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ABSTRACT

We present the results of three-dimensional simulations of the deep convective envelope of a young (10Myr) 1M�
star, obtained with the anelastic spherical harmonic code. Since young stars are known to be faster rotators than their
main-sequence counterparts, we have systematically studied the impact of the stellar rotation speed, by considering
stars spinning up to 5 times as fast as the Sun. The aim of these nonlinear models is to understand the complex in-
teractions between convection and rotation. We discuss the influence of the turbulence level and of the rotation rate
on the intensity and the topology of the mean flows. For all of the computed models, we find a solar-type superficial
differential rotation, with an equatorial acceleration, and meridional circulation that exhibits a multicellular structure.
Even if the differential rotation contrast �� decreases only marginally for high rotation rates, the meridional cir-
culation intensity clearly weakens according to our simulations.We have also shown that, for Taylor numbers above a
certain threshold (Tak 109), the convection can develop a vacillating behavior. Since simulations with high turbulence
levels and rotation rates exhibit strongly cylindrical internal rotation profiles, we have considered the influence of
baroclinic effects at the base of the convective envelope of these young Suns to see whether such effects can modify the
otherwise near-cylindrical profiles to produce more conical, solarlike profiles.

Subject headinggs: convection — hydrodynamics — stars: interiors — stars: rotation

1. INTRODUCTION

Young stars are the subjects of intense observational and the-
oretical research. There is a diversity of interesting objects, from
massive Herbig stars to low-mass T Tauri stars. We focus in this
paper on low-mass stars. During the pre-main sequence (PMS)
they evolve from the birthline along the Hayashi track; during this
phase they are fully convective. Next, a radiative core develops
and grows until the stars reach the zero-agemain sequence (ZAMS)
and start burning hydrogen. Thus, energy transfer by convection
takes place in a large portion of the PMS stars and, as such, is a key
process for understanding their structure and their evolution.

During their youth, these stars are surrounded by a disk, more
or less dense and thick according to their evolution stage, with pos-
sible accretion from the disk to the star. Stars and disks are generally
magnetically coupled. Because of the nature of these interactions,
there is a large range of stellar rotation speed. There are slow
rotators—spinning at the solar rate—and stars spinning 100 times
faster. As a direct consequence, stars on the ZAMS exhibit a very
large dispersion of equatorial velocities, but T Tauri stars present
moremoderate rotation periods (typically between 2 and 15 days).
The velocity distribution can bewellmodeled by considering the in-
teraction between the star and its surrounding disk (Bouvier et al.
1997). The rotation speed for a star on the ZAMS directly depends
on the duration over which the central body and the circumstellar
material have been coupled in earlier phases. During themain se-
quence, because of angular momentum losses through a stellar
wind, stars slowdown and their rotation speeds followSkumanich’s
law (Skumanich 1972). Thus, young stars are generally faster ro-
tators than their more evolved brethren. Such higher rotation
rates should impact the internal dynamics of the stars, and this

impact must be studied with care. In order to progress on our
understanding of such objects, one has to rely on both precise
modeling of their internal structure and dynamics, and accurate
observations.
Three-dimensional hydrodynamic simulations are useful tools

to understand complex and intricate physical processes, like the
interaction between turbulent convection, fast rotation, and pos-
siblymagnetic fields. Successes of such simulations in reproducing
solar observations, especially internal constraints on rotation pro-
vided by helioseismology (Miesch et al. 2000, 2006; Elliott et al.
2000; Brun & Toomre 2002; Brun et al. 2004), encourage us to
pursue this effort in modeling other stars. Three-dimensional (3D)
simulations of convective cores of A-type stars have thus been
performed. The properties of convection and angular momentum
redistribution were analyzed in purely hydrodynamical models
first (Browning et al. 2004), then dynamo processes were studied
with MHD simulations (Brun et al. 2005). Simulations of fully
convective stars, like T Tauri ones, have also been performed by
Dobler et al. (2006). They have performed 3DMHD simulations
of a convective sphere embedded in a Cartesian box, aiming to
model dynamo processes in fully convective stars. In this paper,
our main objective is to continue this effort by performing 3D
hydrodynamical simulations of young solarlike stars.
Today’s observations are mostly limited to the stellar surface,

even though with the recent launch of COROT, deep probing of
the internal structure will soon be accessible. Despite being cur-
rently unable to reach the accuracy of observations of the solar
interior given by helioseismic inversions, we can expect that as-
teroseismology will provide constraints on physical processes,
such as the convection in the envelopes of stars (Monteiro et al.
2000; Mazumdar & Antia 2001; Roxburgh & Vorontsov 2001;
Ballot et al. 2004), especially the young stars in open clusters (Piau
et al. 2005). Among the current available proxies used to infer the
inner part of young stars, lithium is playing a central role. Lithium is
burned by proton capture at temperatures around 2Y3 ; 106 K.
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UMR 7158, CEA/Saclay, 91191 Gif-sur-Yvette CEDEX, France.

1190

The Astrophysical Journal, 669:1190Y1208, 2007 November 10

# 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A.



Thus, its surface abundance is very sensitive to the temperature
at the base of the convective zone and the physical processes—
diffusion, mixing—occurring in this region (Brun et al. 1999).
It provides an efficient means for checking deficiencies in clas-
sical modeling of PMS stellar structure. Indeed, the evolution
of 7Li abundance during the PMS is not so easy to predict. Piau
& Turck-Chièze (2002) have shown that 7Li burning depends
strongly onmany ingredients during its short phase of burning—
typically from 2 to 10 Myr for young suns—which corresponds
to the contraction phase and a large increase of the temperature
and density at the base of the convective zone.Models of solarlike
stars show a stronger depletion of lithium than the observed ones
(Ventura et al. 1998; Piau & Turck-Chièze 2002), with a great
dependence on the internal composition (see also Sestito et al.
2006) and on dynamical processes. The convective zone is clearly
a crucial element and many questions have been addressed on
the role of magnetic field on its extension and also of the effects
of turbulence in this region. In this context, it is time to perform
3D simulations of young stars and see what we can learn from
these models, first when convection and rotation interact, then
when magnetic field is also considered (A. S. Brun et al., in
preparation).

In order to constrain these 3D simulations, we summarize what
is our current knowledge on their dynamics. The rate of differential
rotation in latitude is known for many stars. Several techniques
exist to infer this differential rotation; theymainly rely on the stellar
magnetic activity. The first method is to use the migration during
activity cycles of spots which rise through the surface at higher
latitudes at the beginning of a cycle than at the end, according to
the solar paradigm. Observations of luminosity fluctuations indi-
cate the rotation period for the mean latitude where spots emerge.
Thus, studying the period modulation within cycles gives a mea-
surement of differential rotation. Long-term photometric monitor-
ing by Henry et al. (1995) revealed such secular modulation in
period signature. They deduced that the contrast of differential ro-
tation�� is almost independent of rotation (�� / �0:24�0:06).
Messina&Guinan (2003) have also deduced from long-term pho-
tometry the differential rotation rate for a few young solarlike stars
and found a correlation �� / �0:58�0:5 that is marginally sig-
nificant relative to the error bars. Using the Mount Wilson Sur-
vey of chromospheric Ca ii emission line fluxes for a hundred stars,
Donahue et al. (1996) have found a strong dependence �� /
�0:7�0:1. By using another method which consists of looking
for differential rotation as variations of stellar absorption lines,
Reiners & Schmitt (2003) also have obtained a positive correla-
tion �� / �0:53�0:35.

However, by focusing on young solar-type stars, Cameron et al.
(2001) have found a relation �� � const. This relation is ob-
tained by processing separately K-type andG-type stars.�� does
not vary significantly inside each class, but is larger for G stars
than for K ones. A more systematic study of Barnes et al. (2005)
indicates such a strong dependence on effective temperature but
a marginal sensitivity to rotation (�� / �0:15�0:10). This study
is mainly based on another, more direct technique, which consists
of following displacements of spots on the stellar surface using
Doppler imaging (Petit et al. 2002). Up to now, theoretical pre-
dictions of differential rotation in convective envelopes are mainly
produced from mean field models (Kitchatinov & Rüdiger 1995,
1999; Küker & Rüdiger 1997; Rüdiger et al. 1998; Küker & Stix
2001; Rempel 2005a, 2005b).

In this paper we aim to analyze the dynamics in the thick con-
vective shell of a young (10Myr) solar-type star and, particularly,
the influence of rotation on the convective motions and result-
ing mean flows—differential rotation, meridional circulation—

in such a star, in order to provide scaling laws useful for observers
and 1D stellar evolutionary models. After defining the equations
solved by the anelastic spherical harmonic (ASH) code and giving
the specifications of our different models (x 2), we describe the
spatial and temporal properties of convection in these simulations
(x 3). Differential rotation profiles and their evolution with � are
discussed in x 4, while x 5 is dedicated to the meridional circu-
lation. The physical interpretation of all these results is discussed
in x 6. Section 7 is focused on a peculiar form of vacillating con-
vection we have found during this study. In the conclusion (x 8),
the main results are summarized and perspectives are proposed.

2. POSING THE PROBLEM

2.1. Anelastic Equations

The simulations described here were performed using the ASH
code. ASH solves the 3D anelastic equations of motion in a ro-
tating spherical geometry using a pseudospectral semi-implicit
approach (Clune et al. 1999; Miesch et al. 2000; Brun et al.
2004). These equations are fully nonlinear in velocity variables
and linearized in thermodynamic variables with respect to a spher-
ically symmetric mean state. This mean state is taken to have
density �̄, pressure P̄, temperature T̄ , and specific entropy S̄; per-
turbations about this mean state are written as �, P, T, and S.
Conservation of mass, momentum, and energy in this rotating
reference frame are therefore written as

: = (�̄v) ¼ 0; ð1Þ

�̄
@v

@t
þ (v = :)vþ 26o < v

� �
¼ �:P þ �ggg�: = D� :P̄ � �̄ggg

� �
; ð2Þ

�̄T̄
@S

@t
¼ : = �r�̄cP: T̄ þ T

� �
þ ��̄T̄: S̄ þ S

� �� �
� �̄T̄v = :(S̄ þ S )þ 2�̄� eijeij � 1=3(: = v)2

� �
; ð3Þ

where cP is the specific heat at constant pressure, v ¼ (vr; v�; v�)
is the local velocity in spherical geometry in the rotating frame of
constant angular velocity 6o, ggg is the gravitational acceleration,
�r is the radiative diffusivity, and D is the viscous stress tensor,
with components

D ij ¼ �2�̄�½eij � 1=3(: = v)�ij�; ð4Þ

where eij is the strain rate tensor. Here � and � are effective eddy
diffusivities for vorticity and entropy. To close the set of equa-
tions, linearized relations for the thermodynamic fluctuations are
taken as

�

�̄
¼ P

P̄
� T

T̄
¼ P

�P̄
� S

cP
; ð5Þ

assuming the ideal gas law

P̄ ¼ R�̄T̄ ; ð6Þ

where R is the gas constant. The effects of compressibility on
the convection are taken into account by means of the anelastic ap-
proximation, which filters out sound waves that would otherwise
severely limit the time steps allowed by the simulation.
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Convection in stellar environments occurs over a large range
of scales. Numerical simulations cannot, with present computing
technology, consider all these scales simultaneously. We there-
fore seek to resolve the largest scales of the nonlinear flow, which
we think are likely to be the dominant players in establishing dif-
ferential rotation and other mean properties of the convection
zone.We do sowithin a large-eddy simulation formulation, which
explicitly follows larger scale flows while employing subgrid-
scale descriptions for the effects of the unresolved motions. Here,
those unresolved motions are treated as enhancements to the vis-
cosity and thermal diffusivity (� and �), which are thus effective
eddy viscosities and diffusivities. For simplicity, we have taken
these to be functions of radius alone and to scale as the inverse of
the square root of the mean density. We emphasize that currently
tractable simulations are still many orders of magnitude away in
parameter space from the highly turbulent conditions likely to be
found in real stellar convection zones. These large-eddy simulations
should therefore be viewed only as indicators of the properties of
the real flows. We are encouraged, however, by the success that
similar simulations (see x 1) have enjoyed inmatching the detailed
observational constraints for the differential rotation within the
solar convection zone provided by helioseismology.

2.2. Numerical Approach

Velocity and thermodynamic variables within ASH are ex-
panded in spherical harmonics Ym

‘ (�; �) in the horizontal direc-
tions and in Chebyshev polynomials Tn(r) in the radial. Spatial
resolution is thus uniform everywhere on a sphere when a com-
plete set of spherical harmonics of degree ‘ is used, retaining all
azimuthal orders m. We truncate our expansion at degree ‘ ¼
‘max, which is related to the number of latitudinal mesh pointsN�

as ‘max ¼ (2N� � 1)/3, takeN� ¼ 2N� latitudinalmesh points, and
utilize Nr collocation points for the projection onto the Chebyshev
polynomials. The grid resolution Nr ; N� ;N� (see Table 1) we
have considered depends on the degree of turbulence of the model.
An implicit, second-order Crank-Nicholson scheme is used in de-
termining the time evolution of the linear terms,whereas an explicit
second-order Adams-Bashforth scheme is employed for the ad-
vective and Coriolis terms. The ASH code has been optimized to

run efficiently on parallel supercomputers such as the HP ES45,
on which the simulations of this work have been performed.

2.3. Setting the Young Sun Model

We describe and analyze in this paper a simplified 3D model
of the convective envelope of a young 1M� starwhere the plasma
is composed only of a mixture of fully ionized hydrogen and
helium. Thismodel is built from the structure of an accurate 1D stel-
lar model (model Y) to get realistic values for the radiative opacity,
density, and pressure profiles.
Model Y is obtained with the CESAM stellar evolution code

(Morel 1997) for an age of 10Myr from the birthline. At this age,
the star is located at the turning point of the PMS evolutionary
track, just after theHayashi descent. Its radiative core is developing
quickly, and there is strong lithium burning (Piau & Turck-Chièze
2002, Fig. 1). It is characterized by an effective temperature of
4590 K, a luminosity L� ¼ 1:86 ; 1033 erg s�1 (0.48 L�), and a
radius R� ¼ 7:67 ; 1010 cm (1.1 R�). The outer convective zone
covers 45% of the stellar radius or 37% of the total mass. Such a
convective envelope is almost twice as thick as the solar one and,
more importantly, 15 times more massive. For such a model, we
use the OPAL equation of state (Rogers et al. 1996; Rogers 2000)
and the nuclear cross sections of Adelberger et al. (1998) to de-
scribe themicroscopic properties of the stellar plasma. OPALopac-
ities (Iglesias &Rogers 1996) are completed at low temperature by
tables of Alexander & Ferguson (1994). Convection is computed
using the classical mixing length treatment calibrated tomatch the
observations of the Sun at 4.6 Gyr (� � 1:9).
The simulations performed with the ASH code were initial-

ized from this model Y. The gravityg, radiative diffusivity �r, and
mean density �̄ radial profiles are the starting points for an it-
erative Newton-Raphson solution of the hydrostatic balance and
for determining the gradients of the thermodynamic variables.
The mean temperature T̄ is then deduced from equation (6). This
technique yields mean profiles in good agreement with the initial
1D stellar model Y (Fig. 1).

The computational domain extends from about 0.55 to 0.95R�.
The overall density contrast in radius is around 60, implying no-
ticeable compressibility effects. The simulations do not model

TABLE 1

Parameters and Characteristics of Models

Model �/�� � � Pr Ra Ta Roc Ro Re/Re0 Nr;N�;N�

Ya1 ............................... 1 3:7 ; 1012 9:3 ; 1011 4 1:7 ; 105 1:8 ; 106 0.15 0.013 22/18 65; 128; 256

Ya2 ............................... 2 3:7 ; 1012 9:3 ; 1011 4 3:8 ; 105 7:2 ; 106 0.11 0.0053 18/15 65; 128; 256

Ya5 ............................... 5 3:7 ; 1012 9:3 ; 1011 4 1:1 ; 106 4:5 ; 107 0.08 0.0016 13/11 65; 128; 256

Ya5T............................. 5 9:1 ; 1011 2:3 ; 1011 4 1:2 ; 107 7:5 ; 108 0.06 0.0020 119/54 129; 256; 512
Yb1............................... 1 1:9 ; 1012 1:9 ; 1012 1 4:0 ; 105 7:2 ; 106 0.23 0.014 83/38 65; 128; 256

Yb2............................... 2 1:9 ; 1012 1:9 ; 1012 1 8:6 ; 105 2:9 ; 107 0.17 0.0059 72/31 65; 128; 256

Yb5............................... 5 1:9 ; 1012 1:9 ; 1012 1 2:4 ; 106 1:8 ; 108 0.11 0.0020 46/27 65; 128; 256
Yb5T ............................ 5 9:3 ; 1011 9:3 ; 1011 1 7:4 ; 106 7:5 ; 108 0.10 0.0020 155/55 129; 256; 512

Yc1............................... 1 4:6 ; 1011 1:8 ; 1012 1/4 2:7 ; 106 1:2 ; 108 0.29 0.020 628/224 129; 256; 512

Yc2............................... 2 4:6 ; 1011 1:8 ; 1012 1/4 5:0 ; 106 4:8 ; 108 0.20 0.0084 557/180 129; 256; 512

Yc5............................... 5 4:6 ; 1011 1:8 ; 1012 1/4 1:1 ; 107 3:0 ; 109 0.12 0.0024a 490/128a 129; 256; 512
Yc5Sb ........................... 5 4:6 ; 1011 1:8 ; 1012 1/4 1:1 ; 107 2:9 ; 109 0.12 0.0025a 728/138a 129; 256; 512

Yc5T ............................ 5 2:3 ; 1011 9:3 ; 1011 1/4 3:3 ; 107 1:2 ; 1010 0.11 0.0024a 1253/256a 161; 512; 1024

Yd5............................... 5 2:3 ; 1011 1:8 ; 1012 1/8 2:1 ; 107 1:2 ; 1010 0.12 0.0032a 1297/345a 161; 512; 1024

Notes.—All simulations have an inner radius rb ¼ 4:2 ; 1010 cm and an outer radius rt ¼ 7:3 ; 1010 cm, which is to say a thickness of the computational domain
L ¼ 3:1 ; 1010 cm. The eddy viscosity � and conductivity � at middepth are quoted in cm2 s�1. Here evaluated at midlayer depth are the temporal average of the Prandtl
number Pr ¼ �/�, theRayleigh numberRa ¼ �(dS̄/dr)(@�/@S )gL4/( �̄��), the Taylor numberTa ¼ 4�2

oL
4/� 2, the convectiveRossby number Roc ¼ ½Ra/(TaPr)�1/2, the rms

Rossby number Ro ¼ ṽ0/(2�oL), and the rms Reynolds numbers Re ¼ ṽL/� and Re0 ¼ ṽ0L/�, where ṽ and ṽ0 are, respectively, the rms velocity and rms convective velocity at
middepth (see Table 2). The number of radial, latitudinal, and longitudinal mesh points are Nr , N�, and N�, respectively.

a Because of vacillating behavior of convection in these models, rms velocities fluctuate noticeably; thus, Ro and Re vary a lot according to the convective level.
b Model with a thermal forcing (see x 7.2).
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the outermost layers of the star, where the convective scales be-
come very small due to the sudden decrease of the density scale
height. This choice excludes the H and He recombination zone
and the superadiabatic layer for which the microscopic descrip-
tion is more complex. The inner boundary corresponds to the base
of the convective zone; the presence of a potential overshooting
layer is not taken into account in this work.

We impose impenetrable and stress-free conditions for the ve-
locity field and a constant flux—i.e., a constant entropy gradient—
at both inner and outer boundaries, except for the model Yc5S
discussed in x 7. In this model, an entropy gradient in latitude is
imposed at the bottom of the shell to model the influence of a
tachocline as in Miesch et al. (2006).

2.4. Early Phases and Relaxation of 3D Models

Some simulations have been started from a quiescent state
with a uniform rotation; others use evolved solutions in which we
modify diffusivities or rotation rate. One can track the development
of the convection by following the mean enthalpy flux crossing the
shell. The enthalpy flux is defined as

Fen ¼ vr�̄cPT : ð7Þ

Figure 2 shows the temporal evolution of Fen, averaged over the
full domain, along with the evolution of mean kinetic energy
KE, and its axisymmetric and nonaxisymmetric components (see
x 6.1 for more details). Given the high Rayleigh numbers used in
all our models, convective instabilities develop from the quiescent
state and grow exponentially over about 500 days, until saturation.
After a phase of �1500 days over which relaxation oscillations
occur, statistically stationary states are usually reached. Only sta-
tistical fluctuations modulate the temporal trace in the late evo-
lution. When such a state has been attained, we have integrated
themodel about 1000 days, namely, several convective overturn-
ing times and several rotation periods, even for themost consuming
simulations, for a total of one-half million node hours spent.

One can see for example how the energy is transferred from
the bottom to the top of the shell, on average, for a relaxed sim-
ulation. Several processes take part in this transfer (for detailed

expressions, see eqs. [11]Y[16] in Brun et al. 2004). Figure 3
shows the horizontally averaged distribution of each flux in a
typical model (Yc1), after averaging over time (1200 days). The
main component is of course the enthalpy luminosity Len ad-
vected by convection (luminosities L are defined fromfluxesF by
the relationL ¼ 4	r2F). Close to the bottom, radiative luminosity
Lrd becomes significant because of the steady increase of radiative
conductivity �r with depth. Near the top of the layer, the heat
transport is dominated by the subgrid-scale turbulence that yields
the term Led. This flux is proportional to a specified eddy diffu-
sivity and to the mean radial gradient of entropy, serves to carry
the total flux through the upper boundary, and prevents the en-
tropy gradient there from becoming superadiabatic compared to
the scales of convection thatwe are able to resolve spatially. There
are two minor extra contributions. The first is the kinetic energy
flux (Fke), which is slightly negative, except when Led dominates.
This negative value is a consequence of the fast downflow sheets
and plumes achieved by the effects of compressibility (Hurlburt
et al. 1986). The second is the viscous flux L� , which contributes
to the total fluxmainly near the top where there is a viscous layer.
Profiles are very similar in the other simulations.

In this work we concentrate on three series of models, re-
spectively called Ya, Yb, and Yc. These models possess different

Fig. 1.—Thermodynamic mean radial stratification in the outer part of a young
1 M� star, within both the 1D stellar model Y and 3D hydrodynamic case Yb1.
The mean temperature T̄ , density �̄, and pressure P̄ are plotted as curves for the
model Yand with symbols at their mesh locations for our case Yb1. The base of
the outer convective zone is indicated by the dotted line. Variables are normalized
to the value they have in model Yb1 at the bottom of the computational domain:
T̄b ¼ 3:4 ; 106 K, �̄b ¼ 1:9 g cm�3, and P̄b ¼ 9:1 ; 1014 dyn cm�2.

Fig. 2.—Evolution of the enthalpy flux Fen and of the kinetic energy density
(KE), averaged over the full domain from the quiescent state to a statistically sta-
tionary state (solid lines). The evolution of the three components of KE are also
plotted: the kinetic energy in convective motions (dashed line), in differential
rotation (dotted line), and in meridional circulation (dash-dotted line).

Fig. 3.—Radial transport of energy in case Yc1 achieved by the fluxes Len,
Lrd, Lke, Led, L� , and their total Ltot, all normalized by the stellar luminosity L�.
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levels of turbulence and Prandtl numbers Pr ¼ 4, 1, or 1/4 (Pr ¼
�/�. For each Prandtl number considered, we have performed
models with �o ¼ 1, 2, and 5 �� (�� ¼ 2:6 ; 10�6 rad s�1

corresponds to a period of 28 days), for a total of nine models.
We have also computed five supplementary models spinning at
5 ��, with higher turbulence levels, different Prandtl numbers,
or different boundary conditions. This study spans a large range of
Taylor and Rayleigh numbers, Ta2½106; 1010� andRa2½105; 107�.
All themodel parameters and characteristics are detailed in Table 1.

3. CONVECTIVE PATTERNS AND THEIR EVOLUTION
IN THE DEEP SPHERICAL SHELL

Convection in young solar stars is a major player, since it trans-
ports heat outward from the deep internal parts, redistributes angular
momentum, and establishes large-scale mean flows. Understanding
these intricate physical processes is thus crucial if we want to
progress in our knowledge of such stars.Wehere start by describing
in detail the convective patterns established in our simulations, how
they are modified by the rotation rate and the turbulence level,
and how these nonlinear interactions lead to complex temporal
evolutions.

3.1. Topology of the Convection

Figures 4 and 5 show maps of radial velocity vr and temper-
ature fluctuation T near the surface and at middepth of the con-
vective envelope for different models. We first consider the Ya
series (Fig. 4). Near the surface, the velocity field of the Ya1 sim-
ulation exhibits networks of downward flows confined to the pe-
riphery of convective cells and broader and weaker upward flows

in their centers. This asymmetry is made possible by the anelastic
approach which includes compressibility effects. This quite lam-
inar model has a ‘‘classic’’ structure composed, in the equatorial
area, of so-called banana cells, alignedwith the rotation axis. It is a
well-known pattern in solar modeling (e.g., Miesch et al. 2000).
Around the poles, convective cells look less elongated.
By comparing maps at different depths, one recovers some

patterns at similar places, which shows the great connectivity of
the downflownetwork across thewhole convective domain. In fact,
upward and downward flows are not radial, i.e., aligned with the
local gravity, but are tilted by the rotation and tend to be aligned
with the polar axis. In theYa1model, upward structures can start, in
a meridional plane, at the equator at the bottom of the shell and
reach the top near a latitude of 30�. Around the poles, the tilts of
structures are less significant because6o and ggg are almost aligned.
Comparing radial velocity vr and temperature fluctuation T

maps shows their strong correlation. It just means that hotter ma-
terial goes up and cooler material sinks. This strong correlation
of vr and T leads to large outward enthalpy flux and implies heat
transport by convection (see Fig. 3).
Temperature maps show also a clear variation with latitude.

This zonal structure varies with depth. Atmiddepth (as at the bot-
tom, not shown), there is a monotonic variation from the hotter
poles to the cooler equator. Close to the surface, the temperature
increases again in the equatorial region. The amplitude of these
variations is around 2 K. This axisymmetric thermal variation
between the poles and the equator plays an important role in the
understanding of differential rotation profiles (see discussion in
x 6).

Fig. 4.—Radial velocity vr and temperature fluctuation T fields near the surface (0.93R�) and at middepth (0.75R�), at a given instant for the threemodelsYa1, Ya5, and
Ya5T. Maps are shown in Mollweide projection. Dashed horizontal lines designate equators. Meridians are plotted with dotted lines every 45� and parallels every 30�.
Dotted ellipses show the relative positions of the stellar surface. Minimum and maximum amplitudes for each field are indicated next to each panel.

BALLOT, BRUN, & TURCK-CHIÈZE1194 Vol. 669



When the rotation speed is increased (see case Ya5), the pattern
shape is modified, but retains its overall organization. Asymmetry
of flow is reduced because the convection is less vigorous. In-
deed, we notice that speeds of convective flows have been sig-
nificantly reduced, because rotation tends to stabilize flows (e.g.,
Chandrasekhar 1961). Stronger spatial variations in flow velocities
also appear, which can be seen on the vr maps as variations on the
image contrast. Another noteable difference is the pattern size. In
theYa5model, convective patterns are clearly smaller than inYa1.
This is also a well-known effect, which can be understood simply
by following the linear growth of convective instabilities: degrees
‘c of the most instable modes increase with the Taylor number
(Glatzmaier & Gilman 1981). From the maps, we can estimate
that ‘c � 18 in Ya1 and increases to 42 in Ya5. We have per-
formed an extra model Ya5T, similar to Ya5 but more turbulent,
for which Ta is 16 times higher; in this case, the estimated ‘c goes
up to 60, producing even finer structures. In addition, an impor-
tant impact of rotation on flows is that the tilts of structures are
strongly pronounced in the equatorial area. Convective struc-
tures are essentially aligned with the rotation axis in the Ya5 case
(and somewhat less in Ya5T). In this case, the Coriolis term dom-
inates the others; convection tends to develop along Busse’s col-
umns as a consequence (see, e.g., Busse 2002).

Finally, the rotation does not affect the structure of the temper-
ature fluctuations. The zonal structure of T is very similar to those
of Ya1, in that the same kind of bands are visible; only the thermal
contrasts have been reinforced, especially for Ya5T, in agreement
with the stronger zonal flow present in this case (see xx 4 and 6).

Convective motions obviously modify the radial structure. In
a deep convective zone, the radial entropy gradient is negative

(unstable region), but close to zero, especially at the bottom of
the shell where the convection layer is close to adiabatic. Table 1
shows that for models with exactly the same diffusivities � and �,
the Rayleigh number increases with rotation rate. It indicates that
rotation modifies dS̄/dr; that is confirmed by Figure 6, which
shows the entropy gradient for the Yamodel series. As described
above for the velocity fields, the stabilizing effects of rotation re-
duce the vigor of the flow. As convection is less vigorous, it be-
comes less efficient and the entropy gradient needs to become

Fig. 5.—Same as Fig. 4, but for models Yc1, Yc2, and Yc5.

Fig. 6.—Entropy gradient dS̄/dr for models Ya1 (solid line), Ya2 (dashed
line), Ya5 (dash-dotted line), and Ya5T (dotted line).
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steeper to evacuate energy. For the same reason, since the intensity
of convection is greater in simulation Ya5T, which is more tur-
bulent than Ya5, the entropy gradient is less strong in Ya5T.

We now compare theYa serieswith the series of simulationsYc
to see the effects of decreasing the Prandtl number from Pr ¼ 4 to
1/4. Convective patterns of the three main Yc simulations are
shown in Figure 5, which is the analog of Figure 4. In going from
the Ya1 to the Yc1 case, the Taylor number is increased, as it was
when �o was increased. However, in this case there is no visible
stabilization effect, since thanks to the reduction of �, the turbu-
lence level increases as well. Yc1 is themost turbulent run that we
performed, if we exclude the special cases Yc5T and Yd5, as
shown by the Reynolds numbers Re (Table 1). Banana cells are
less visible and structures are more complicated. Relative to Ya1,
the asymmetry of upflows/downflows is more pronounced in
Yc1. The small-scale vorticity is more intense in this model than
in more laminar ones, as suggested by a higher Rossby number
Ro (Table 1). By comparing, on vr maps, the convective patterns
in the polar and equatorial regions, it becomes clear in this sim-
ulation that the behaviors of convection in these regions are dif-
ferent. We can roughly separate what occurs inside and outside
the cylinder tangent to the inner shell and parallel to the rotation
axis. Inside this cylinder, convection follows a ‘‘polar regime’’
slightly influenced by rotation, outside it follows an ‘‘equatorial
regime’’ where rotation influences the convection much more.

When the rotation rate�o is increased, convective features are
modified.We can see that in the equatorial region convection tends
to be localized, favoring a limited band of longitudes at a given
time. By contrast, at the solar rotation rate, this is not very pro-
nounced.We note that around the equator there is a zone (close to
the map center) where the velocity is slightly stronger. When the
rotation is double or more (Yc2, Yc5), vigorous convective mo-
tions are concentrated in a small region in longitude. In the rest of
the equatorial zone, convective velocities are markedly smaller
(by a factor 5 or 10 typically). Polar convection is much less
affected. We observe that, in this region, convective patterns are
smaller, for reasons we have developed above. Thus, convective
motions inside and outside the vertical tangent cylinder are only
loosely connected.

Finally, we can compare once again vr and Tmaps in Figure 5.
Correlations are apparently less obvious, because the axisym-
metric component of T presents a stronger contrast than for Ya1
or Ya5 (it is quite similar to Ya5T). If the m ¼ 0 components are
removed from T, correlations clearly appear again.We retrieve in
these model runs the same structure of azimuthal bands as in the
previous series. This is a characteristic common to all our model
simulations. Only the thermal contrast of these bands varies. It
has been increased here by a factor 4Y5 relative to the Ya series.
As for the previous series, the thermal contrast increases with�o.

3.2. Pattern Temporal Evolution

After having described the spatial structures of convection in
our simulations, we discuss here how they evolve with time. To
do so,we have followed the evolution of convective patterns thanks
to a time-longitude (�; t) diagram. Figure 7 shows such diagrams
for Ya1 and Yc1 models. For given radius rc and zenith angle �c,
we have plotted the radial velocity field vr in the (�; t)-plane, serv-
ing to follow, for each longitude, the temporal evolution of vr.
We have also plotted ‘‘shifted’’ diagrams, in (�s; t) coordinates,
with

�s ¼ �� 1

rc

Z t

t0

v̂�(rc; �c; t) dt; ð8Þ

where v̂� is the azimuthal average of v�, in order to compensate
for the local advection of the differential rotation.
A first look at the nonshifted maps (Figs. 7a and 7c) shows

that velocity structures propagate eastward. It is still moderate
for Ya1, but becomes really strong forYc1, somuch so that themap
becomes difficult to read. For such cases it is very useful to consider
shifted maps, since they are more readable. Since the maps are
plotted in the corotating frame, such an eastward propagation is a
signature of a strong differential rotation, where the equator is ac-
celerated relative to the mean rotation speed (see x 4).
Let us focus on Ya1. Maps show that convective patterns are

persistent during several turnover times: we can follow them in
the map during the complete time sequence. Figure 7b shows that
differential rotation does not account for the total eastward prop-
agation. There is still a small residual drift. We thus see a self-
propagation of convection structures. For example, the structure
located at � ¼ �80� at the initial time is around�60� longitude
300 days later. We clearly see also the regular appearance of down-
flow lanes and their ongoing mergers. These maps show undoubt-
edly the temporal modulation of speed and thickness of flows, as a
consequence of the intrinsic fluctuation of convective motions.
It is instructive to make a direct comparison with the pattern

evolution seen in the Yc1 simulation. The shiftedmap of this tur-
bulent model (Fig. 7d) reveals conspicuous temporal modulations,
stronger than in Ya1. Moreover, the persistence of downflow lanes
is shorter. The hot spots, described in x 3.1, are persistent patterns.
On the shifted map, they obviously drift westward, a signature of
retrograde motion.
The localized convective structure seen on Yc2 velocity maps

(Fig. 5) is also persistent and presents the same kind of retrograde
motion (not shown). In the Yc5 simulations, the localized convec-
tive patterns also similarly propagate, but their temporal evolution is
very peculiar: the convective level fluctuates highly in this case, so
much so that the pattern periodically fully disappears, reappearing
later. Section 7 is dedicated to the study of this special case.

4. DIFFERENTIAL ROTATION PRODUCED

We have seen in x 3 that convective patterns propagate in lon-
gitude under the influence of a large-scalemean longitudinal flow.
Here, we discuss in more detail this mean flow: the differential
rotation, and how it varies, both in contrast and profile, with the
rotation rate.

4.1. Differential Rotation Profiles

Figure 8 shows the temporal and longitudinal averages of an-
gular velocities achieved for six representative models. To make
comparison with observations easier, we have converted mean
azimuthal velocities v̂� into sidereal angular velocities� ¼ �oþ
v̂�/(r sin � ). The rotation profile of our reference case,Ya1 (Fig. 8a),
exhibits a clear equatorial acceleration, similar to the Sun. All of
our models present such a behavior. It is a consequence of the
domination of the Coriolis force over the buoyancy (Gilman 1977),
as measured by the low convective Rossby number; Table 1 in-
dicates that Roc < 1 in every case. In Ya1, the contrast of this
differential rotation is not very large, but the decrease of � from
the equator to the poles is monotonic (see Fig. 8a, right). The ro-
tation profile is rather conical, i.e., radial cuts at different latitudes
are independent of r.
On Figure 8 we can see the effects of increasing Ta, following

two different paths: first by decreasing the viscosity � and so Pr
with simulations Ya1 to Yc1 via Yb1 (Figs. 8a, 8b, and 8c); sec-
ond by increasing�o in going fromYc1 toYc5 via Yc2 (Figs. 8c,
8d, and 8e).
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In going from Ya1 to Yb1, we first notice the increase of the
contrast of the differential rotation (Fig. 8b), multiplied roughly
by a factor of 4. The profile remains monotonic with respect to the
latitude coordinate. However, it becomes less conical and tends to
becomes more cylindrical, i.e., with isorotation contours parallel
to the stellar axis. Compared to Yb1, in Yc1 (Fig. 8c) the profile
becomes even more cylindrical and the contrast is increased by a
factor of 2. Such a contrast of 130 nHz is typical of those ob-
served at stellar surfaces (around 90 nHz for the Sun). The rota-
tion rate decreases monotonically from the equator up to 60�, but
the monotonicity is lost in the polar caps.Moreover, the behavior
of the rotation is different in the northern and southern polar
caps. As we have already seen in x 3 concerning the convection,
dynamics inside and outside the tangent cylinder are practi-
cally disconnected, and the two polar regions are disconnected
too. However, very long averages should result in identical
profiles.

By following the second path (Yc1, Yc2, Yc5), the cylindrical
aspect is more and more marked, and the isorotation contours for
the Yc5model (Fig. 8e) are almost purely vertical. The rotation be-
havior in the polar regions varies from one model simulation to the
next in sequence, from one hemisphere to the other. Nevertheless,
outside the tangent cylinder, the equatorward monotonic increase
of � is always present. The contrast of the differential rotation is
slightly reduced along this path. Even though it is not very pro-
nounced for this Yc series, it is more noticeable for the Ya and Yb
model series. Thus, models with high Pr and high � reach a rather
weak differential rotation. The extreme case,Ya5, rotates practically
as a solid body.

Along both paths, when Ta is increased, rotation profiles be-
come more cylindrical. However, the contrast of the differential
rotation responds differently in the two cases: it rises along the
first path and declines when�o increases. This is an effect of the
stabilizing role of rotation, an effect already mentioned in x 3.

Fig. 7.—Diagrams of (�; t) showing the temporal evolution of the vr profile along the equator (�c ¼ 90�), close to the top of the shell (rc ¼ 0:93 R�) for models (a,b)
Ya1 and (c,d ) Yc1. On the left (a,c), diagrams are plotted in the corotating frame. On the right (b,d ), the diagrams are plotted in the ‘‘shifted’’ (�s; t) coordinates, to remove
the local effect of differential rotation (see text).
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This means that a nonnegligible part of the properties of linear
unstable modes is retained in these nonlinear simulations.We dis-
cuss the rotation profile of the Yc5S case and the temporal mod-
ulation of the Yc5 profile further in x 7.

4.2. Rotation Scaling Law

We have seen that differential rotation contrasts can vary with
variations in the model parameters. To quantify these variations

we have computed for each model the contrast�� at the surface
of the convective shell, between the equator and the latitude 60�

(Figs. 9 and 10). We have chosen to compute it near the surface,
because that is where rotation is observed in stars (see x 1).
Moreover, by choosing to cut the range at 60

�
we avoid the polar

regions where peculiar behavior occurs in the Yc series. These con-
trasts �� are summarized in Table 2 among other useful quan-
tities. We have plotted �� as a function of the turbulence level

Fig. 8.—Temporal and azimuthal averages of angular velocities achieved for six simulations: Ya1, Yb1, Yc1, Yc2, Yc5, andYc5S. For (aY f ), a contour plot of�/2	 in
the meridional plane is shown on the left, and on the right, radial cuts of the same quantity are plotted at six fixed latitudes (specified on c), averaged on both hemispheres.
The color scale of each map is independent and is indicated near the plot. Thick lines on contour plots correspond to� ¼ �o. The scales of the right plots are the same for
(aYd ), and also for (e, f ). Since Yc5 is an oscillating model, the (e) right panel shows radial cuts of�/2	 at two different moments: when the differential rotation reaches (1) a
maximum (solid lines) and (2) a minimum (dashed lines).
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characterized by Reynolds number Re0 (Fig. 9) and of the ro-
tation rate �o (Fig. 10) for all our models. Thus, we get a global
vision of the sensitivity of �� to different parameters.

First, there is a clear and strong dependence of �� on the
turbulence level. The simulation Ya5T is more turbulent than
Ya5—with the same Pr and�o—and reaches a stronger contrast,
even higher than Ya1 (see Table 2). That is also true when we
compare Yb5T to Yb5 or Yc5T to Yc5. To show the strong im-
pact of turbulence level, we can compare�� and Re0. We have
defined two Reynolds numbers: Re ¼ ṽL/� and Re0 ¼ ṽ0L/� (see
Table 1). The former is computed with the rms velocity at the
middepth layer ṽ; the latter is computed with ṽ0, which is the rms
velocity of convective motions, i.e., that evaluated after remov-
ing the azimuthal averages from the velocity components (Table 2).
It is more relevant to compare��with Re0 than with Re; when the
differential rotation is strong, v̂� is themajor contribution to ṽ and so
increases the value of Re; thus, by construction we have to find a
correlation between �� and Re. On the contrary, Re0 takes into
account the convective motions only, since the differential rota-
tion has been filtered for its evaluation. Thus, by comparing��
to Re0 we really measure the impact of the convective turbulence
level on the differential rotation. Figure 9 shows the clear direct
correlation between �� and Re0 we have found. The contrast
�� increases with Re0 and seems to saturate around 140 nHz in
the more turbulent cases. The signification of this correlation is
discussed in x 6.2.

The variation of �� by going from Ya to Yc, seen in Table 2,
seems to indicate a dependence on Pr. However, this variation is
mainly the effect of the growth of the turbulence level fromYa to
Yc. Thus, we have to compare models with the same turbulence
levels, such as Ya5TandYb5T. The latter, with a lower Pr, achieves
a slightly higher differential rotation than the former. Nevertheless,
by comparing Yc5T to Yd5, one could conclude the opposite. In
any case, the sensitivity to Pr is obviously weak in comparison
with Re0.

Finally, we have carefully studied the effects of �o on ��.
For each series Ya, Yb, and Yc, we have deduced a scaling law
from every set of three simulations having the same parameters ex-
cept �o (for instance, the set Ya1, Ya2, and Ya5). We have fitted a
power law �� / ��

o . The resulting fits are plotted in Figure 10.
The� -exponent increases from around�0.5 for themore laminar
simulations (Ya and Yb) to �0.19 for the more turbulent ones
(Yc). Thus, for every series�� decreases with the rotation rate,

more or less strongly. When �o is increased, due to stabilizing
effects Re0 decreases and therefore �� does as well. This phe-
nomenon could explain the sign of the slope. However, the fall
of Re0 is not the only effect. By comparing Yb1 and Yb5T, we
notice that, at 5��, the turbulence level must be higher (Re0 � 55
for Yb5Tagainst 38 for Yb1) to achieve the same contrast (�� �
64 nHz). If we focus now on the Yc series, the decrease in this
case is less pronounced. All of the models achieve contrasts be-
tween 100 and 140 nHz, which is close to observations. Turbu-
lence seems to be sufficiently developed to make the contrasts of
this set of models less sensitive to Re0. The exponent of the
scaling law we have obtained with this more reliable sequence is
only slightly negative (�0.19). Despite differences in details, this
is not far from the most recent results of Barnes et al. (2005) cited
in x 1. They have found a marginally positive coefficient which is
mainly compatible with the relation �� � const. If we extrapo-
late our sequence Ya, Yb, and Yc to more turbulent series with
lower Pr, we expect that �� tends to be independent of �o.

5. MERIDIONAL CIRCULATION

Themeridional circulation is markedly smaller than the differ-
ential rotation, but can play a nonnegligible role in the dynamics,
especially in the heat and angular momentum transport (see x 6.2).
Further, its topology is an important parameter for models of stel-
lar dynamos, such as the Babcock-Leighton type ones (e.g., Jouve
& Brun 2007).

Figure 11 shows the time-averaged meridional circulations
produced in three of our model simulations: Ya1, Yc1, and Yc5.
We have plotted in the meridional plane the mass flux stream
function, as defined inMiesch et al. (2000, eq. [7]). We have also
plotted on this figure the velocity of the circulation at the top of
the domain. Since our boundary is impenetrable, the radial com-
ponent v̂r vanishes, so v̂� is the total speed of the meridional cir-
culation. The amplitude of the flow is a fewms�1, ranging between
1 and 10 for the set of simulations considered in this study. Because
of the compressibility effects, deep inside the convecting shell,
velocities decrease strongly to conserve the mass flux in denser
regions.

Considering first the reference case Ya1, we see awell-organized
multicellular circulation, where both hemispheres present almost
antisymmetric cells. If we exclude what happens around the poles,
there are four cells along the radius. The cells near the top of the

Fig. 9.—Differential rotation contrasts�� according to convective Reynolds
numbers Re0. Plus signs, diamonds, crosses, and squares correspond to Ya, Yb, Yc,
and Yd models, respectively. T indexes indicate models Ya5T, Yb5T, and Yc5T.

Fig. 10.—Differential rotation contrasts �� according to rotation rates �o.
The sense of symbols is the same as in Fig. 9. Dotted lines correspond to the scal-
ing law deduced by logarithmic regression for each series. Values of fitted slopes
are printed out on the right.
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domain induce poleward flows at the surface near the equator that
are similar to the solar observations and simulations. Near the poles,
cells are smaller, vertically oriented, and go across the entire thick-
ness of the modeled shell.

Turning now to the Yc1 model with a higher Ta, we notice a
more intricate and complex topology with an increase of the num-
ber of cells. The cells near the surface in the equatorial region
retain the same circulation direction and a similar intensity, even if
they are a little less extended. We note that meridional circulation
becomes stronger along the tangent cylinder. In this region, the
structures become more ‘‘concentrated’’ and long and thin cells
appear. If we continue to increase Ta by increasing�o, this effect
is reinforced; long cells near the tangent cylinder are more con-
centrated and dominate in intensity over others further away from
the tangent cylinder. We can find some similarities between this

phenomenon and the Stewartson layers seen in simulations of
rotating stellar radiative regions (Rieutord 2006). In the equatorial
region, the cells already seen both for Ya1 and Yc1 are still pre-
sent, having greater extent in latitude but weaker velocity.
To show the dependence of the meridional circulation on the

rotation rate, we have scaled it by the maximum velocity of the
equatorial cells, present in all models. We plot the maximum of
v̂� at the surface in these cells as a function of �o in Figure 12.
This velocity is generally the highest v̂� produced at the surface
of our models, except for Yc1 (but that does not change our con-
clusion). We see that v̂�;max in the Yb series are higher than in
both Ya and Yc for rotations 1 and 2 times the solar rotation rate.
This hierarchy between series is different from the one observed
for��. However, if we would have considered the total kinetic
energy in the meridional circulation (see MCKE in Table 2), the

TABLE 2

Representative Velocities, Energy Content, Differential Rotation, and Temperature Contrast

Model ṽr ṽ� ṽ� ṽ0� ṽ ṽ0 ar KE DRKE CKE MCKE ��top �Tbot

Ya1 ............................ 15 11 18 10 26 21 0.48 1:7 ; 106 6:1 ; 105 (36%) 1:1 ; 106 (64%) 3:5 ; 103 (0.20%) 22 1.9

Ya2 ............................ 12 9 15 8 21 17 0.51 1:2 ; 106 4:4 ; 105 (37%) 7:4 ; 105 (63%) 1:2 ; 103 (0.10%) 17 3.2

Ya5 ............................ 9 7 10 6 15 13 0.54 5:5 ; 105 1:7 ; 105 (32%) 3:7 ; 105 (68%) 2:5 ; 102 (0.045%) 10 5.4

Ya5T.......................... 11 8 32 8 35 16 0.47 4:3 ; 106 3:7 ; 106 (86%) 6:2 ; 105 (14%) 5:0 ; 102 (0.012%) 52 11.0

Yb1............................ 15 12 46 13 50 23 0.41 7:1 ; 106 5:7 ; 106 (80%) 1:4 ; 106 (20%) 5:9 ; 103 (0.083%) 64 3.8

Yb2............................ 12 9 40 11 43 19 0.41 5:4 ; 106 4:6 ; 106 (85%) 8:3 ; 105 (15%) 1:4 ; 103 (0.026%) 53 5.6

Yb5............................ 10 7 24 10 28 16 0.42 2:2 ; 106 1:7 ; 106 (78%) 4:7 ; 105 (22%) 8:1 ; 101 (0.004%) 29 6.0

Yb5T ......................... 10 8 44 10 45 16 0.42 7:6 ; 106 7:0 ; 106 (92%) 6:0 ; 105 (8%) 4:7 ; 102 (0.006%) 64 12.6

Yc1............................ 19 20 89 20 93 33 0.30 2:9 ; 107 2:6 ; 107 (89%) 3:0 ; 106 (11%) 2:0 ; 104 (0.070%) 139 4.9

Yc2............................ 15 14 86 16 88 27 0.33 2:8 ; 107 2:6 ; 107 (93%) 1:9 ; 106 (7%) 9:9 ; 103 (0.036%) 129 8.8

Yc5............................ 12 9 71 11 72 19 0.40 1:8 ; 107 1:7 ; 107 (95%) 9:6 ; 105 (5%) 2:3 ; 103 (0.013%) 103 12.7

Yc5S.......................... 10 12 107 12 108 21 0.23 3:5 ; 107 3:3 ; 107 (96%) 1:5 ; 106 (4%) 3:4 ; 103 (0.010%) 127 45.0

Yc5T ......................... 11 10 92 11 93 19 0.36 3:3 ; 107 3:2 ; 107 (97%) 9:9 ; 105 (3%) 2:8 ; 103 (0.009%) 140 15.4

Yd5............................ 15 14 94 15 96 26 0.34 3:1 ; 107 2:9 ; 107 (95%) 1:7 ; 106 (5%) 8:2 ; 103 (0.027%) 130 15.4

Notes.—Temporal averages of the rms velocity ṽ, of the rms components ṽr, ṽ�, and ṽ�, and offluctuating velocities ṽ
0 and ṽ0� (axisymmetric components are removed)

are estimated at midlayer depth, all expressed in units of m s�1. ar ¼ ṽ0r
2/ṽ0 2 is the anisotropy index. Also listed are the time average over the complete volume of the total

kinetic energy KE and that associated with the (axisymmetric) differential rotation DRKE, the (axisymmetric) meridional circulation MCKE, and the nonaxisymmetric
convection CKE, all in units of erg cm�3. The latitudinal contrasts between 0� and 60� of angular frequencies�� (temperatures T ), quoted in nHz (K), are computed at
the top (bottom) of the domain.

Fig. 11.—Meridional circulation in Ya1, Yc1, and Yc5. Maps show the mean mass flux circulation in the azimuthal plane. White lines over black background
correspond to clockwise circulations, and black lines over white background to counterclockwise ones. The color scale is not linear to make visible evenweak flows.Mean
latitudinal velocity v̂� profiles at the top of the shell are also plotted. Maps and profiles are obtained by averaging over longitude and time.
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hierarchy between Yb and Yc would be the same as for the
differential rotation. The difference has been mentioned before;
in the Yc series, a large part of MCKE is concentrated deep in-
side, along the tangent cylinder, and is not visible in v̂�;max.

As previously donewith��, power laws are fitted to the three
sets of model simulations with identical input parameters, except-
ing �o. For all series, the power-law exponent is clearly negative
(between �0.5 and �1). In contrast to what we have seen for
differential rotation, this trend of declining v̂�;max with�o is rather
strong. Even in Yc5T, the more turbulent counterpart of Yc5, the
intensity of meridional circulation slightly increases relative to
Yc5, but it stays at a lower level than bothYc1 andYc2, a property
that was not found for ��. Thus, if the differential rotation de-
creases only marginally for high rotation speeds, the meridional
circulation clearly weakens according to our simulations.

6. INTERPRETING THE DYNAMICS

Our simplified model of a rapidly rotating convective envelope
yields a nonlinear dynamical system with complex feedbacks. Nu-
merical simulations are a very efficient tool to assess the dynamical
balances that are achieved in such systems. They provide detailed
insights in the way kinetic energy, heat, and angular momentum are
exchanged among the different reservoirs. Given the importance of
understanding the internal differential rotation profile of stars, it is
necessary to identify the processes involved in establishing these
large-scale flows. In the following we discuss how the differential
rotation and meridional circulation discussed in xx 4 and 5 are
produced.

6.1. Energy Balance

We start by analyzing the energy balance of the various sim-
ulations discussed in the paper. In Table 2 we have summarized
key quantities such as rms velocity and volume-averaged kinetic
energy [KE ¼ 1

2
�̄(v2r þ v2� þ v2�)] achieved in the models. In or-

der to have a more precise analysis, we decompose the rms ve-
locities into their three components, with and without subtracting
the azimuthal averages, and KE into its axisymmetric and non-
axisymmetric components, as in Brun & Toomre (2002). We
define the kinetic energy in differential rotation asDRKE ¼ 1

2
�̄v̂2�,

the kinetic energy in the meridional circulation as MCKE ¼
1
2
�̄(v̂2r þ v̂2�), and the kinetic energy in nonaxisymmetric (convec-

tive) motions as CKE ¼ KE� DRKE�MCKE.
Turning first to the rms velocities we notice a large range of

values, from a few up to about 100 m s�1, especially for ṽ and ṽ�.

Both these velocities have the same magnitude in every model;
in contrast, when comparing the longitudinal velocity ṽ� to its
radial and latitudinal counterparts, we see significant differences:
ṽ� can be up to 10 times higher than ṽr and ṽ�. This is mostly due
to the large-scale differential rotation achieved in almost all the
simulations and most certainly in the Yc and Yx5Tseries as seen
in x 4. If we instead compare the rms velocities with their axi-
symmetric mean subtracted, we find that the three components
have about the same amplitude with ṽ0r � ṽr being the fastest.
This yields convective flows that are largely isotropic. If we de-
fine the isotropy index as ar ¼ ṽ0r

2/ṽ0 2, we find that it varies from
about 1

2
in theYa series to about 1

3
in theYc series. At large Prandtl

numbers the anisotropy of the flow is thus greater than when Pr
is small. This can perhaps be explained by the fact that the flows
are more turbulent in the latter series, having both larger Reynolds
and Rayleigh numbers (see Table 1). This leads to convection that
is less dominated by large-scale rolls (consistent with the disap-
pearance of banana cell structures) that are characterized by large
coherent radial motions. Instead, the convection, characterized by
more chaotic randommotions, is dominated by strong downward
convective plumes as discussed in x 3.Within one of these plumes,
downward vortical motion dominates, but when forming horizontal
averages, their small filling factors do not contribute as much as
large-scale coherent rolls. By increasing�o, ar tends to rise slightly,
probably for similar reasons. The stabilizing effects of rotation also
reduce the supercriticality of flows. In this case, convection is less
vigorous and more influenced by large-scale rolls.

Studying the partition of kinetic energy between its axisym-
metric and nonaxisymmetric components is also very instructive.
As was shown in Figure 2, our simulations, after a short linear
convective instability phase, undergo a nonlinear saturation and
finally reach, in most of the cases after about 2000 days, a sta-
tistically stationary state, over which meaningful temporal and
volume averages of the kinetic energy and its mean and fluctu-
ating contributions can be evaluated. Turning again to Table 2,
we note that the energy in the meridional flows is very weak (less
than 0.2% of KE) compared to DRKE and CKE, which contain
most of the energy. Again, this is because the meridional flows in
such systems result from small imbalances between several large
terms and are less easily developed than azimuthal motions
(Miesch 2005). Another obvious trend, present in all the series
Ya, Yb, and Yc, is that an increase of the rotation rate leads to a
smaller kinetic energy available for the system. This reduction is
about a factor of 3 for the Ya and Yb series and only 1.6 for the
Yc series. Rotation thus stabilizes convection and leads to weaker
mean or fluctuating flows, as the decrease in the absolute value of
DRKE, CKE, andMCKE indicates (note however that in terms of
percentages CKE and DRKE remain about the same). The fact
that the simulation in theYc series are less sensitive to the increase
of �o is certainly due to their higher degree of supercriticality.We
also find that the ratio of fluctuating and mean (mostly azimuthal)
motions changes in favor of the latter as we decrease the Prandtl
number. In the Ya series with Pr ¼ 4, DRKE represents only
about 35% of KE, with most of the energy concentrated in CKE.
By contrast DRKE represents, respectively, about 80% and 95%
for the Yb and Yc series. It is thus clear that the higher the Taylor
number is, the stronger DRKE and the associated differential
rotation are, as the column��top also clearly indicates (see also
the discussion in x 4). Given the strong stabilizing effect of �o on
the motions, we have also performed simulations with rotation
set at 5 times the solar rate, but with a higher degree of super-
criticality (models labeled with T). All these models posses a
large DRKE, including model Ya5T. Thus, the fact that DRKE is
found to increase with decreasing Pr is perhaps more linked to

Fig. 12.—Surface velocity v̂�;max characterizing the meridional circulation
intensity, plotted as a function of the rotation rate �o. See caption of Fig. 10.
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the supercriticality of the models than to the ratio between vis-
cous and thermal diffusivities. A useful number to assess the in-
fluence of rotation on convection is the convective Rossby number
Roc (see Table 1). This number does not include � or �. We find
that this number is always relatively small in the simulations with
the largest differential rotation contrast, indicating a dominant
effect of rotation over convection, meaning that as the convec-
tive flows reverse direction they are significantly tilted by the
Coriolis force.

In the Yc series, for the models rotating at 5 times the solar
rate, the convection develops a rather intermittent behavior, in both
space and time. Computing time-averaged quantities such as KE
and rms velocities can thus be misleading, since they depend
strongly on the state of the convection (quiescent or excited). In
cases like Yc5 and Yc5T, we find that at the peak of the con-
vection burst CKE can account for almost 30% of KE before
weakening to 5%, whence the differential rotation has developed
again. We discuss these simulations in more detail in x 7.

6.2. Angular Momentum Balance

The differential rotation discussed in x 4 results from angular
momentum redistribution within the shell of intense convection
realized in our simulations. In purely hydrodynamical models,
the differential rotation profile is the result of a competition among
viscous torques, Reynolds stresses, andmeridional circulation. By
adopting stress-free boundary conditions at the top and bottom
boundaries of our simulations, no net torque is applied to these
rotating spherical shells of convection. Thus, total angular mo-
mentumwithin our simulations is conserved, and we can examine
the manner in which it is redistributed, following the approach
developed in Elliott et al. (2000) and Brun & Toomre (2002).

The temporal derivative of angular momentum averaged over
longitude can be written as a divergence,
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with F r and F � being, respectively, the radial and latitudinal com-
ponents of the averaged angular momentum flux. They can be
written and separated into their three contributions (due again to
viscous torque, Reynolds stresses, and meridional circulation),
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We can integrate the �-flux along concentric spheres of varying
radius and the r-flux along cones with various latitudinal incli-
nations as

I�;X ¼
Z rt

rb

F �;X r sin � dr; X ¼ V ; Re;MC; ð12Þ

Ir;X ¼
Z 	

0

F r;X r
2 sin � d�; X ¼ V ; Re;MC: ð13Þ

Since most of the simulations are statistically stationary, the
temporal average h@L /@tit vanishes. In Figure 13 we display the
time-averaged integrated fluxes Ir and I� and their components
for the models Ya1, Yc1, and Ya5T, in order to assess the effect
of varying Pr and/or�o in the overall angular momentum balance.
Turning first to the radial fluxes of angular momentum

(Figs. 13a, 13c, and 13e), we see that viscous forces act to trans-
port angular momentum radially inward in all cases. This inward
transport is opposed mainly by the Reynolds stress flux. The role
of the meridional circulation is less systematic. In cases Ya1 and
Ya5T, the MC flux is alternatively positive and negative follow-
ing with good fidelity the multicellular profiles maintained in
these cases and shown in Figure 11. In Yc1, the meridional cir-
culation contribution is actually the strongest of all the simulations,
with a characteristic amplitude 2Y3 times larger than in most of the
other cases. This simulation possesses a rather large and domi-
nant clockwise cell in most of the domain which transports angular
momentum inward at low latitude. This results in a meridional
circulation flux that helps the viscous stresses to slow down the
surface and speed up the base of the convection zone, thus op-
posing the Reynolds stresses, to yield a total radial angular mo-
mentum flux that is nearly zero, as noted in Figure 13 by the solid
thick lines.While the systems here are highly variable in time, by
allowing the system to evolve for extended periods of time (typ-
ically thousands of days) and performing long-time averages, we
appear to be sensing the equilibrated states reasonably well. In
going from the mildly turbulent flows of case Yc1 or Ya5T to the
complex ones of caseYc1, we see that the viscous flux has dropped
and that the Reynolds stresses and meridional circulations have
changed accordingly tomaintain equilibrium. TheReynolds stresses
in cases Yc1 and Ya5Tare more evenly distributed over the whole
depth of the domain, whereas in the more laminar case Ya1, it is
mostly concentrated near the surface.
Examining now the latitudinal transport of angular momentum

(Figs. 13b, 13d, and 13f ), we see that the effect of the Reynolds
stresses in both cases is primarily to speed up the equator, since
F �;Re is positive in the northern hemisphere and negative in the
southern. It is opposed by the viscous fluxes, which act to speed
up the poles and to enforce solid-body rotation. The MC flux
helps the Reynolds stresses by speeding up the equatorial region.
This effect is opposite to what is found in simulations of the
present-day Sun with its thinner shell of convection (Brun &
Toomre 2002). In case Ya1, the MC flux is localized near the
equator, while in the two other cases, these fluxes spread over a
larger latitudinal band. In particular, the circulation in model Yc1
possesses a strong equatorward cell from low latitude (�20�) up
to about 70�, which dominates the poleward cell near the surface.
This larger contribution of the MC flux, in this model, confines
the Reynolds stresses toward lower latitudes. The manner in
which each of the different components of F � acts does not ap-
pear to vary appreciably in going from one case to another. There
are thus no clear trends in following either the first path (lower Pr)
or the second path (higher�o; as described in x 4.1). However, as
the level of complexity is increased, we see a decrease in the
magnitude of all components of F �.
We conclude that for these cases, involving either a low Pr or a

strong rotational constraint, the Reynolds stresses act latitudi-
nally to speed up the equator and radially to slow down the base
of the convection zone by transporting angular momentum from
the bottom of the domain toward the top. The latitudinal Reynolds
stresses are opposed by viscous effects, whereas they are aided
somewhat by the meridional circulations. On the contrary, the ra-
dial Reynolds stresses have to act against both viscous and
meridional flux transport.
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The overriding role of Reynolds stresses to achieve an equa-
torial acceleration explains, at least in part, the correlation be-
tween�� and Re 0 discussed in x 4 and shown in Figure 9. Here,
Re 0 can be seen as a measurement of the balance between vis-
cous and Reynolds stresses effects. When Re 0 rises, Reynolds
stresses are more efficient in transporting the angular momen-
tum, since the flow is less viscous.

This detailed balance gives us a picture of how the angular mo-
mentum is continuously transported and which processes domi-
nate, acting to speed up or slow down certain regions. However, it
is difficult to infer from the fluxes alone what the actual�-profile
(either cylindrical or conical as in the Sun) will be, besides stating
that the equator will be fast or slow from the sense of the viscous
fluxes (which are always down the gradient of �).

6.3. Thermal Wind

It is well known that fluids under the influence of strong ro-
tation can become quasi-2Dwithmost of their dynamics invariant
with respect to the dimension parallel to the rotation axis (Pedlosky
1987). Indeed, if Coriolis forces dominate the others, it can be
shown that

@v̂�
@z

¼ 0; ð14Þ

which corresponds to a barotropic configuration. It is a conse-
quence of the so-called Taylor-Proudman theorem. However, ro-
tating convection involves both radial and latitudinal heat transport,
with the likelihood that latitudinal gradients in temperature and
entropy may result within the convective zone. This implies that
surfaces of mean pressure and density will not coincide, thereby
yielding baroclinic terms in the vorticity equations (Pedlosky
1987; Zahn 1992).Under sufficiently strong rotational constraints,
a ‘‘thermal wind balance’’ might be achieved in which departures
of the angular velocity from being constant on cylinders (aligned
with the rotation axis) are controlled by those baroclinic terms.
Indeed, somemean-field approaches have invoked such a balance
to obtain differential rotation profiles with bearing on the solar con-
vection zone (e.g., Kitchatinov & Rüdiger 1995; Rempel 2005a).
As discussed in Brun & Toomre (2002) andMiesch et al. (2006) in
more detail, such a balance effectively implies that
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where z is parallel to the rotation axis. Thus, latitudinal entropy
gradients could serve to break the Taylor-Proudman constraint
which would otherwise require the rotation to be constant on
cylinders (Rempel 2005a;Miesch et al. 2006). However, it is im-
portant to note that this constraint may also be broken by Reynolds
and viscous stresses. Indeed, the strong correlation found between
�� and Re0 (see Fig. 9) is a clear indication that Reynolds stresses
are key players for the redistribution of angular momentum. To
strengthen this point, we show below that these terms are as im-
portant as the baroclinic terms in establishing the differential rota-
tion in the bulk of the convective envelope.

Figure 14 assesses for cases Ya1 and Yc5 the extent to which
latitudinal entropy gradients serve to drive the temporal mean
zonal flows v̂� seen as the differential rotation in Figure 8. Fig-
ures 14a and 14c display the latitudinal entropy term seen on the
right-hand side of equation (15), which in an exact thermal wind
balance would be identical to @v̂�/@z. Figures 14c and 14d show
the difference between this baroclinic term and the actual @v̂�/@z,
thus providing a measure of departures from such a balance.

Fig. 13.—Time average of the latitudinal integral of the radial angular mo-
mentum flux Ir (left) and of the radial integral of the latitudinal angular mo-
mentum flux I� (right), for models Ya1 (top), Yc1 (middle), and Ya5T (bottom).
The fluxes have been decomposed into their viscous (dotted lines), Reynolds
stress (dot-dashed lines), and meridional circulation components (dashed lines).
The total fluxes are plotted with solid lines.
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Within most of the entire convection zone, thermal wind dom-
inates in both cases, meaning that there is a close relationship
between the zonal thermal wind and the differential rotation estab-
lished in our simulations. However, near the top of the domainwe
do see large departures from thermal wind balance. Furthermore,
we note that for the rapidly rotating case Yc5, in the region near
the tangent cylinder a strong shear layer (also clearly visible in
Fig. 11 showing themeridional circulation) is present which is not
in thermal wind balance. There viscous and Reynolds stresses
play crucial roles, not unlike what is seen in simulations of ro-
tating stellar radiation zones, the so-called Stewartson layers (e.g.,
Rieutord 2006).

Thus, examining the nature of this thermal wind balance, com-
bined with the assessment of fluxes of angular momentum, re-
veals that Reynolds, meridional flow, and viscous stresses have a
major role in establishing the differential rotation in the convec-
tion zone, with help coming from latitudinal thermal gradients. As
seen in Figures 4 and 5, the thermal wind is associated with weak
latitudinal temperature variations. In Table 2we quote the contrast
of T at the base of the unstable domain. We find that�Tbot varies
from2K in themost laminar cases up to 15K in themost turbulent
ones. We also see that increasing �o leads to larger temperature
contrasts. However, as can be seen in equation (15), in order to
retain a strong baroclinic term and thus a differential rotation pro-
file that is not constant along cylinders, �S (and the associated
�T ) must increase by exactly the same factor. But as we can see
inTable 2, this is hardly the case,with caseYc5, for instance, having
a contrast that is a factor of 2Y3 larger than Ya5 instead of the fac-
tor of 5 that would exactly compensate the increase of the rotation
rate. Thus, the profiles becomemore cylindrical (@v̂�/@z ! 0) even
though the flow remains somewhat in thermal wind balance.
Thus, if rapidly rotating stars do not rotate along cylinders, they
need an efficient latitudinal heat transport that establishes a strong
entropy (temperature) contrast. Indeed, to get conical solarlike
rotation profiles, it is not sufficient to have an established and bal-
anced thermal wind (which should nevertheless develop after
several dynamical times), but it is necessary to have a strong
baroclinicity in the model. Such large gradients could be favored
by the presence of a shear layer at the base of the convective

domain, such as the solar tachocline (Miesch et al. 2006). We
indeed show in x 7.2 that enforcing a large entropy variation does
lead to less cylindrical rotation profiles.

7. OSCILLATING CONVECTION

In this section we focus on the oscillating behavior of convec-
tion, found in some of our simulations with rapid rotation, that
we have mentioned several times through this paper. Models with
low Prandtl numbers and high rotation rates, like Yc5, are typical
of these vacillating convective solutions.We present here in more
detail this phenomenon and discuss the physical processes gov-
erning it.

7.1. From Localized to Vacillating Convection

Wehave described in x 3 that equatorial convection tends to be
localized for Ycmodels. Another phenomenon occurs in case Yc5;
temporal modulations become really huge and the convection
vacillates. The polar regions are not affected, convection there is
uniformly developed without temporal variation. In the polar caps,
the rms convective velocity ṽ0, in the midlayer depth, remains
around 24 m s�1. However, in the equatorial area, convection, as
well as being localized, oscillates between a state of fully de-
veloped convection and a quiet state, characterized by very slow
motions during which the convection is ‘‘asleep.’’ In the equa-
torial band, ṽ0 fluctuates between 3 and 45 m s�1.
These oscillations are clearly not a transitional state before a

statistically stationary state, as those discussed in x 2.4 and shown
Figure 2. The Yc5 simulation is relaxed, but oscillates. This kind
of behavior has already been observed in Boussinesq simulations
of the geodynamo (Grote & Busse 2000) and is observed here for
the first time in simulations of deep stellar convection (see also
Brown et al. 2007).
Figure 15 shows convective patterns at two different epochs in

the equatorial plane of the star, illustrating clearly the bimodal
(high-low) state of convection.During convective bursts (Fig. 15,
left), convection is well developed in the equatorial plane, even
though it is developed only on one-half of the area, similar towhat
we see in the Yc2 case. During quiet periods (Fig. 15, right), con-
vection is practically fully stopped everywhere around the equator.

Fig. 14.—Temporal and azimuthal averages for models (a,b) Ya1 and (c,d ) Yc5 showing (a,c) the baroclinic term in the meridional force balance—defined by
eq. (15)—and (b,d ) the difference of this term with @v̂�/@z.
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We can follow these oscillations in the KE evolution (see Fig. 16).
This variability is almost periodic, and the period is around
600 days. The averaged enthalpy flux (eq. [7], not plotted here)
shows also oscillations very similar to CKE. Convective bursts
last around 150 days, and CKE is quite flat between each burst.
The variation of differential rotation is different. DRKE varies
like ‘‘sawteeth.’’ It begins to increase quickly during the burst, so
the growth lasts for�150 days. Then this phase is followed by a
slow decaying period of �450 days, before a new cycle starts.
As a consequence, we clearly see a phase difference between the
maximums of DRKE and CKE.

The left panel of Figure 8e allows us to see how the DRKE
variation is distributed in latitude. We note that, for latitudes
greater than 50

�
,� is approximately uniform and does not change

with time. Cuts of � at latitudes 45
�
, 60

�
, and 75

�
do not show

sensible differences between a maximum and a minimum of
DRKE. This is consistent with the fact that in these polar regions
convection is practically not modulated. Variations occur mainly
around the equatorial band in the upper layers. It induces var-

iations in�� of almost 15 nHz. The main change occurs in the
slope of the�-profile along the radius, mainly at latitudes 0

�
and

15�. Such variations imply also variations of the radial shear in
the equatorial area.

To investigate further, we have performed the more turbulent
models Yc5Tand Yd5. These model runs need higher resolution
and, thus, are very expensive in terms of computing time. Yc5T
is amodel with the same Prandtl number as Yc5 but with a higher
Reynolds number. It presents the same behavior with a slightly
longer period (�680 days); the DRKE-decrease phase lasts for
�450 days, as in case Yc5, and its bursts, slightly longer, go on
for about 230 days typically. The persistence of the oscillating
phenomenon in these more turbulent simulations indicates that it
is not due to marginally stable conditions. All of these simula-
tions are clearly supercritical. Another extra run, Yd5, as turbulent
as Yc5T but with Pr ¼ 1

8
shows once again oscillations. However,

the period reaches �1060 days, the burst phase length is roughly
the same as for the Yc5T case, but the decrease duration is of
�800 days. Pr seems to influence inversely the decrease time,
whereas the turbulence level seems to govern the burst duration
and so the DRKE-increase length. We also note that simulations
with higher Pr, like Ya5 or Ya5T, do not show vacillating con-
vection, because these cases have lower Ta (see Table 1). The
Taylor number appears to be a key parameter governing the os-
cillations; they are triggered for all simulations with a Taylor
number above a threshold of Ta � 109. Below this threshold, no
models oscillate.

Using all these results, we can build a sketch of the oscillating
phenomenon.When the convection develops, the Reynolds stresses
hv0iv0ji become stronger, driving a larger differential rotation. In the
equatorial zone, the radial shear increases (Fig. 8e). The shear is so
strong that it destroys the coherence of convective cells (visible at
the midlayer depth in Fig. 15), killing the convection. Thus, hv0iv0ji
terms practically vanish; this implies that the differential rotation
decreases by viscous dissipation. When the shear is sufficiently low
in the equatorial region, convection can amplify again, and a new
cycle begins.

During quiet phases, the part of the energy which is not evac-
uated by convection is piled into internal energy. During bursts,
the kinetic energy is pumped from the reservoir of internal energy,

Fig. 15.—Radial velocity field in the equatorial plane for model Yc5 during a maximum (left) and a minimum (right) of convective activity.

Fig. 16.—Temporal evolution of kinetic energy content for the Yc5 case. KE
(solid line) is decomposed into its components: DRKE (dotted line), CKE (dashed
line), and MCKE (dot-dashed line).
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which is several orders of magnitude larger. With magnetic ef-
fects, we can imagine very complicated situations.Oscillation prop-
erties can drastically change, even disappear (Grote & Busse 2000;
Morin & Dormy 2004).

Away to verify this scenario is to follow, during the evolution,
the fluxes of angular momentum defined in x 6.2. Figure 17
shows the evolution of each integrated flux I� along a few oscil-
lation cycles.We can see that near the poles—i.e., inside the tangent
cylinder—momentum flux and all of its components are roughly
null.We clearly see as expected that during bursts (there are three
of them on the plots) the contribution of Reynolds stresses dom-
inates and drags angular momentum toward the equator. Viscous
effects, rather constant with time, act to decelerate the equator when
convection has damped out, in agreement with the scenario de-
scribed above. Effects of the meridional circulation are harder to
assess, because it fluctuates more, especially during the bursts

where the flux is rather large but its sign unceasingly changes.
During quiet states, it helps the viscous dissipation to decelerate
the equator, but compensates viscous effects at middle latitudes.
This is a consequence of the multicellular topology of the me-
ridional circulation (see Fig. 11).

7.2. Influence of Boundary Conditions: Thermal Forcing

Rotation profiles of these rapidly rotating simulations are very
cylindrical, like those predicted by the first solar simulations
before they were negated by helioseismic observations. Up to now,
there has been no observational inference of the inner rotation
profile for other stars. Thus, such cylindrical profiles could reflect
reality, but we cannot exclude the possibility that our simulations
suffer problems similar to those of the first solar simulations. In
this sectionwewant to see how the dynamics ismodifiedwhen the
‘‘cylindricity’’ of rotation profiles is reduced. Indeed, if the rotation

Fig. 17.—Evolution as a function of time of I�, the angular momentum flux in the �-direction, averaged on radius. I� (top left) is decomposed into the contributions of
Reynolds stresses I�;Re (top right), meridional circulation I�;MC (bottom left), and viscous torque I�;V (bottom right). White/red (black/green) indicate southward (northward)
transfer.
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profiles of thermally forced models are more conical than those
of previous unforced models, the shear in the equatorial plane
would have to be reduced, along with the oscillation process. Pro-
files of the Yc5 model are almost cylindrical, due to the high ro-
tation rate. Coriolis forces dominate the others, and equation (14)
is almost verified. The Taylor-Proudman theorem can be broken
if a baroclinic term exists, as defined by equation (15). However,
as seen in x 6.3 this term has reduced in strength in going from
Yc1 to Yc5. Thus, a potential thermal wind can lead to more con-
ical profiles (see discussion in x 6.3). The origin of such a thermal
wind could be a strongly sheared region, like the tachocline
observed in the Sun (Rempel 2005a; Miesch et al. 2006).

We have imposed such an entropy gradient at the base of the
convective shell in a twin of the Yc5 simulation, Yc5S. The
latitudinal entropy profile imposed at the bottom of the shell is in
the form

Sbot

cP
¼ a2Y

0
2 þ a4Y

0
4 ; ð16Þ

with a2 ¼ 1:14 ; 10�5 and a4 ¼ �1:8 ; 10�5. In the present con-
figuration, compared to the solar case (Miesch et al. 2006), pro-
files are strongly cylindrical and the rotation speed is 5 times
higher. So we need to impose a strong gradient to expect a sen-
sible effect. In this simulation, the contrast of temperature between
poles and equator is around 60 K, which is 5 times larger than the
Sun, 9 times larger than the Yc1 case, and 3.5 times larger than the
initial Yc5 model (see also Table 2).

Figure 18 shows the temporal evolution of kinetic energy.
After a cycle similar to those shown by Yc5, the entropy has dif-
fused and we reached a phase characterized by a reduction of the
oscillation amplitudes, as we had expected. Figure 8f shows this
profile at t � 2000 days. The rotation is less cylindrical, even
less than the Yc1 case. As a consequence, the contrast of differ-
ential rotation along radius decreases in the equatorial zone, which
is clearly seen by comparing the slopes of curves at 0� in the right
panels of Figures 8e and 8f. As a function of latitude, the contrast
of rotation increases, and the profile becomes purely monotonic;
the decrease of rotation continues at high latitudes—i.e., inside the
tangent cylinder—and does not stop around 50� as in Yc5. How-
ever, after t � 2600 days, our model achieves a rather chaotic new
state (Fig. 18). There are strong variations in the convective state
again, but no more simple periodicity. Indeed, differential rota-
tion has continued to increase not only in latitude but in radius
also, making possible a sufficiently strong shear again.

As expected, imposing an entropy gradient at the base of the
convective zone could lead to a more conical rotation profile,
modifying the dynamics and reducing the oscillations. The ther-
mal contrast needed can be caused by a strong shear due to a
thinner tachocline as was shown by Brun (2007, eq. [11]). In-
deed, in order to get a more conical profile for the same mean
radial jump in angular velocity in the tachocline, one needs at
fixed rotation rate to have a larger latitudinal entropy variation or
equivalently a thinner tachocline. Indications of the nature of the
profiles should be obtained from asteroseismology, in the coming
years. Even although the quality of asteroseismic data will not be
comparable to that available for helioseismology, reliable indi-
cations for rotation rate could be derived with asteroseismology
(Gizon & Solanki 2003; Ballot et al. 2006), and the inner differ-
ential rotation could even be inferred for rapid rotators (Gizon &
Solanki 2004).

8. CONCLUSIONS AND PERSPECTIVES

Our simplified 3D numerical simulations of the turbulent con-
vective envelope in young solarlike stars have served to catch
some aspects of the very complex dynamics which occurs in such
thick shells and showus how convection and rotation are intricate,
even if we are, for sure, far from a true young star. We have
especially seen how these simulations are sensitive to the Taylor
number Ta.

The main important result of this work concerns the behavior
of mean flows according to the rotation speed of the star.We find
that the contrast of the differential rotation decreases only slightly,
whereas the intensity of the meridional circulation clearly decays.
A high Ta makes our rotation profiles of rapidly rotating enve-
lopes highly cylindrical. It is possible tomake themmore conical—
as exhibited by the true Sun—by imposing at the bottom of the
convective zone a thermal forcing in latitude, such as may arise
from a sharp stellar tachocline.

While global convective patterns are quite similar to those
seen in solar simulations, some clear differences have appeared.
For lower Pr hot spots emerge (see Yc1). Such spots are also seen
in a thin solar envelope, but with higher rotation rates (Brown et al.
2007). At higher rotation rates, hot spots change into localized
convection, where convective motions are preferentially devel-
oped in a particular range of longitudes in the equatorial zone.
Oscillations in convection appear in models characterized by
high Ta. The shell thickness has to play a role, by favoring the
appearance of a strong shear layer in the middle of the shell. The
situation is similar to those also observed in geophysics simu-
lations (Grote & Busse 2000). The mechanism of oscillations is
well understood, especially the role of the Reynolds stresses that
drive a strong differential rotation which sparks off the shear. If
this kind of vacillating and/or localized deep convection occurs
in real stars, their surfaces should be affected. It could be seen in
observations—of luminosity, line widths, etc.—as temporal var-
iations, arising from changing in the convective state and/or from
the rotation of different longitudes into the line of sight. Young
stars, especially TTauri stars, are known to be variable objects, but
the luminosity fluctuations are linked to magnetic field (chromo-
spheric or coronal activity, photospheric spots, etc.) or, in some
cases, accretion phenomena. In the present situation, it would be
specious to make any comparison of the deep-convection be-
havior seen in our most rapidly rotating simulations with ob-
served stellar luminosity curves (dominated by surface effects).
Nevertheless, if we focus on the differential rotation variability
seen in simulations, we note that significant secular variations of
differential rotation contrast have also been observed in young
K dwarfswith high rotation rates likeABDor (Cameron&Donati

Fig. 18.—Same as Fig. 16, but for the Yc5S case.
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2002; Donati et al. 2003a). However, these observed variations
can also have a magnetic origin.

The next step of this work would be to see the effect of these
specific properties, both of convection and of mean flows, on the
dynamo processes which can occur in these stars. Since these
purely hydrodynamical simulations of young suns have exhibited
obvious differences from those of the present Sun,wemust expect
that there will also be differences once the magnetic field is in-
cluded. Observations tend to show that magnetic properties of
young stars are peculiar. All of them show a magnetic activity
which can be tracked by their X-ray emissions. Several issues
have been addressed about the signification of correlations—or
the lack of correlation—between rotation rate and magnetic ac-
tivity. Is it just an extension of the saturation (Stauffer et al. 1994;
Randich 1997) and ‘‘supersaturation’’ phenomena (Prosser et al.
1996; James et al. 2000) observed for main-sequence stars? Or is

it the signature of a turbulent dynamo distributed throughout the
deep convective zone (Durney et al. 1993) instead of a classic� -�
dynamo (Parker 1993), as suggested by Feigelson et al. (2003)?
Zeeman-Doppler imaging of young fast rotators (Donati et al.
2003b) shows large-scale azimuthal magnetic structures, which
seems to plead for such dynamo mechanisms. Such fascinating
issues encourage us to pursue simulations of young stars by
including magnetic field and searching for clues to the answers
of these and other questions.

First, we acknowledge useful discussions with J. Toomre and
B. Brown.We also wish to thank the referee, P. Gilman, for help-
ing to clarify the paper. The simulations were performed using
the computer facilities of CEA/CCRT. J. B. is grateful to the de-
velopers of the ASH code for letting him use it for this study.
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