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ABSTRACT

We present the recent progress made in modelling in
three dimensions, with the anelastic spherical har-
monic (ASH) code, the solar convective envelope
and the tachocline at its base. We discuss our cur-
rent understanding of the physical processes thought
to be at the origin of the solar differential rotation
and meridional circulation, how they interact and
what are the implications for the working of the
solar dynamo. We show that the tachocline must
play a crucial role in the generation and amplifica-
tion of the global and ordered solar magnetic fields
since the turbulent convection zone produces mostly
non-axisymmetric (m 6= 0) magnetic fields. Given
the central role played by the tachocline in the so-
lar cycle, we present undergoing numerical efforts
to understand its dynamics and its thinness (e.g.
≤ 0.05R�) and comment upon the coupling between
the solar radiative interior and its convective enve-
lope. Finally we propose possible future routes to-
ward a fully self-consistent three dimensional model
of the Sun.
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1. INTRODUCTION

The Sun is a magnetically active star, possessing a
wide range of dynamical processes (see for instance
Stix 2002). Most striking is that the Sun exhibits a
pronounced differential rotation in latitude and ra-
dius and 22-year cycles of global magnetic activity,
involving sunspot eruptions with very well defined
rules for field parity and emergence latitudes as the
cycle evolves. Coexisting with these large-scale or-
dered magnetic structures are small-scale but intense
magnetic fluctuations that emerge over much of the
solar surface, with little regard for the solar cycle.
These phenomena have been revealed with astonish-
ing details by observations made with the latest in-
struments on the ground (Gong+, 1-m Swedish So-
lar Telescope) and onboard satellites (Trace, SoHO).

Understanding those phenomena and observations
require state-of-the art numerical simulations sup-
ported by theoretical models. The complex and non-
linear magnetic phenomena present in the Sun are
thought to be linked to the presence of a dynamo in
its interior, resulting from the subtle interaction be-
tween turbulent convection, rotation, shear and mag-
netic fields. Since the magnetic fields, like the under-
lying turbulence, can be both orderly on some scales
and chaotic on others, this diverse range of activ-
ity is most likely generated by two conceptually dis-
tinct magnetic dynamos (e.g., Weiss 1994; Cattaneo
& Hughes 2001; Ossendrijver 2003): a small-scale
dynamo, functioning within the intense turbulence
of the upper convection zone, that builds the chaotic
magnetic fluctuations, and a global dynamo, operat-
ing both within the deeper convection zone and the
strong rotational shear of the tachocline at its base,
that builds the more ordered fields. Given the wide
range of temporal and spatial scales coexisting in the
physical processes at work in the Sun, it is a great
challenge, even for today’s supercomputers, to model
self-consistently the solar interior and dynamo. How-
ever, it is possible to split the solar dynamo problem
into several ’blocks’ that could answer specific points
of this complex problem. We have followed such an
approach by studying with the ASH code some key
ingredients of the solar dynamo, such as the estab-
lishment of the solar differential rotation profile by
turbulent convection, the characteristics of the mean
and fluctuating dynamo induced magnetic fields via
shear (e.g, ω-effect), helical convection (e.g, α-effect)
or non axisymmetric dynamo effects. More recently
we have also started studying the dynamics of the
solar tachocline. We would like here to summarize
our findings and discuss the challenges that remain
to be addressed in the forthcoming future.

2. THE ANELASTIC SPHERICAL HAR-
MONIC CODE

In this study we use the ASH code (Clune et al.
1999, Miesch et al. 2000, Brun et al. 2004) to model
the solar interior. The ASH code solves the full set
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of 3–D MHD anelastic equations of motion in a ro-
tating spherical shell (with or without convection)
with high resolution on massively-parallel comput-
ing architectures. These equations are fully nonlin-
ear in velocity and magnetic field variables, but un-
der the anelastic approximation the thermodynamic
variables are linearized with respect to a spherically
symmetric and evolving mean state.

The velocity, magnetic, and thermodynamic vari-
ables are expanded in spherical harmonics Y`m(θ, φ)
for their horizontal structure and in Chebyshev poly-
nomials Tn(r) for their radial structure. This ap-
proach has the advantage that the spatial resolu-
tion is uniform everywhere on a sphere when a com-
plete set of spherical harmonics is used up to some
maximum in degree ` (retaining all azimuthal orders
m ≤ ` in what is known as triangular truncation).

The anelastic approximation captures the effects of
density stratification without having to resolve sound
waves which would severely limit the time step. In
the MHD context, the anelastic approximation fil-
ters out fast magneto-acoustic waves but retains the
Alfven and slow magneto-acoustic modes. In order to
ensure that the mass flux and the magnetic field re-
main divergenceless to machine precision throughout
the simulation, we use a toroidal–poloidal decompo-
sition. Contact is made with a realistic solar interior
by using for the initial mean structure an accurate
1–D solar model (Brun et al. 2002).

3. CHALLENGES IN MODELLING THE
SOLAR CONVECTION ZONE

The solar convective envelope is highly turbulent
with corresponding large values of both the Reynolds
and magnetic Reynolds numbers Re = vL/ν et
Rm = vL/η (greater than 108, where v, L, ν and
η are respectively a representative convective veloc-
ity, length and the viscous and magnetic diffusiv-
ities). Constructing accurate numerical models of
such a turbulent and complex dynamical system is
difficult, numerically stiff, and require powerful com-
puters. An extensive litterature has been devoted
to this problem and can be mainly separated into
two numerical approaches: highly turbulent but local
models in cartesian geometry (Brandenburg & et al.
1996, Brummell et al. 1998, Stein & Nordlund 2000,
Cattaneo & Hughes 2001, Robinson & Chan 2001,
Tobias et al. 2001) or mildly turbulent but global-
scale models in spherical geometry (Glatzmaier &
Gilman 1982, Gilman 1983, Glatzmaier 1987, Miesch
et al. 2000, Brun et al. 2002, 2004). The progress
made with parallel computers over the past 20 years
has allowed to improve the physical content of the
numerical simulations which now make reasonnable
contacts with helioseismic inversions and surface ob-
servations of the Sun. However major challenges re-
main to understand fully its turbulent convection,

internal rotation profile and magnetic activity.

3.1. Model Description

Our model is a simplified description of the solar con-
vection zone: solar values are taken for the heat flux,
rotation rate, mass and radius, and a perfect gas is
assumed. The computational domain extends from
0.72 to 0.97 R (with R the solar radius), thereby
concentrating on the bulk of the unstable zone and
here not dealing with penetration into the radiative
interior nor with the partially ionized surface layers.
The typical density difference across the shell in ra-
dius is about 30. The grid resolution used in this
MHD simulation is Nr ×Nθ×Nφ = 128×512×1024
(higher resolution has been achieved in purely hy-
drodynamical simulations, Brun et al. 2005). In
the case considered here, namely M3, the simulation
possesses Prandtl and magnetic Prandtl numbers of
respectively Pr = ν/κ = 1/8 and Pm = ν/η = 4.
The rms Reynolds and magnetic Reynolds numbers,
evaluated with effective turbulent value for ν and η
are typically Re = 110 and Rm = 500 (see Brun et
al. 2004 for more details).

Figure 1. Kinetic (KE) and magnetic energy (ME)
time traces for case M3. Also shown are the kinetic
energies contained in meridional flows (MCE), dif-
ferential rotation (DRE) and non axisymmetric con-
vective motions (CKE). Note the significant decrease
of DRE as ME grows and becomes larger than MCE.

The effects of the steep entropy gradient close to the
surface has been softened by introducing a subgrid
scale (SGS) transport of heat to account for the un-
resolved motions, and enhanced diffusivities are used
in these large eddy simulations (LES). The bound-
ary conditions at the top and bottom of the com-
putational domain are stress-free impenetrable walls
for the velocity field, constant entropy gradient for
the entropy and match to a potential field for the
magnetic field.

We start our MHD simulations from an already
evolved and equilibrated purely hydrodynamical so-
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Figure 2. Snapshot of the radial velocity (a), temperature (b) and radial magnetic field (c) near the top of the
domain for case M3. Typical field strengths are indicated, with dark tones corresponding to downward velocities
and negative temperature fluctuations and polarities. The dashed line indicates the equator.

lution, namely case H, that possesses a strong almost
solar-like differential rotation (see left panel of Fig-
ure 5). A seed axisymmetric dipolar magnetic field
is then introduced in the convective spherical shell
and the simulations evolved in time.

3.2. Convection and Dynamo Action

Figure 1 shows the kinetic and magnetic energy time
traces over 4000 days of simulated time of case M3.
We see that the magnetic energy (ME) grows by
many order of magnitude through dynamo action.
After 1200 days, the ME saturates, due to the non-
linear feed back of the Lorentz forces, to a value of
about 7% of the KE and retains that level for more
than 3 ohmic decay times. Upon saturation, the ki-
netic energy (KE) in the model has been reduced by
about 40% compared to its initial value, say KE0,
given by case H. This change is mostly due to a re-
duction of the energy contained in the differential
rotation (DRKE) which drops by over 50%. By con-
trast, the energy contained in the convective motions
(CKE) only decreases by about 27%, which implies
an increased contribution of the non-axisymmetric
motions to the total kinetic energy balance. For case
M3, the decrease in KE first becomes apparent after
about 600 days of evolution, when the ME reaches
roughly 0.5% of KE0, attaining a value larger than
that contained in the meridional circulation kinetic
energy (MCE).

The total kinetic and magnetic energies are small
compared to the total potential, internal and rota-
tional energies contained in the shell. The magnetic
energy must arise from the conversion of kinetic en-
ergy but this does not necessarily lead to a decrease
in the total kinetic energy because the motions may
draw upon the other reservoirs. Yet, in all of our
magnetic simulations, energy is redistributed such
that the sum of the kinetic and magnetic energy is
less than the total kinetic energy KE0 contained in

case H. The net energy deficit can be attributed pri-
marily to the reduction in strength of the differential
rotation by Maxwell stresses. This means that in a
convection zone the way the energy is redistributed
among and within the different reservoirs is modified
by the presence of magnetic field, but these modifi-
cations remain moderate in the case presented here.
In addition our choice of magnetic boundary con-
ditions (potential field) could explain for some part
the decrease of KE+ME since it correspond to a net
Poynting flux at the boundaries.

A detailed analysis of the redistribution of ME within
its mean and fluctuating components reveals that
the magnetic energy contained in the mean-field
components (m = 0) represents only 2% of total
ME with the 98% remaining contained in the non-
axisymmetric fluctuations. Most of the mean-field
energy is in the toroidal field (1.5%), which ex-
ceeds the energy in the poloidal field by about a
factor of three due to the stretching and amplifi-
cation of toroidal field by differential rotation (the
ω-effect). This ratio is smaller than in the Sun,
where the mean toroidal field is estimated to be
about two orders of magnitude more energetic than
the mean poloidal field. This discrepancy can again
be attributed to the absence of an overshoot region
and a tachocline, where toroidal field can be stored
for extended periods while it is amplified by rela-
tively large angular velocity gradients (see §4). For
the non-axisymmetric fluctuations, the magnetic en-
ergy is approximately equally distributed among the
toroidal and poloidal fields, indicating that the tur-
bulent convection can efficiently generate both com-
ponents in roughly equal measure, implying that the
ω-effect plays a lesser role. The radial profile of
ME peaks at the bottom of the domain, due to the
downward transport of magnetic fields by turbulent
plumes. Magnetic fields generation through dynamo
action is present at all scales, with ME being in su-
perequipartition over degree ` ∼ 20.

In order to illustrate the complex interplay between
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Figure 3. (a) Potential extrapolation of the magnetic field, with closed magnetic loops in white, and respectively
outward (inward) open fields lines in yellow (magneta). As background image, the radial component of magnetic
field at the top of the domain serves as starting point for the foot lines. (b) Full sphere rendering of the toroidal
magnetic field with blue (red) tones corresponding to negative (positive) polarity. (c) close up view on the
equatorial region revealing the entangled and intertwined nature of the toroidal field due to the combined action
of the α and ω-effect.

convective motions, differential rotation and mag-
netic fields, we display the structure of the convection
and magnetic fileds of M3 in Figures 2 and 3. The
convective patterns are qualitatively similar to the
hydrodynamic progenitor case H. The radial veloc-
ity (Fig. 2a) is dominated by narrow cool downflow
lanes and broad warm upflows, with a more isotropic
behavior at higher latitudes. The charactristic spa-
tial scale here is larger than supergranulation, which
is as of today, the smallest convective scale that such
global models can simulate but in rather thin shell
(see Derosa, Gilman & Toomre 2002). The tem-
perature fluctuations (Fig. 2b) exhibit a banded
appearance most likely linked to an inner thermal
wind, that contributes somewhat to the establish-
ment of the differential rotation (see §3.3). The much
smoother appearance of the temperature fields is due
to our choice of a small Prandtl number (Pr=1/8).
We can see that the strongest vortices correlated well
with the coldest fluctuations resulting in an outward
transport of heat.

The radial magnetic field (Fig. 2c) is found to be con-
centrated in the downflow lanes, with both polarities
coexisting having beed swept there by the horizon-
tal diverging motions at the top of the domain. The
Lorentz forces in such localized regions have a not-
icable dynamical effect on the flow, with ME some-
times being locally bigger than KE, influencing the
evolution of the strong downflow lanes via magnetic
tension that inhibits vorticity generation and reduces
the shear. The magnetic field generally has a finer
and more intricate structure than the velocity field
due to the smaller diffusion (Pm = 4 in this simu-
lation) and also due to the nature of the advection
terms in the induction equation, which are similar in
form to those in the vorticity equation (e.g. Biskamp
1993). The magnetic field and the radial velocity

Figure 4. Radial profile of the kinetic helicity in cases
H and M3. The presence of magnetic fields lead to a
reduction of the amplitude of the kinetic helicity.

possess a high level intermittency both in time and
space, revealed by extended wings in their probal-
ity distribution functions and are quite asymmetric
(Brun et al. 2004). The longitudinal velocity vφ is
much more gaussian-like. These results are in good
agreement with simulations of compressible MHD
turbulence in cartesian geometry (Brandenburg et
al. 1996).

In Figure 3a we represent the potential extrapola-
tion of the radial magnetic field at the top of the
computational domain. We see that the field can
take the form of magnetic loops connecting either
local or widely separated areas as well as be open,
with respectively outward (inward) field lines in yel-
low (magenta). The longitudinal magnetic field is
shown in the companion Figures 3b and 3c using re-
spectively a global view of the domain or a zoomed
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in view around the equator to reveal its ribbon-like
structures. The toroidal field Bφ near the surface
appears more distributed and more patchy than Br,
characterized by relatively broad regions of uniform
polarity, particularly near the equator (Fig. 3c). The
magnetic field topology generally does not exhibit
any clear symmetries about the equator, although
some of the Bφ elongated features at low latitudes
do have an antisymmetric counterpart.

The rigidifying effect of the magnetic fields on the
convective motions, mainly in location of strong vor-
ticity and shear, is clearly evident in Figure 4 where
we show a plot of the radial profile of the kinetic he-
licity Hk = v · ω for both case H and M3. We can
see that case M3 possesses a smaller kinetic helicity
throughout the domain, with minimum and maxi-
mum peak reduced by about 30%. However Hk re-
tains the same sign at the top (negative) and bottom
(positive) of the shell in both cases.

3.3. Differential Rotation

Helioseismic inversions of large-scale, axisymmetric,
time-averaged flows in the Sun currently provide the
most important observational constraints on global-
scale models of solar convection. Such flows (aver-
aged over longitude and time) have therefore been
a primary focus of previous simulations of the so-
lar convection zone (Glatzmaier 1987; Miesch et al.
2000; Brun & Toomre 2002). Of particular impor-
tance and reasonnably well constrained by helioseis-
mology, is the mean longitudinal flow, i.e. the dif-
ferential rotation Ω(r, θ), which is characterized by
a fast equator, slow poles and a profile almost inde-
pendant of radius at mid latitudes (Thompson et al.
2003).

In Figure 5 (left panel), we display the time-averaged
angular velocity profile achieved in the purely hydro-
dynamic case H. This case possesses a fast equator,
a monotonic decrease of Ω with latitude and some
constancy along radial line at mid latitudes, all these
attributes being in reasonnable agreement with helio-
seismic inferences. With fairly strong magnetic fields
sustained within the bulk of the convection zone in
case M3, it is to be expected that the differential
rotation Ω established in the progenitor case H will
respond to the feedback from the Lorentz forces. Fig-
ure 5 (middle panel) shows the time-averaged angu-
lar velocity achieved in case M3, which exhibits a
prograde equatorial rotation with a monotonic de-
crease in angular velocity toward higher latitudes as
in the Sun. The main effect of the Lorentz forces is
to extract energy from the differential rotation. The
kinetic energy contained in the differential rotation
drops by a factor of two after the addition of mag-
netic fields and this decrease accounts for over 70%
of the total kinetic energy difference found between
the two cases (see §3.2). This is reflected by a 30%

decrease in the angular velocity contrast ∆Ω between
the equator and latitudes of 60◦, going from 140 nHz
(or 34% compared to the reference frame Ωo) in the
hydrodynamic case H to 100 nHz (or 24%) in case
M3. This value is close to the contrast of 22% in-
ferred from helioseismic inversion of the solar profile
(Thompson et al. 2003). Thus the convection is still
able to maintain an almost solar-like angular velocity
contrast despite the inhibiting influence of Lorentz
forces.

A careful study of the redistribution of the angu-
lar momentum in our shell reveals that the source
of the reduction of the latitudinal contrast of Ω can
be attributed to the poleward transport of angular
momentum by the Maxwell stresses (cf. Brun 2004,
Brun et al. 2004). The large-scale magnetic torques
are found to be 2 orders of magnitude smaller, con-
firming the small dynamical role played by the mean
fields in our MHD simulation. The Reynolds stresses
now need to balance the angular momentum trans-
port by the meridional circulation, the viscous dif-
fusion and the Maxwell stresses. This results to a
less efficient speeding up of the equatorial regions.
Since ME in case M3 is only 7% of KE, the Maxwell
stresses are not yet the main players in redistribut-
ing the angular momentum and case M3 is able to
sustain a strong differential rotation as observed in
the present Sun. At higher level of magnetism with
ME near equipartition with KE, the differential rota-
tion is severely damped and no more solar-like. The
somewhat faster rotation rate and larger ∆Ω in case
H relative to case M3 further suggests that a reduced
level of the Sun’s magnetism (as during the Maunder
minimum) may lead to greater differential rotation.
Some evidence seem to confirm it (Eddy et al. 1976,
Brun 2004).

There is actually some debates on the relative im-
portance of the thermal wind linked to baroclinic ef-
fects compared to the Reynolds stresses in establish-
ing the solar differential rotation. Several authors
(Rudiger & Kitchatinov 1995, Robinson these pro-
ceedings, Durney 1999) advocate that the thermal
wind (cf. Pedlosky 1987, Brun & Toomre 2002) dom-
inates the delicate balance that leads to the observed
angular velocity profile. In our 3–D simulations we
do find that the thermal wind account for a frac-
tion of the differential rotation profile in the bulk of
the convection zone, but there are many locations,
mainly close to high shearing regions, where it does
not. At the onset of the convection instability in the
simulation, it is difficult to say if it is the turbulent
convective motions that transport angular momen-
tum via Reynolds stresses to establish a differential
rotation that imprint itself in the thermodynamics
variables, or if the convection via anisotropic latitu-
dinal transport of heat, estalished the entropy and
temperature contrasts that lead to a stong thermal
wind that established the differential rotation. Cer-
tainly both effects contribute to Ω, but in a turbulent
flow such as the solar convection zone, the Reynolds
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Figure 5. Temporal and longitudinal averages of the angular velocity profiles (converted to nHz) achieved in case
H and M3 over an interval of 100 days (shown as contour plots). These cases exhibit a prograde equatorial
rotation and a strong contrast ∆Ω from equator to pole, as well as possess a high latitude region of particularly
slow rotation. In the right panel, displaying radial cuts of Ω (with the equatorial cut on top and decreasing
latitudes as we go down) for both cases, the reduction in ∆Ω due to the nonlinear feed back of the Lorentz forces
(solid vs dashed lines) can be assessed

stresses must be important players and indeed we do
find in our simulations that there are the only agent
transporting the angular momentum equatorward.

3.4. Meridional Circulation and the Solar
Cycle

The meridional circulation plays an important role in
mean field models of the solar dynamo, particularly
in models of the Babcock-Leighton type also called
flux transport models (Dikpati & Charbonneau 1999;
Dikpati this proceedings). Inferring its radial and
latitudinal profile in the Sun would help greatly our
understanding of the solar dynamo and its 22-year
cycle. Several technics such as dopler mesurement,
time distance and ring diagram analysis (see Haber
et al. these proceedings for details) have been used
to probe the meridional circulation established in the
Sun. These methods are reliable only in the upper
parts of the surface layers (say r > 0.95R) and reveal
one big cells in latitude, except during solar max-
imum where the northern hemisphere exhibits two
cells (see Haber et al. 2002). Deeper down (r ∼ 0.85
being the deepest as of today) the inferences become
somewhat more uncertain. Our simulation of turbu-
lent convection are helpful in improving our physical
intuition on the processes establishing this weak flow
and its mean profile.

Eq

Figure 6. Temporal and longitudinal average of the
meridional circulation realized in case M3 (shown in
a meridional cross section view). The intricate pro-
file with the presence of multi cells both in radius and
latitude is clearly visible. Clockwise circulations are
shown as solid contours. Typical velocity are about
25 ms−1.
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In Figure 6 we display the meridional circulation re-
alized in case M3. This meridional circulation is
maintained by buoyancy forces, Reynolds stresses,
pressure gradients, Maxwell stresses, and Corio-
lis forces acting on the differential rotation (see
Gilman & Miesch 2004). Since these relatively large
forces nearly cancel one another, the circulation can
be thought as a small departure from (magneto)-
geostrophic balance, and the presence of a magnetic
field can clearly influence its subtle maintenance. In
case M3, the meridional circulation exhibits a multi-
cell structure both in latitude and radius, and pos-
sesses some asymmetry with respect to the equa-
tor. Over the temporal period sampled, two verti-
cal cells are present at low latitudes in the northern
hemisphere whereas only one, with a rather irregular
shape, is present in the southern hemisphere. Other
temporal samplings reveal different profiles but in
the large they all possess multi-cell structures. Since
the convection possesses some asymmetry (cf. Fig.
2) it is not surprising that the meridional circulation
does the same.

Given the competing processes for its origin, this
weak flow is not straightforward to predict. Typi-
cal amplitudes for the velocity are of order 25 m s−1,
comparable to local helioseismic deductions (Haber
et al. 2002). The flow near the outer boundary
is directed poleward at low latitudes, with return
flow deeper down. The temporal fluctuations in the
meridional circulation are large and thus stable time
averages are only attained by frequent sampling over
many rotation periods. The kinetic energy contained
in the meridional circulation (MCE) (see Fig. 1)
is about two orders of magnitude smaller than that
contained in the differential rotation and convective
motions and is more than an order of magnitude less
than the total magnetic energy (ME). As a result,
small fluctuations in the convective motions, differ-
ential rotation and Lorentz forces can lead to major
variations in the circulation.

The shape of the meridional circulation is an im-
portant ingredient of solar dynamo models of the
flux transport type. These models are built with
one large-scale circulation (per hemisphere) and the
speed of the flow is used to control the timing of
the solar cycle. The presence of a second meridional
cell in latitude, as revealed by local helioseismology
(Haber et al. 2002), does not seem as problematic for
this type of the solar dynamo model as two merid-
ional cells in radius would be (Dikpati these proceed-
ings). It is worth recalling that our simulations gen-
erally possess at least two cells as a function of depth
with return flows rather deep in the convection zone,
thus unattainable by current observational technics
to be constrained. It would be interesting to see by
how much in these models the timing and the re-
sulting sunspots propagation would be modified by
a multi-cells meridional circulation. Precise inversion
of the meridional circulation are certainly one of the
major challenges of local helioseismology in the year

to come. It plays the same pivotal role in today’s
mean field solar dynamo models that Ω, the differ-
ential rotation, played in early 80’s. Let’s hope that
we will be as successful in inverting the meridional
circulation as we have been with Ω.

4. THE SOLAR TACHOCLINE

The solar tachocline is the thin region (< 0.05R)
of strong shear at the base of the solar convection
zone (r ∼ 0.713R), where the differential rotation of
the convective envelope changes to solid body rota-
tion in the radiative interior (Corbard et al. 1999).
The tachocline plays a crucial role in the solar dy-
namo since it is most likely the layer where the mean
toroidal magnetic field, thought to be at the origin
of the surface sunspots, is streched, amplified (by at
least a factor of 100 which is not straightforward) and
stored until it becomes magnetically buoyant (Parker
1993, Caligari et al. 1998, Fisher et al. 2000, Rempel
2003).

Figure 7. Imposed differential rotation Ωbcz/2π =
456 − 42 cos2 θ − 72 cos4 θ (with θ the colatitude) at
the top of the stable radiative zone. The dashed line
represents Ω0, the rotation rate of the inner shell and
of the radiative interior at the start of the simulation.

However little is known about the dynamics of the
solar tachocline: is it turbulent or laminar, what
type of circulations are present, what is the dynam-
ical influence of the magnetic fields, why is it so
thin extending at most over 5% of the solar radius?
Spiegel & Zahn (1992) were the first to address di-
rectly some of those questions but in the purely hy-
drodynamical context. They showed that if no pro-
cesses where present to oppose its radiative spread,
the solar tachocline would extend over 30% of the
solar radius after 4.6 Gyr, in complete contradiction
with current helioseismic inversions (Corbard et al.
1999). By taking into consideration in their theoret-
ical model anisotropic turbulence (due to the pum-
meling of the turbulent convective plumes on the top
of the stratified radiative interior), they demonstrate
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Figure 8. Temporal sequence of the angular velocity (color contours) and of the poloidal magnetic field (black
lines) for case T1 over a period equivalent in the model to 10 thermal diffusion time.

that this process could hinder the spread of the solar
tachocline to only few % of the solar radius. Their
model thus support a turbulent tachocline that does
not require the presence of magnetic fields to remain
thin but do not exclude it either. Elliott (1997) con-
firmed their results numerically with a 2–D axisym-
metric hydrodynamic code using finite differences.
Miesch (2003) using a thin layer version of the ASH
code, showed that the coupling between randomly
forced turbulence and an imposed shear flow gives
rise to Reynolds stresses that transport angular mo-
mentum such as to reduce the shear, adding weight
to Spiegel & Zahn’s model.

Several authors (Rudiger & Kitchatinov 1997; Gough
& Mc Intyre 1998; MacGregor & Charbonneau
1999; Garaud 2002) have proposed that the mag-
netic torques exerted by a weak fossil magnetic field
could oppose the inward thermal hyperdiffusion (or
viscous diffusion when thermal effect are neglected)
of the solar tachocline. Such models favor a slow,
rather laminar version of the tachocline. Gilman
and collaborators (Gilman these proceedings; Dik-
pati, Cally & Gilman 2004 and references therein)
developped a series of models that showed that the
tachocline could become unstable through magnetic
instability of toroidal structures embedded within it,
resulting in a latitudinal angular momentum trans-
port that suppress the shear and limit its inward dif-
fusion. Forgacs-Dajka (2004) considered the effect of
an oscillating dynamo field and found that it could
too suppress the spread of the solar tachocline. This
increasing number of models of the solar tachocline
demonstrates how important characterizing its dy-
namical properties is. We believe that the ASH code

could positively contribute to these ongoing efforts
to model the solar tachocline. We thus present here
prelimanary results that intend to address the pos-
sibility for a dipolar field to stop the spread of the
tachocline deeper in the radiative interior in full 3–D
simulations for the first time.

4.1. Model Description

We use the ASH code to model the solar radiative in-
terior from r = 0.3 to r = 0.71R. We assume a stable
stratification throughout the computational domain
deduced from the 1–D solar model used in our tur-
bulent simulations of the solar convection zone (cf.
§3 and Brun et al. 2002). The resolution used is
Nr ×Nθ ×Nφ = 128× 256× 512. As boundary con-
ditions we assume a constant radiative flux and im-
penetrable wall and match to a potential field at the
top and bottom of the domain and stress free velocity
condition at the bottom. At the top of the compu-
tational domain we imposed a latitudinal shear of
the form Ωbcz(θ)/2π = A + B cos2 θ + C cos4 θ, with
A = 456, B = −42 and C = −72 nHz, that fits rea-
sonnably well the solar differential rotation profile
(see Fig. 7). Following Gilman et al. (1989), we de-
duce the angular velocity of the radiative interior Ω0

that balances torques at the interface of a convection
zone rotating like Ωbcz:

Ω0/2π = A + B/5 + 3/35C = 441 nHz (1)

It is interesting to note that helioseismic inversions of
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Figure 9. Time evolution of the angular velocity (color contours) and of the poloidal magnetic field for case T2
(started with a confined dipolar magnetic field), over a period equivalent in the model to 10 thermal diffusion
time.

the rotation of the radiative interior (down to 0.2R,
Couvidat et al. 2003, Thompson et al. 2003) infer
an almost flat profile (solid body rotation) that ro-
tates to value very close to Ω0. This means that even
in the real Sun, the exchange through the interface
between the convection and the radiation zone are
nearly balanced, with only a weak torque operating
there. How the angular momentum lost through the
solar wind and resulting in the spin down of the Sun
influence the redistribution of angular momentum in
the radiative interior and in the tachocline is defi-
nitely not an easy question to answer (see Gilman
et al. 1989). The fact that the torques are almost
balanced at the base of the solar convection indicate
that the outward transfer of angular momentum from
the deep interior to the convective envelope must oc-
cur on a slow time scale.

In cases T1 and T2 presented here we use Prandtl,
magnetic Prandtl and Roberts numbers Q = η/κ of
respectively 1/100, 1 and 1/100. These two cases dif-
fer by their initial dipolar field which is either open,
going through the top boundary or confined below
it (as in configurations D1 and D3 of MacGregor
& Charbonneau 1999). Our choice of parameters
and Prandtl number (Pr < 0.01) for cases T1 & T2
means that thermal hyperdiffusion dominates over
viscous diffusion (see eq. 4.10 of Spiegel & Zahn
1992) and that the relevant time scales are the Ohmic
and thermal ones.

4.2. Results

Figures 8 and 9 display the temporal evolution of
the angular velocity Ω of cases T1 and T2, with the
poloidal fields superimposed. The left panels of Fig-
ures 8 and 9 represent both the initial solid body ro-
tation state of the radiative zone and the dipolar field
(either open or confined) used to start the temporal
evolution. We see in the middle panels of these Fig-
ures that the imposed shear starts to propage in the
radiative interior at rather high latitudes. The rate
of propagation seems faster in case T1 than it is in
case T2. In T1, the field lines are too radial at those
high latitudes to oppose the inward diffusion. On
the contrary in case T2 the field lines are much more
horizontal and can exert a force that slows down a
bit the thermal hyperdiffusion. The strength of the
dipole field is slowly decaying away since no processes
can yet regenerate it. After over 10 thermal diffu-
sion time scale, the angular velocity profile in the
radiative interior does not look at all as it started
(right panels of Fig. 8 & 9). Wherever the field lines
cross the top boundary, the imposed shear has propa-
gated all the way down to the bottom of the domain.
In case T1, Ferraro’s law of isorotation at high lati-
tude is not exactly satisfied, and the shear stretches
the poloidal field lines, inducing the generation of
a rather strong mean toroidal magnetic field. Such
generation is, at our surprise, maintained over many
Ohmic diffusion time scales but does not yet trig-
ger an instability that could regenerate the poloidal
field. In case T2, the toroidal field first grows and
then decays away. At mid latitude a ring of prograde
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rotation surrounds the last zone in the shell possess-
ing uniform rotation. As the time evolves and more
magnetic field lines diffuse through the top boundary,
the fast rotating rings shrink in size and the imposed
shear gets to lower latitudes. Our simulations also
revealed the presence of a weak single cell meridional
circulation per hemisphere in the tachocline, directed
poleward at the top of the domain.

Our simulations show that a fossil dipole field is not
that efficient at limiting the inward thermal hyper-
diffusion of a latitudinal shear, once its fields lines
have connected with the region where the shear is
imposed. Whether in the real Sun, the fossil dipolar
field lines connect or not with the convection zone
is another challenging question to be answered and
could modify the conclusion of our study. We intend
to attack this problem in the near future.

However our model can help answering other ques-
tions. For instance, since our model of the solar
tachocline is fully 3–D, m = 1 or m = 2 instabil-
ities of the toroidal field, as Dikpati et al. (2004)
suggest should appear over a certain threshold am-
plitude for Bφ, could develop in the strong shearing
region near the top of the domain. Unfortunately, we
have not yet found in our simulations, even in case
T1, that the toroidal fields amplified in the evolv-
ing tachocline through ω-effect become unstable. We
are guessing that the toroidal field strength attained
in our simplified model of the solar tachocline are
not large enough (10 kG instead of 100 kG) to trig-
ger the instability. As we scan the space parameters
we will keep looking for the instability of Bφ, since
we will be able to study its nonlinear evolution and
it could potentially provide a way to regenerate the
mean poloidal field.

5. PERSPECTIVES

We have shown that numerical simulations of the
complex solar magnetoydrodynamics are becoming
more and more tractable with today’s supercomput-
ers. In particular we have studied how turbulent
convection under the influence of rotation can estab-
lish a strong differential rotation and weak merid-
ional circulation, generate magnetic fields through
dynamo action and how Lorentz forces act to di-
minish the differential rotation by having Maxwell
stresses transporting angular momentum poleward
and thus opposing the Reynolds stresses. Many chal-
lenges remain, among them the understanding of the
two shear layers present at the base (the tachocline)
and at the top of the solar convection zone is a prior-
ity since these layers are directly linked to the solar
dynamo (Ossendrijver 2003) and subsurface weather
(Haber et al. 2002). Another challenge is to get
a more accurate and deeper inversion of the merid-
ional circulation present in the solar convection since
it plays a crucial role in current mean field solar

dynamo models (Dikpati these proceedings). Our
numerical simulations favor a multi-cells structure
for the meridional circulation whereas flux transport
models assume one large cell. This issue need to be
clarified. In order to progress in our understanding
of the solar interior, we have started to study with
ASH in three dimensions under the MHD anelas-
tic approximation, the solar tachocline and radia-
tive zone. We have considered how a dipolar mag-
netic field could oppose the radiative spread of the
tachocline. We have found that the magnetic field
have a tendency to diffuse outward through the shell
and to communicate to the radiative interior, first, at
high, then at lower latitudes, the imposed latitudi-
nal shear at the top of the domain, therefore enforc-
ing an isorotation of Ω along the poloidal field lines.
This behavior is known as Ferraro’s law of isorota-
tion. As a result only a small region near the equator
rotates uniformly. We further considered confined
or open magnetic field configurations as in MacGre-
gor & Charbonneau (1999), but did not find signi-
ficative differences, except that the latter amplifies
and sustains more efficiently a mean toroidal field.
Work is in progress to compute with ASH in one
single global model the solar convection and radia-
tion zones (using two stacked Chebyshev domains).
These simulations will provide a first step toward
a self-consistent, high resolution model of the solar
dynamo. Another improvement could be to incor-
porate in our simulations of turbulent convection a
more realistic equation of state and detailed descrip-
tion of the radiative transfer of the solar near sur-
face shear layer along with a more accurate subgrid
scale (SGS) model. As a final remark, we would like
to note that a promising numerical methods is em-
merging, the spectral-element method (Karniadakis
& Sherwin 1998), that combines the exponential ac-
curacy convergence of the pseudo-spectral methods
with the flexibility of the finite elements methods.
A new 3–D MHD code making use of this powerful
approach would certainly result in a significant step
forward in solar modelling.
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