is illustrated
in Fig. 17, from which we see that the deviation from the actual 7-7 relations lies
mostly within the shaded area of the temporal RMS-fluctuations. Comparing with
Fig. 16 we see that the deviations are smaller than the differences between the current
range of solar atmosphere models and smaller than the differences between the 7-7

relations from the seven simulations, as shown in Fig. 21.

60"
JoCenAja Cen B| n Boo Procyor starA | starB | Sun
40 - H
r—120-'M 2 =1H N
S~ _[_'\n_\ b ! A i ' gy
= o4\ . AN S
= 07 VAL V\
< i
—20 7
] !
—40
—-60 -

-20 =20 =20 -20 -20 -20 -20
LogT

Fig. 17. Plot of the differences between the actual 7-7 relations and the global
fit (solid line) and the individual fits (dashed line). The horizontal solid and dashed
lines are the corresponding RMS deviations from the fits. The shaded areas show the
RMS of the temporal variation of the temperature.

From Fig. 17 we notice that Procyon is the worst fit. Allowing for a change in
position and slope of the zero-line, we see that the main-component of the disagree-

ment, is a sharp dip at 7 slightly smaller than one. Looking at the panels for n Boo

and Star B, we notice similar features, although less pronounced. In an earlier paper
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(Trampedach et al. 1998), we presented a fitting formulae that also contained a neg-
ative Gaussian in 7. This expression was very good at fitting the above mentioned
features, and brought down the RMS deviations to below 8 K, for the individual fits.
It proved difficult, however, to parameterize the coefficients for the Gaussian in Tog
and gg,r in a way that both fit the simulations and resulted in physically plausi-
ble T-7 relations outside the immediate Teg/ gsurt-range of the simulations. We have
therefore abandoned the Gaussian-term in the present work, and obtain improved
global fits and a more widely applicable fit.

The coefficients of the global and the individual fits of the last iteration are
compared in Fig. 18. The coefficients listed in Tab. 8 are the results of the last global
fit.

The coefficients in Tab. 8 are based on the seven simulations with X = 70.2960 %
and Z = 1.78785%. Assuming that a different composition offsets all the coefficients
independently of T.g and gsuf, the a,e’s have been changed to correspond to the
solar simulation of Sect. 5.1.6 with the more modern abundances X = 73.6945% and
Z = 1.8055%.

The dg;/dY-term in Eq. (170) is derived from this difference in composition
and is therefore only valid for helium changes accompanied by the rather unusual
metallicity change, Z — Zo = —(Y — Y;)/193.6. This probably proves less useful,
but, nonetheless, gives an idea of the changes with composition. Changes along
more normal composition-change vectors would of course be very illuminating, but
is beyond the scope of the present paper.

Notice that our fitting expression, Eq. (168) differ from that presented in Trampedach]
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Plot comparing the global (triangles) and individually (filled circles with

error-bars) fit parameters for the T-7 relation-fits. The line segments show the logoT
gradient of the global fits. The error bars are the RMS-scatter from 7T-7 relation fits
to single time-steps of the simulations.
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et al. (1998) in a number of ways. First, as mentioned above, we have abandoned
the Gaussian term in order to improve the global fits and making applicable in a
wider Top/gsurt-range. Second, we have changed the formulation of the transition
from optically thick to thin, to make the coefficients more linearly independent, and
third, we have improved the separation of the convective effect on the T-7 relation
(the last term in Eq. (168)). The standard deviations of the old fits were in most

cases larger than those for the present fits.

1.40
M=0.85M,
0.90 M,
1.30 1.00 M,
1.10 M,
120 1.20 M,
I 1.30 M,
= 1.40 M,
= 1.10 1.50 M,

1.60 M,

-2.0 -1.5 -1.0 -0.5 0.0 0.5
108(T ress)

Fig. 19. The change of the T-1 relation with stellar mass, on the zero-age main-
sequence. The horizontal dotted line indicates the effective temperature, and the
vertical dotted line, optical depth unity. The dashed line shows the grey atmosphere.

In Fig. 19 we present the behavior of the T-1 relation with stellar mass on the
zero-age main-sequence (ZAMS). The atmospheric parameters for the ZAMS were
derived from the stellar structure models by (), which are also shown in Figs. 1 and
3 in Paper II. The higher mass stars have steeper T-7 relations in the photosphere, but

they also have a larger curvature, making them shallower further out, as compared to

the low-mass stars. The low-mass and higher mass 7-7 relations, cross at 7 ~ 0.05.
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Fig. 20. The change of the T-7 relation with gravity, for fixed, solar Teg = 5777 K.
The horizontal dotted line indicates the effective temperature, and the vertical dotted
line, optical depth unity. The dashed line shows the grey atmosphere.

Fig. 20 illustrates the gravity dependence of the T-71 relation. As we go to lower
gravity, the T-7 relation gets steeper in the photosphere and shallower further out—a
similar effect as when going towards higher masses on the ZAMS.

In both Figs. 19 and 20 we also show the atmosphere with a grey opacity, i.e.,
s(T/Te)* = 2 + 7 (dashed curves). We see that the T-7 relation approaches the
grey case, when we go to larger masses on the ZAMS. This is consistent with hotter
stars having fewer spectral lines. The gravity sequence in Fig. 20 is a little more
complicated. The steady decline of temperature in the high atmosphere, irrespective
of gravity, is a sign of strong spectral lines that decouple (have monochromatic 7\ ~
1) very high in the atmosphere. Explaining the behaviour at intermediate optical
depth, in terms of radiative effects alone, is not possible.

Comparing the gravity sequence in Fig. 20 with 1D atmosphere models (Asplund

2003, private communications), we see rather large differences. In 1D the change with
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gravity is more than a magnitude smaller than in Fig. 20. This might be due to the
factor of five extrapolation of the gravity, beyond the range of the seven simulations.
Of the five parameters, g; —q¢s, for the radiative 7-7 relation, only ¢, and ¢3 have their
logarithms fitted linearly to logT.s and logg. At closer inspection, ¢, is increasing with
¢ and is therefore bounded at small g by 0 and around the ZAMS the fit is guided by
the simulations. The other parameter, ¢z, is decreasing with g and therefore unbound
towards the giants. The difference between fitting loggs and g¢5 itself, is less than a
factor of two at logg=3.0, so even with this large an extrapolation, the result is not
diverging. We keep the logarithmic version, since we need g3 to be positive definit.

The fit in the gravity-direction is mostly guided by the 7 Boo-simulation, having
the lowest gravity and being only 220 K hotter. The fit at the gravity of nBoo, but
solar Teg, is indeed very close to nBoo’s T-7 relation. The main difference between
the two simulations is the much stronger convection in 17 Boo; The turbulent- to
total-pressure ratio is about 20% in the photosphere of the nBoo-simulation and
only about 12% in the solar simulation.

As pointed out by Asplund et al. (1999), in realistic, convective stellar atmo-
spheres the radiative heating and cooling is competing with the adiabatic cooling of
rising plasma, expanding from the large density gradient in the atmosphere. The
adiabatic stratification is typically more than 1000 K cooler than the radiative equi-
librium solution. A stratification in-between these two extremes, will therefore ex-
perience radiative heating and convective cooling. From Eq. (151) for the radiative
heating, we see that a larger Planck-mean opacity and a larger density results in

more efficient radiative heating. In stars of lower gravity the density will be lower,
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and the (per mass) opacity red-ward of the Balmer jump will be lower, due to fewer
free electrons (from H-ionization) and hence, fewer H™ -ions. On the other hand, the
convective velocities, overshooting into the stably stratified layers, are larger and the
adiabatic cooling therefore more efficient. All in all, three effects (density, opacity
and velocities) work in the same direction, cooling the atmospheres of stars with
lower gravity.

With each heating mechanism there is an associated flux F', related to the heating

rate () through

dF

Q=1 (172)

cf., Egs. (151) and (152).

The two processes, radiation and convection, produce heating which is propor-
tional to the deviation from their respective equilibria stratifications, ¢.e., the ra-
diative equilibrium with J = S and the adiabatic equilibrium with V = V,4. The
stratification which is closest to the adiabatic equilibrium will therefore have the least
convective cooling and and the smallest convective overshoot flux (which is negative).
This is precisely what we observe in the simulations, with the n Boo-simulation dis-
playing less than half the overshoot flux of the solar simulation. A detailed analysis
will be presented in a future paper.

On the backdrop of the analysis above, we therefore feel confident in the T-7 rela-
tions presented in Fig. 20. The reason that the ZAMS sequence in Fig. 19 approaches
the grey atmosphere and not the adiabatic stratification is that the continuum opac-

ity increases (as higher levels of hydrogen become more populated) as the lines fade



CHAPTER 5. CONVECTION SIMULATIONS AND STELLAR STRUCTURE159

away. The radiative heating therefore remains stronger than the convective cooling
and the equilibrium state is determined by the radiative transfer.

It is worth noting here that the “approximate overshooting” introduced by (Ku-
rucz 1993; Kurucz 1992c¢) entails a positive overshooting flux, which is at odds with
the convection simulations, as well as the basic expression for the convective flux;

Feony o (V — Vaq), as also discussed by Castelli et al. (1997).

5.1.9 The depth of outer convection zones

The depth of an outer convection zone depends in a complex way on the surface
boundary conditions. With some simplifications we can, however, still get a rough
idea of the mechanisms involved. We convert the equation of hydrostatic equilibrium

to an optical depth scale

dP, ¢
=< 173
dr K’ (173)
and integrate from 7 = 0 and inwards
g_
P, = =7 (174)

where & and 7 are some appropriate averages. This gives us a first order estimate of
the effects of changing various parts of the physics. The precise form of the averaging
is immaterial to the present discussion as we are interested only in the differential
response to changes in the physics.

If for T we use some average of the inverse 7-7 relationwe obtain a relation
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between T" and P,. An increase in T'(7) will decrease 7(7'), as the T-7 relation is
monotonically increasing, and will therefore have the same effect on P, as will an
increase in the opacity.

We will now assume that a change in the atmospheric opacity will change the
pressure by the same factor in the whole convection zone. The change in depth of the
convection zone can be derived from the response to such a pressure change at the

bottom of the convection zone. The Schwarzschild criterion for convection to occur

Viad > Vad (175)

is mainly governed by V..q, as the adiabatic gradient is very close to the ideal- and
fully ionized-gas value of V4 = % at the bottom of deep convection zones.

The radiative temperature gradient

3m ’{Fradpg

Viad = EigT‘l

(176)

will decrease by a decrease in pressure and the bottom of the convection zone will
therefore move outward a little. Since V,,q depends strongly on temperature, and
has a very steep gradient at the bottom of the convection zone, the pressure-change
hardly affects the location of V,,q = Va.q on the temperature-scale. The largest
effect is therefore due to the (almost unchanged) temperature at the bottom of the
convection zone occurring at a smaller pressure. If on the other hand ¢; is changed,

the decrease in pressure is accompanied by a decrease in temperature, more or less
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counteracting the effect of the smaller pressure.
This trend is confirmed by the experiments. We calculated envelope models with
small changes (0.001) to «, ¢; and the atmospheric Ink in order to find the differential

changes to the relative depth of the convection zone (Table 9). The magnitude of

9q1

ddcz
Olnk

is smaller than and may even have the opposite sign. From the table we
see that %d% and %—‘f@ have the same sign, except for Star B and 1 Boo, which have
q1 nK

opposite and rather small responses to changes in ¢; and opacity. We also see that

the same two stars react the strongest to changes in a.

Table 9. Response to changes in ¢;, Ink and «.

3dcz adcz 8dCZ
name oa oq1 dlnk dCZ/ R*

Star A 0.0965 -0.0878 -0.2404 0.5600
aCenB 0.0616 -0.0542 -0.1430 0.3063
Sun 0.1171 -0.1064 -0.2264 0.2861
aCenA 0.1414 -0.1220 -0.2630 0.3070
Star B 0.2479 0.0192 -0.0684 0.1966
nBoo 0.2763 0.0577 -0.0617 0.2087
Procyon 0.1706 -0.2766 -0.2836 0.1035

The convective flux in the MLT formulation may be written as

5 [6uM, , P2
Feony = Z vk aQTTg/Q(V - v’)3/2’ (177)

where k is Boltzmann’s constant, M, is the atomic mass unit, § = —(dlnp/dInT)p,

and p is the mean molecular weight, both of which are fairly unaltered with changing
conditions in the atmosphere. The average temperature gradient is called V and

V' is the gradient in the convective cells. Their difference is almost equal to the
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super-adiabatic gradient, V — V,4. From this we see that an increase in temperature
and/or a decrease in pressure (brought about by changes to the T-7 relation or the
atmospheric opacity) will be accompanied by an increase in V — V,q in order to
maintain the total flux (and the fixed T of the model). This increase of V — V4
corresponds to a decrease of the efficiency of the convection, which will lead to a
smaller convection zone. The effect can be counteracted by increasing «, increasing
the efficiency by increasing the distance traveled by convective elements. An increase
in the efficiency of convection will enlarge the convection zone, as also seen from Tab.
9.

As far as global observables are concerned, uncertainties in the atmospheric
opacities, line-blocking and mismatches between the 7-scale and the grey opacity
may be hidden in « together with pure convection effects. This is one reason that so
many values for the solar o can be found in the literature (Another reason being the
lack of concensus on the values for the auxilliary MLT parameters). As illustrated by
Tab. 9, such flaws in the treatment of the photosphere will not have the same effect
on all stars and we consequently expect an incorrect differential behavior, possibly
masking real convection effects.

In Tab. 7 we compare the convection zone depths obtained from envelope models
with different choices for the T-7 relation but constant, individual «’s (as found in
Paper II). The first row of d¢z is for the individual T-7 relations, derived from the
simulations as described in Sect. 5.1.5 and using the same Rosseland opacities in the
envelope model as in the computation of the T-7 relation. This is the procedure

we recommend and which separates the radiative contribution to the efficiency of
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the convection from intrinsic convection effects. The individual T-7 relations are

compared in Fig. 21.
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Fig. 21. Scaled T-7 relations for the seven simulations, relative to the solar simu-
lation in the sense: T, X (Ter,o/Tesi«) — 1. The more vigorous the convection, the
flatter the T-1 relation.

The next three rows of Tab. 7 give the convection zone depth for some of the
commonly used approximations. The first uses the solar T-7 relation for all the stars,
where we use the 7T-7 relation from Sect. 5.1.6, which is based on a simulation with
higher resolution and lower T.g than the one listed as “Sun” in Tab. 7. The next
approximation uses individual 7-7 relations based on the monochromatic, 5000 A, 7-
scale but still using the Rosseland opacity for the grey opacity in the envelope. The
opacities, K500 and Kgregs are calculated with the same code, physics and abundances.
Last we use the T-7 relation from the Harvard-Smithsonian reference atmosphere
(Gingerich et al. 1971). From Fig. 16 we see that d?%° and d258* for the solar simu-
lation differ from dcz, approximately in proportion to the corresponding differences
in the T-7 relation around 7 = 1. This also confirms the trends of the linear analysis

listed in Tab. 9, as the various convection zone depths listed in Tab. 7 stem from



CHAPTER 5. CONVECTION SIMULATIONS AND STELLAR STRUCTURE164

changes to the T-7 relation only.

5.1.10 Conclusion

We confirm that the use of T-7 relations is indeed a reasonable way of incorporating
the effects of full radiative transfer in stellar structure computations—even in the
non-grey case.

Based on that we proceed to compute T-7 relations for a small number of 3D
simulations of radiation-coupled convective stellar atmospheres. Each of the T-7 re-
lations were fitted to analytical expressions, the coefficients of which were fitted to
linear expressions in the atmospheric parameters, Teg and ggyf, for easy implemen-
tation in stellar structure codes.

We have investigated how changes to the radiative part of the outer boundary
affects the structure of a star, using the depth of the outer convection zone as a
global measure. We evaluated the linear response of the change in depth of the
convection zone caused by changes in atmospheric opacity, T-7 relation and mixing
length, respectively. Our analysis shows that the convection zone is about equally
sensitive to the three kinds of changes and, consequently, different parameter-triplets
can easily result in the same global properties of a stellar model. References to a
particular mixing length are therefore less useful unless accompanied by references
to the atmospheric opacity and 7-7 relation.

We also compare the effects of various commonly used assumptions about the 7-

T relation, and conclude that scaled solar T-7 relations introduce systematic effects,
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while the use of an 5000 A T-7 relation with a Rosseland opacity has an even larger
effect and should be avoided.

To separate the effects of convection from those of the radiative transition in the
photosphere, and to avoid unnecessary systematic effects, we recommend a consis-
tent usage of T-7 relations and their corresponding opacities in stellar structure and
evolution calculations.

Extrapolation of the parameterized T-7 relations towards lower gravity (see Fig.
20) prompted a closer investigation of the interplay between convection and radiation,
above the convection zone. We have gained new insights into the physics governing
the overshoot of convective flows into the stably stratified parts of the atmosphere;
when radiative heating is inefficient, the temperature will approach the adiabatic
stratification and the (negative) overshoot flux will diminish. A more detailed analysis
will be presented in a future paper. The effect on atmospheric stratification is,
however, included in our fit to the T-7 relations as presented in Egs. (168), (170),
(171) and Tab. 8, and it is ready to be implemented in stellar structure and evolution
codes.

As precision and scope of modern observations of stars steadily improve, and
as we are entering the age of astero-seismology, higher demands are placed on the
modeling of stars. With improved understanding and treatment of the interplay
between radiation and convection, we will be able to isolate other effects that so far
have been shrouded in the uncertainty of the atmospheric part of stellar models. With
improved outer boundary conditions, combined with the mixing-length calibration in

Paper II, we can have more confidence in predictions about the depth of convective
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envelopes. This, in turn, will allow us to study other mixing processes, such as
convective overshoot at the base of the convection zone, rotational mixing, g-mode
mixing, etc. and compare with observations of chemical enrichment from dredge-ups

and the destruction of volatile elements such as Li.
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5.2 Calibrating the mixing-length

The mixing-length parameter « is calibrated using realistic 3D radiation hydrody-
namical (RHD) simulations of seven stars in the solar neighborhood of the HR-
diagram. The calibration indicates a small variation of o with surface gravity, gsur,
and a larger variation with effective temperature, Tog. We give a simple fit to these

results.

5.2.1 Introduction

Due to the lack of a better theory of convection in stars, the mixing-length the-
ory (MLT) has been used for almost 60 years. By far the largest part of the so-
lar convection zone is very close to adiabatic, and the stratification in the bulk of
the convection zone is therefore determined by the adiabatic temperature gradient,
Vaa = (0InT/0InP),q. Convection is so efficient that only a very small excess gra-
dient, or super-adiabatic gradient, V, = V — V,q is sufficient for transporting the
entire energy flux. In most of the convection zone the super-adiabatic gradient is
tiny, V, < 107°, which hardly adds up to anything significant even integrating over
the whole convection zone. We therefore have no need for a theory of convection
here.

This picture changes dramatically near the boundaries, especially near the up-
per boundary of an outer convection zone. Here convection becomes exceedingly
inefficient in transporting the energy flux, as radiative energy transport takes over.

For the sun, this layer of appreciable superadiabaticity only takes up the outermost
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1 Mm, just below the photosphere, in the region where the gas becomes optically
transparent and the radiation escapes. This layer, however thin, is crucial for the
star as a whole, as it is the stars insulation against the cold of space.

With the advances in atomic physics as applied to astrophysics, .e., the EOS
(Hummer & Mihalas 1988; Nayfonov et al. 1999; Gong et al. 2001b; Rogers & Nay-
fonov 2002; Saumon et al. 1995) and opacities (Seaton 1995; Berrington 1997; Iglesias
& Rogers 1996; Kurucz 1992b; Alexander & Ferguson 1994), by far the most uncertain
aspects of stellar models are associated with dynamical phenomena: semi-convection,
rotational mixing, mixing by g-modes, convective over-shooting and the most promi-
nent; convection itself.

The present paper is part of an effort to improve on stellar structure models,
by using results from a number of 3D convection simulations of stars in the solar
neighborhood of the HR-diagram. The first paper in this series, deals with the
radiative part of the stellar surface problem, and presents 7T-7 relations derived from
the simulations (Trampedach et al. 2004d, paper I). The present paper is Paper II.
Paper III will address the consequences, of the results from the first two papers, for
stellar evolution (Trampedach et al. 2004b).

This paper is not a justification of the MLT, nor is it aimed at describing the
structure of the surface layers of stars. Rather, we provide a way to use MLT and
a non-constant a to correctly model the depth of outer convection zones. MLT
in general, and our calibration of « in particular, has limited relevance to stellar
atmosphere calculations.

The present paper is also a continuation of the work presented in Trampedach
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et al. (1997), which unfortunately turned out to be flawed by inadequate T-7 relations.

5.2.2 Mixing-length vs. 3D convection

The conventional interpretation of the mixing-length formulation of convection, is
that of bubbles, eddies or convective elements, that are warmer than their surround-
ings, rising due to their buoyancy. The Schwartzschild criterion for stability against
convection: V,.,q < V.q, is equivalent to the statement that convection will occur,
when gas which is warmer than its surroundings, is buoyant. The “rad” and “ad”
subscripts indicate the V = dIn7/dInP in the case of radiative and adiabatic strati-
fications, respectively.

These bubbles of gas are then envisioned to travel for one mixing-length—hence
the name—before they dissolve more or less abruptly (Béhm-Vitense 1958). This
picture has conceptual problems at the edges of convection zones or in small con-
vective cores, where the distance to the edge is only a fraction of a mixing-length.
Most often, the convective elements are also ascribed an aspect-ratio around unity,
confounding the problem.

The mixing-length is typically chosen to be A = aH, or aH, where « is the main
free parameter (of order unity) of the formulation, and H is the density- or pressure-
scale-height for locally exponential stratifications. It has also been suggested to use
| = az, where 7 is the distance to the top of the convection zone (Canuto & Mazzitelli
1991; Canuto & Mazzitelli 1992). This choice would solve the conceptual problems

listed above, but it introduces physical problems since there are strong reasons for
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real convection to have a stratification similar to an MLT model with A = aH,, as
mentioned below.

There is also a notion of a background of the average stratification, that these
convective bubbles travel in. A little like the bubbles rising in a glass of beer, for
instance; The concept of a background liquid is rather obvious, with isolated and
distinguishable bubbles rising in it.

In the 3D simulations of convection, on the other hand, we see a very different
phenomena (see also Stein & Nordlund 1989; Nordlund & Stein 1997). The convection
consists of continuous flows; the warm gas rising almost adiabatically, in a background
of narrower and faster down-drafts, forced by sheer mass-conservation. A fraction of
the up-flows is continuously overturning in order to conserve mass on the back-drop
of the steep and exponential density gradient.

Locally, the density can be approximated by

o ox e/ He (178)

When a vertical “slice” of the up-flow has traveled Az, the slice would therefore be
over-dense by a factor of e®#/He if the up-flow was confined horizontally. There is
of course no such confinement, and the fraction, (e2*/#e — 1) — Az/H, for Az — 0,
will overturn into the down-drafts.

The up-flow will therefore be “eroded” with an e-folding scale of H,. The result
of this concept is actually the same as that for the mixing-length picture described

above (with A = aH,), but without the same conceptual problems, since the flows
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are continuous and the overflow from the up-flow and into the down-drafts, likewise
happens on a continuous basis.

Renaming it the erosion- or dilution-length formulation, it could be a first order
approximation to convection, as observed in the 3D simulations. This is probably
the reason that the MLT formulation has worked so well despite its short-comings;
It is based on simple mass conservation.

The above argument neglects vertical velocity gradients. A positive gradient
outwards would accommodate more of the up-flow and result in a smaller fraction of
the up-flow overturning. With some assumptions on the velocity-gradient, this could
be included by means of a factor on the erosion-length, and various geometrical
conversions could be included here as well. This is the o we are calibrating in the
present paper.

The 3D simulations also display a nearly laminar up-flow, due to the density
gradient smoothing out most of the generated turbulence. The down-flows are nar-
rower and faster, and since they work against the density gradient, they are also more
turbulent. The down-drafts are not compressed adiabatically, since there is continu-
ous entrainment of hot plasma from the neighboring up-flows. The down-drafts are
therefore super-adiabatic much further in than the up-flows which mainly become
super-adiabatic from radiative loss of energy around the local 7 ~ 1. There is also a
lateral exchange of energy, extending the super-adiabatic peak in the up-flow to larger
depth than would have been the case with a purely vertical loss of radiative energy.
The super-adiabatic peak produced by the combination of these three phenomena, is

difficult to reproduce within the MLT frame-work (See Sect. 5.2.6).
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The convective motions in the 3D simulations, are prolific above the convection
zone, with the velocity decreasing with a scale-height which is larger than the pressure
scale-height. This introduces a new contestant in the atmosphere, and radiative
transfer will have to compete with adiabatic cooling for the equilibrium stratification,
as discussed in Paper I.

The asymmetry in the up-flows and the down-drafts have some profound effects:
In the photosphere, for example, the highly non-linear opacity coupled with the large
temperature contrast, results in a 7 = 1 surface which is very undulated; Over the hot
granules, the photosphere is located at larger geometrical height than the cooler inter-
granular lanes, and the observed (disk-center) temperature contrast is therefore much
smaller than in a horizontal cross-section. This introduces a convective back-warming
on the geometrical scale, which has no counterpart on the optical depth-scale.

In the convective layers, the density and velocity differences between the up-flows

and the down-drafts, give rise to a net kinetic energy-flux
Lo,
Fyn = 597) Vz (179)

which amounts to about a tenth of the total flux. The assumption of symmetry in the
MLT formulation, precludes such a kinetic energy-flux, and is probably the biggest
cause for disagreement with the simulations in the deeper, almost adiabatically con-
vective layers.

As convection quickly approaches the adiabatic stratification, an actual theory of

convection is hardly necessary in the bulk of a convection zone that encompasses more
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than a few pressure-scale-heights. There we only need to determine which adiabat
the star is following. Since « is not fixed by the MLT formulation, the answer has
to come from “outside” calibrations, e.g., through matching of the radius of a solar
model evolved to the present age (Gough & Weiss 1976), or as performed in the

present paper.

5.2.3 The simulations

The fully compressible RHD simulations are described by Nordlund & Stein (1990),
and general properties of solar convection, as deduced from the simulations, are
discussed by Stein & Nordlund (1998). Among the code features, important for the
present analysis, are radiative transfer with line-blanketing (Nordlund 1982; Nordlund
& Dravins 1990), and the transmitting top and bottom boundaries. The bottom is
kept at a uniform pressure (but not constant in time), to make a node in the radial
p-modes and minimize wave generation by the boundary conditions. The entropy of
the in-flowing plasma is adjusted to result in the desired effective temperature, and
the outflow is left unchanged.

The convection in the simulations, consists of a warm, coherent up-flow, with its
entropy virtually unaltered from its value near the bottom of the convection zone.
Because of the density gradient, mass conservation forces overturning of the up-
flows, on distances of the order of the density scale height. The overturning plasma
is entrained into narrow, fast and turbulent, entropy deficient down-drafts, generated

by the abrupt cooling in the photosphere. Since only a small part of the convection
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zone is simulated, open boundaries are necessary for obtaining realistic results.

Another requirement for comparison with observations is a realistic treatment of
the radiative transfer in the atmosphere, and a corresponding quality of the atomic
physics behind the opacities and the equation of state (EOS). Compared to the simu-
lations cited above, we have therefore employed the so-called MHD EOS (Hummer &
Mihalas 1988; Déppen et al. 1988), updated most of the continuous opacity sources
and added a few new ones, as described in detail in Trampedach (1997). The line
opacity is now supplied by opacity distribution functions (ODF) by Kurucz (1992a;
1992b).

Each of the simulations were performed on a 50 x 50 x 82 grid. After relaxation to
a quasi-stationary state, we calculated mean models for the envelope fitting (¢f. Sect.
5.2.5). The temporal averaging was performed on a horizontally averaged column
density scale, instead of a direct spatial scale, to filter out the main effect of the
p-modes excited in the simulations.

The seven simulations investigated are listed in Tab. 10. Five of them correspond
roughly to actual stars. The chemical composition is, mostly for historical reasons,
X =70.2960 % hydrogen by mass and Z = 1.78785 % metals by mass.

In Fig. 22 we have plotted the seven simulations in an HR-diagram together
with evolutionary tracks (), for stars with masses between 0.85 and 1.7 M, as indi-
cated. The two fictitious stars, Star A and B, can of course be shifted up or down in
luminosity, depending on what mass actually corresponds to the given atmospheric

parameters.
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Table 10.  Parameters for the simulations, and derived a’s and convection zone
depths, dcz.

name aCenB Star A Sun aCen A Star B n Boo Procyon
Spectral class K1V K2 G2V G2V F8 GOIV F5IV-V
Tow 5362 K 4851 K 5801 K 5768 K 6167K 6023 K 6470 K
Gsurf/fem?s~1] 3.604-10* 1.243-10* 2.740-10* 1.970-10* 1.084-10* 5.668-10® 1.084-10*
M/M, 0.900 0.600 1.000 1.085 1.240 1.630 1.750
max (Pyurb/ Piot) 7.8% 8.2% 10.7% 11.2% 15.5% 19.5% 21.0%
Q@ 1.8313 1.8705 1.8171 1.8032 1.7360 1.7383 1.7193
dcz 0.3063 0.5600 0.2861 0.3070 0.1966 0.2087 0.1035
A5 FO F5 GO G5 KO
| | | | | |
1.0 - -
1 M=1.7M, Procyo g
- | tar B |
£ 0.5 S -
é ] 1.3 {\J I
ap L
S 1.2 | paCe :
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Fig. 22. The position of the seven simulations in the HR-diagram. The size of the
symbols, reflects the diameter of the star. We have also plotted evolutionary tracks,
with masses as indicated, to put the simulations in context.

5.2.4 The envelope models

The simulations were fitted to 1D, spherically symmetric envelope models (Christensen-Jj

Dalsgaard & Frandsen 1983), which extend down to a relative radius of /R = 0.05,
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and up to an optical depth of 7 = 107*.

We used the same MHD EOS, and in the atmospheric part of the envelopes
we used the same opacities, as in the convection simulations. These atmospheric
opacities are smoothly joined with the OPAL opacities (Rogers & Iglesias 1992a) in
the temperature interval, 7' = 2.6-4.1 x 10* K.

Convection is treated using the standard MLT as described in Bohm-Vitense

(1958), using the standard mixing length

| =aHp (180)

and form factors y = 5 and v = 8. We use the notation introduced by Gough (1977),
in which the form-factors are ® = v/4 = 2 and 7 = 4y/(3\/v) = V/2/9.

The photospheric transition from optically thick to optically thin is treated by
means of T-7 relations derived from the simulations. We calculated temporal and
Tross (Rosseland optical depth) averaged temperatures, and fitted these to analytical
expressions which were used in the envelope models. The fitting formula and the
coefficients are given in Paper I. The point that we use individual T-7 relations
instead of scaled solar T-7 relations is crucial for the present calibration, as discussed
in Paper L.

The pressure in the simulations is not purely thermodynamic; turbulent pressure

also contributes to the hydrostatic equilibrium. We therefore include a turbulent
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pressure in the envelopes, based on the MLT convective velocities

Pturb,lD - /gvzonvg ) (]‘8]‘)

where (3 is a constant, adjusted as part of the calibration procedure, as described
in Sect. 5.2.5. We suppress the turbulent pressure in the envelopes with a smooth
cutoff just above the matching point, to avoid spurious effects on the structure of
the envelope model. This has two reasons: The practical one, is that most stellar
structure calculations do not include such a turbulent pressure, and a calibration of «,
including Pym,1p in the whole convection zone, would not apply in these cases. The
second, and more physical reason, is that vcon, in MLT models has a very unphysical
behavior, and gives rise to an even less physical Pyw,1p. The turbulent pressure in
the part of the envelope above the matching point would change the outer boundary
condition for the envelope, which can have a significant global effect on the model.
The velocity drops from an unrealistically high, supersonic maximum, down to zero,
in a fraction of a pressure scale height, giving rise to a devastating pressure gradient.
To enable integration of hydrostatic equilibrium, it is necessary to introduce some
cutoff, which undoubtedly will introduce an unphysical differential behavior of this
MLT turbulent pressure.

In the simulations on the other hand, turbulent pressure peaks about half a
pressure-scale-height below the top of the convection zone, drops off smoothly both
above and below and is non-zero everywhere.

We recommend not including a 1D-turbulent pressure which is confined to the
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convection zone, i.e., do not incorporate an overshoot region.

Well below the super-adiabatic top of the convection zone, Piym,1p does however
match the turbulent pressure of the simulations rather well, giving an almost differ-
entiable match. We take this as evidence, that envelope models including Pyb,1p,
with # and « fitted as described in Sect. 5.2.5, gives a realistic extension of the sim-
ulations towards the center of the star. This fact was exploited in an investigation
of convective effects on the frequencies of solar oscillations (Rosenthal et al. 1999) by
analyzing eigenmodes in a model combining the simulation and a matched envelope

model. We can now proceed with the matching, with confidence.

5.2.5 Matching to envelopes

In order to derive o’s from the simulations, we matched horizontal and temporal
averages of the 3D simulations to 1D envelope models at a common pressure point
deep in the simulation. The matching is performed by adjusting 3 till the 3D- and
1D-turbulent pressures agree, and « till the temperatures agree.

This method demands a high degree of consistency between the simulations and
the envelope models at the matching point, which is the reason for using the exact
same EOS (and chemical composition) in both cases, and for including a turbulent
pressure in the deep part of the envelope models. The matching is furthermore per-
formed at a depth in the simulation, where boundary effects are small and fluctuations
in the thermodynamic quantities are small. The latter to ensure that the mean g, T’

and Py, are related by the EOS, i.e., that direct 3D-effects are negligible, as is of
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course always the case in the envelope models.

In order to filter out non-convective effects from this calibration of «, we also
demand consistency in the treatment of radiative transfer at the top of the convection
zone. We accomplish this by using the Rosseland opacities from the simulations, in
the atmospheres of the envelopes, and using 7-7 relations derived from the simula-
tions, based on this opacity (See Paper I for details).

The combination of the average stratification of the simulations in the atmo-
sphere, and the matched envelope in the interior, have recently been used by Geor-
gobiani et al. (2003b), as a basis for computing the excitation of stellar p-modes for

the stars listed in our Tab. 10.

5.2.6 Results and discussion

The results of this envelope matching is listed in Tab. 10 where we list both « for
the matched envelope, and the relative depth of the convection zone, dcyz. The
simulations are listed in order of increasing vigor of the convection, translating into
decreasing o’s (decreasing efficiency of convection) and decreasing relative depth of
the convection zone. As a measure of how vigorous the convection is, we use the
maximum of the turbulent to total pressure ratio, as listed in the fifth row of Tab.
10.

In Fig. 23 we show the o’s from the envelope matching as function of Tig, as *-
symbols. Those values are plotted with error-bars, corresponding to the RMS scatter

in « derived from envelope matching to individual time-steps of the simulations. This
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Fig. 23. A plot of the a’s found from the matching procedure (stars), compared
with the linear fit from Eqs. (182) and (183) (triangles). The (lower) diamonds show
the 2D calibration by Ludwig et al. (1999), which we have also multiplied by 1.14
to agree with our result for the Sun (upper diamonds). The line-segments show the
local LogT'-derivative of the fitting expressions.

scatter is rather small; 1-3x 1073, and is hard to see in the figure.

We fit the derived a’s to a simple function of the form

Teff Gsurf do
age = an + Alo + Blog—=— 4+ —(Y =Y, 182
fit o} g Teff,@ g Tt dY( @) ( )
and find
do
ae = 1.81795 , — = —1.32012

ay
(183)
A=-1.11208 and B =0.07454
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which is shown as triangles in Fig. 23, with the logT-gradient indicated with line-
segments. This linear fit has a standard deviation of o = 0.012, whis is more than
an order of magnitude less than the variation of o over the seven stars. It is also
an order of magnitude larger than the RMS scatter in « from envelope matching
to individual time-steps. This indicates that the variation of « is not optimally
described by a plane. We find it prudent, however, to keep the fit linear in order to

avoid divergences outside our rather limited fitting region of the seven simulations.

Fig. 24. 'This figure shows a’s behavior with T, and gg.¢. The surface is the fit
given in Eq. (182). The dashed lines shows evolutionary tracks for stellar masses as
indicated. The stars show the a’s as listed in Tab. 10 and the little circles, connected
by lines, show the projection onto the fitting-plane.

A similar calibration of o against 2D RHD simulations has been performed by
Ludwig et al. (1999, from here on LFS), using a method completely independent
of ours. In Fig. 23 we have displayed their fit to their results, as applied to the

atmospheric parameters of our simulations (lower set of ¢’s, with line-segments indi-
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cating local logT-derivatives). Based on the requirement of matching the radius of
the present age Sun, they allow for a scaling of their results by 1.1-1.2 to translate
from 2D to 3D.

Our results do indeed agree in the solar vicinity, after a scaling by 1.14, as
shown by the upper set of o-symbols in Fig. 23. The disagreement for Star A is most
likely due to differences in the opacities. They base their opacities on the Atlas6
line-opacities whereas we use the newer Atlas9 line-opacities (in the form of opacity
distribution functions). The difference, as outlined by Kurucz (1992d), consists of
the addition of molecular opacity (hydrides and CN, Cy and TiO) and improved
calculations for the iron-group elements — all in all a factor of 34 more molecular,
atomic and ionic lines.

These opacity changes should affect the hotter stars the least, but they still
have an effect on the solar model—that was after all the main motivation behind the
opacity updates (Kurucz 1992b). We therefore suspect that the factor translating
LFS’ results from 2D to 3D should be closer to 1.21, to bring the Procyon results
into agreement. The differences for the other simulations would then be due to the
opacity update. LFS used grey radiative transfer in the bulk of the 58 2D simulations
going into their analysis, adding another systematic difference (also decreasing with
Ter) between our results.

The fit by LFS have more degrees of freedom, as warranted by the much larger
set of simulations. They also cover a larger area of the Teq/gsurf-diagram making
non-linear behaviour more pronounced. It is, however, interesting to note that our

results are rather well described by a bi-linear fit in log7.g¢ and logg. We are obviously
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eager to extend the present analysis to larger temperatures and lower gravities.

It seems natural to expect that quantities other than 7. and gsu.s, would be more
relevant for describing the efficiency of convection. The optical depth at the top of
the convection zone, for example, seems much more relevant and directly related to
the issue. This quantity, and other related ones, appear to give worse fits, than the
one presented above. The reason for this is still unclear.

It can be argued that the set of atmospheric parameters we have chosen for
our simulations lies close to a line instead of delineating an area, and therefore only
the change of o along this line can be significant. Again we refer to the relative
agreement with the findings of Ludwig et al. (1999), who explored a larger area in
the To / gsure-plane. Also the nBoo- and Star A-simulations are rather far away from
that line and yet they both lie very close to the fitting-plane.

In Fig. 24 we show the linear fit of Egs. (182) and (183), as function of both
effective temperature and gravity. Contours, in grey, are shown for every 0.01 and
labelled for every 0.02. We have also over-plottet values found from the envelope
matching procedure (x-symbols), and connected them to the corresponding points on
the plane, with small vertical line-segments. The dashed lines show the evolutionary
tracks from Fig. 22, with masses decreasing upward as indicated.

Fig. 24 shows a very interesting trend; The evolutionary tracks show that the
stars on the zero age main sequence have o’s that depend strongly on mass (o =~
2.11 — 0.27M /M), but their o’s converge towards o ~ 1.82 going up the Hayashi
track at the low-7/low-g corner of the plot. We also see that the a2 Cen binary system

has kept an only slightly increasing a-difference between the two components (as the
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B-component evolves slower), of about 0.03. In a recent calibration of the a Cen-
system, (Morel et al. 2000) find a4 p = (1.86,1.97), which is a bit larger difference
than what we find, but it has the same sign. Using individual o’s and 7'-7 relations,
evolving with time, might help solve the longstanding problems with the modeling

of this system (Fernandes & Neuforge 1995; Lydon et al. 1993).

Depth of the Solar convection zone

We have also run a simulation for direct comparison with solar observations. This
simulation has a more modern composition: a helium mass-fraction of Yy = 0.245
in accordance with helioseismology (Basu & Antia 1995), and Z,/X, = 0.0245 in
agreement with meteoritic and solar photospheric metal to hydrogen ratios (Grevesse
& Noels 1992). This ratio results in the hydrogen mass-fraction, X = 73.69% and
the helium-hydrogen number ratio, He/H=0.0837. We have also increased the reso-
lution to 100 x 100 x 82, to better capture the granulation structure, and we have
carefully adjusted the entropy of the inflowing gas (a constant) to obtain an effective
temperature of 5777 + 14K, in agreement with that derived from solar irradiance
observations: Ty = 5777 £ 2.5K, (Willson & Hudson 1988).

Matching this simulation to an envelope-model, gives o« = 1.8670, 3 = 0.75237
and a depth of the solar convection zone, dcy = 0.2869 + 0.0009 R,. This is in
good agreement with that inferred from inversion of helioseismic observations: dgcz =
0.287 4+ 0.003 R, (Christensen-Dalsgaard et al. 1991). The uncertainty we quote for
our result is merely the RMS scatter resulting from performing the full fitting of 7-7

relations and envelope-matching for the individual time-steps of the simulation.
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As indicated below Eq. 180, there are two more parameters to standard MLT.
The two form-factors, the aspect ratio of convective elements, ®, and 7, which is
related to the radiative exchange of energy between the up- and down-flows, are,
however, not linearely independant and we therefore limit our discussion to 7. Fitting
n with respect to the height of the super-adiabatic peak, we get a = 1.9618, 8 =
0.72792 and n = 0.065948, resulting in a convection zone of depth 0.2872 R. This
value is still safely within the uncertainty of the helioseismic result. The height of
the peak in the super-adiabatic gradient is increased from 0.5 in the model above, to
0.7 with the new value of 7.

If on the other hand we adjust the form-factor, n, so as to obtain the same
logarithmic temperature gradient, V, at the matching point, then we get o = 3.8545,
B3 = 0.46403 and 1 = 6.3943 x 10~*, and a convection zone of depth 0.2894 R. This
results is not within the uncertainty of the helioseismic result. Furthermore, the
peak of the super-adiabatic gradient becomes unphysically large, reaching a value of
2, about 100 km below the photosphere.

That 7', p and V cannot be simultaneously matched at a common pressure-point
(with plausible parameters), indicates that the MLT formulation converges rather
slowly, if ever, towards the super-adiabatic gradient, V — V.4, of a real convective
envelope. This might be due to the neglect of kinetic-flux in the MLT formulation,
as detailed in Sect. 5.2.2.

Notice that the depth of the solar convection zone, as found above, results from ab
initio calculations, from the EOS and opacity calculations, to the RHD simulations.

The adjustable parameters that enter the simulations are the resolution, the viscosity
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coefficients, and the size of the time step relative to the Courant time. These are
tuned to resolve the thermal boundary layer at 7 = 1 and the convective structures,
to minimize numerical diffusion, and to minimize the computing time. Nothing is

adjusted to fit solar observations.

5.2.7 Conclusion

We have calibrated the MLT parameter «, by matching 1D envelope models with 3D
RHD simulations, and established a significant variation of  with stellar atmospheric
parameters Tog and gg,¢. Our results point to a common value of @ ~ 1.82 at the
beginnig of the ascend up the Hayashi track and o decreasing with mass on the
zero-age main-sequence.

There is of course still the possibility that we, despite our efforts, have overlooked
a source of systematic errors in our calibration, but the absolute agreement with
the seismologically inferred depth of the solar convection zone, found in Sect. 5.2.6,
strengthens our confidence.

Although various values of a have been considered in the modeling of stellar
evolution, an « varying during the evolution of a star has, to our knowledge, not
been tried yet. Results of such evolution calculations are presented in Paper III.

We stress that the choice of o depends on the choice of atmospheric physics,
i.e. - relation and atmospheric opacity. Employing a scaled solar 7'-7 relation will
alter the effect of «, as shown in Paper I. We recommend that our fitting formula,

Eq. (182) be used with individual T-7 relations.
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As ground-based and soon also space-borne, asteroseismology is beginning to
provide strong constraints on the structure of stars, other than the Sun, stronger
demands are placed on the theoretical models.

An absolute calibration of the mixing-length parameter, «, is the first step to-
wards improving the treatment of convection in stellar structure models. A funda-
mentally improved formulation of convection is of course desireable, but has proven
rather difficult to come by. Various attempts has been made to rectify this situa-
tion. Canuto (1993) present a formulation based on fully developed turbulence, which
however, does not account for the steep density gradient and the inherent assymetry
between up- and down-flows. (Lydon et al. 1992) base their model on 3D hydro-
dynamical simulations of convection, and this is probably the most promising way
forward. A number of approximations render their results less than optimal for the
next generation of convection models, however.

With the connection between MLT and the 3D convection simulations, found
in Sect. 5.2.2, we believe a properly calibrated mixing-length formulation, with the
mixing-length being proportional to the density or pressure scale-height, to be the

best choise for the time being.



Chapter 6

Conclusions

6.1 Summary

Numerical instabilities first discovered in a deep solar simulation, have severely ham-
pered progress in production runs. The reasons and possible remedies are explored
in chapter 2.2, but no conclusions have been reached yet. The research has led to
a small number of possible solutions, that will be implemented and explored in the
near future.

The two equation of state projects, most popular with the astrophysical commu-
nity, was compared in much detail in Sect. 3.1.1, pointing out a number of differences
and considering the OPAL EOS’ success, there seemed to be room for improvements
on behalf of the MHD EOS.

Analyzing a particular term in the MHD EOS, ¥, which is an approximation
to the second-order (in density) hard-sphere interaction between neutral particles,

it was found that it has very little effect under solar circumstances, and was not

188
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the main reason for the very successful pressure-ionization in the MHD EOS. The
term is still suspicious, however, as hard-sphere interactions, at best, can be a crude
approximation to the real phenomena at play.

In Sect. 3.2.5 the lessons learned from the EOS comparisons, was applied to im-
provements of the MHD EOS. In particular, the previously published improvements
of post-Holtzmark micro-field distributions and relativistically degenerate electrons,
were incorporated, together with the two quantum effects; exchange interactions be-
tween identical particles and quantum diffraction. For a solar stratification of density
and temperature, the largest effect turned out to stem from a proper treatment of
higher order Coulomb interactions, beyond the Debye-Hiickel theory.

In order to extend the validity of the MHD EOS to the domain of stellar at-
mospheres, provisions for including molecules by means of parameterized partition-
function, was added. We presently use a data-base containing 315 di-atomic and 99
poly-atomic molecules.

A new EOS will also have consequences for opacities, through changed popula-
tions of the energy levels, and changes to the dissociation and ionization equilibria.
From the OP-team (Seaton 2003, private communications) it has been confirmed that
there has been significant improvements to the atomic physics and time is getting
ripe for a new opacity calculation.

The improvements to the equation of state and the opacities, are accompanied
by a comparable improvement to the method for evaluating the radiative transfer.
By carefully selecting a small number of wavelength points, it is possible to reproduce

the result of the full radiative transfer to within a percent. A robust algorithm for
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selecting the wavelength points is presented, and tested on a handful of conventional
1D stellar atmosphere models. The new method is shown to be more stable against
the convective fluctuations, 7.e., when applied to a vertical slice of a snapshot of a
solar simulation, the overall agreement with the full calculation is improved compared
to the opacity-binning scheme currently employed.

In chapter 5 a set of convection simulations for stars in the (larger) solar neigh-
borhood of the HR-diagram, are analyzed in order to improve conventional 1D stellar
structure models. It is found that 7-7 relations can indeed describe stellar atmo-
spheres correctly, with just a single (Rosseland) opacity—even in the case of dis-
tinctly non-grey atmospheres. It is found that there are significant adiabatic cooling
and radiative heating, taking place, when convective overshoot is present (as is always
the case in the simulations). The stratification of an atmosphere is not necessarily in
radiative equilibrium.

Having isolated the radiative effects through a properly defined radiative T-7
relation we proceed to present a calibration of the main free parameter, «, of the
mixing- formulation of convection. A small but significant change with Tog and ggu.f
is found, and for the solar case, the calibration results in a very good agreement
with then depth of the solar convection zone—An absolute calibration, with no free

parameters to adjust.
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6.2 Future Work

The convection simulations

The various improvements out-lined in the present work, are now ready for imple-
mentation. The new MHD EOS is coded and is ready to run production runs. During
the production of EOS tables, I will continue the newly opened negotiations with the
OP-team and the molecular line database-team, based in Copenhagen and Uppsala.
My goal is a compilation and computation of “unified” opacities, that are equally
relevant for stellar structure-, and for stellar atmosphere-research. At least in the at-
mosphere, this EOS and opacity combination should be valid for stars ranging from
cool, late type stars and all the way to white dwarfs.

The issue of stability in the convection simulations, as explored in chapter 2.2,
will also be addressed in the near future, to facilitate early resumption of production
runs. There are a number of potential solutions to explore, of which the pice-wise
cubic-spline interpolation will probably be the first one to be tested. A candidate
solution will have to prove its worth in a number of tests with analytical solutions;
Simple advection tests of different shapes, as well as sound-waves and shocks of
varying amplitude. As soon as a solution have materialized, the simulations can be
restarted, and that probably with the new EOS.

The next step is implementation of the SOS radiative transfer-scheme and direct
comparison between that and the current opacity-binning scheme and various stages
in between. When properly tested, this will be applied in the production runs.

The last update will probably be the opacity calculations, since the computation
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of absorption coefficients of the last 11 elements included in the OP and IP projects,
is still work in progress.

With all the improvements in place, and validated by a handful of convection
simulations of individual stars, work on the grid of 3D convection simulations can
begin. This will pave the way for many new insights, much improved analysis and
interpretation of observations, and the possibiliy for performing “measurement” on

the simulations that are not (yet) possible for real stars.

Applications

There are a great number of pressing issues, concerning the remaining space-based
astero-seismology missions. One issue is the amount of cenvective “noise” that can be
expected from other stars, potentially drowning a p-mode signal. Another issue is the
damping of modes, broadening the profiles of the eigen-modes. Preliminary results
(Kjeldsen & Bedding, 2003 private communications) points to higher than expected
damping, and maybe even to the point of splitting the line in several independent
random components.

The convection simulations will also be useful for simulating the signal that will
be observed, to improve on the understanding and interpretation of exactly what
the instruments observe. This also applies to the identity, or global parameters, of
the observed stars, as the convection simulations are excellent tools for abundance
determinations (Asplund 2000; Asplund et al. 2000b) and for determining 7T.g and
Jsurt from spectral line-shapes.

When the atmospheric parameters have been determined, the interior of the star
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can be investigated by means of matching 1D envelope models to the bottom of the
convection simulations, and e.g., calculate eigen-modes for the combined model, as
has previously been done for the Sun (Rosenthal et al. 1999). As shown in chapter
5, 1D stellar models can be calibrated against the simulations, i.e. the atmospheric
structure and mixing-length, which can then be fed into stellar evolution calculations,
to gain further insights into the lives of stars.

The possibilities are as many and far-reaching as our imaginations can take us.
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ABSTRACT

ACCURATE SIMULATIONS OF
CONVECTION IN STELLAR ATMOSPHERES

By

Regner Trampedach

I present the ingredients for high precision, 3D hydrodynamical simulations of
convection in stellar atmospheres, as well as a number of applications. I have devel-
oped a new scheme for evaluating radiative transfer, an improved equation of state
and I have investigated a number of directions for improving the numerical stability
of the convection simulations.

The equation of state (EOS) used for the simulations, is updated by including
post-Holtzmark micro-field distributions and relativistic electron-degeneracy as pre-
viously published. I have further included quantum effects, higher-order Coulomb
interactions and improved treatment of extended particles. These processes (except
relativistic degeneracy) have a significant effect in the solar convection zone, and most
of them peak at a depth of only 10 Mm. I also include a range of astrophysically sig-
nificant molecules, besides Hy and the HJ -ion. This EOS will be used directly in the
convection simulations, providing the thermodynamic state of the plasma, and as a
foundation for a new calculation of opacities for stellar atmospheres and interiors.

A new scheme for evaluating radiative transfer in dynamic and multi-dimensional
stellar atmosphere calculations is developed. The idea being, that if carefully chosen,
very few wavelengths can reproduce the full radiative transfer solution. This method
is based on a calibration against a full solution to a 1D reference atmosphere, and
is therefore not useful for 1D stellar atmosphere modeling. The first tests of the
method are very promising, and reveals that the new method is an improvement over
the former opacity binning technique. The range of convective fluctuations is spanned
more accurately and not only the radiative heating, but also the first three angular
moments of the specific intensity, can be evaluated reliably. Work on implementing
the method in the convection-code, is in progress.

These developments will be employed in the future for a number of detailed
simulations of primary targets for the upcoming, space-based, astero-seismology mis-
sions, and will include o Cen A and B, nBoo, Procyon and g Hyi. Work on a 10 Mm
deep solar simulation was severely hampered by numerical instabilities, but investi-
gating the issue has revealed a number of potential solutions, that will be tested in
the near future. The work on individual stars will soon be super-seeded by an effort
to compute a grid of convection simulations in T,¢,log g and metallicity, [Fe/H], in
the spirit of present-day, grids of conventional atmosphere models.

Regner Trampedach, December 2, 2003.



