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Nonlinear simulations of magnetic instabilities in stellar radiation
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Using the 3-dimensional ASH code, we have studied numerically the instabilities that occur in stellar radiation zones in
presence of large-scale magnetic fields, rotation and large-scale shear. We confirm that some configurations are linearly
unstable, as predicted by Tayler and collaborators, and we determine the saturation level of the instability. We find that
rotation modifies the peak of the most unstable wave number ofthe poloidal instability but not its growth rate as much
as in the case of them = 1 toroidal instability for which it is changed toσ = σ2

A/Ω. Further in the case with rotation
and shear, we found no sign of the dynamo mechanism suggestedrecently by Spruit even though we possess the essential
ingredients (Tayler’sm = 1 instability and a large scale shear) supposedly at work.
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1 Introduction

The solar magnetic field is dominated by magnetic field
generated through dynamo action in the upper layer of our
star (Ossendrijver 2003; Brun, Miesch & Toomre 2004).
However little is known about the field topology and
strength deep within the Sun, in its radiative interior. Large
scale magnetic fields are known to be linearly unstable.
These instabilities have been studied in detail by Tayler and
his collaborators in the 70’s and 80’s (Tayler 1973; Markey
& Tayler 1973, 1974; Tayler 1980; Pitts & Tayler 1985) and
by Wright (1973). More recently, these instabilities have
been summarized by Spruit (1999, 2002), who also sug-
gested that a fossil magnetic field permeating the radiation
zone of a rotating star possessing a large scale shear could
even trigger a dynamo mechanism, and maintain a level of
turbulence that causes the mixing of chemical elements. A
crucial point in the description of this mechanism is to de-
termine the saturation level of the field in the non-linear
regime, and to verify whether the field is regenerated; this
lies beyond analytical treatment and can only be achieved
through nonlinear numerical simulations.

We have carried out such simulations for the primary
purpose of checking whether a fossil magnetic field can pre-
vent the radiative spread of the solar tachocline (Brun &
Zahn 2006), as was claimed by Gough & McIntyre (1998).
We found that it was very difficult to prevent the poloidal
field lines from connecting with the top latitudinal shear
and as a direct consequence from imposing Ferraro’s law of
isorotation in the whole radiative interior. One striking re-
sult that was possible to get thanks to our three-dimensional
code ASH, is the existence in our simulation of non axi-
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symmetric MHD instabilities. Effectively we were able to
capture Tayler’s instabilities of both the poloidal and the
toroidal magnetic field configuration. We thus decided to
study them in the non-linear phase of their growth (Brun
& Zahn 2006) and in a very recent work (Zahn, Brun &
Mathis 2007) we have discussed the dynamo loop proposed
by Spruit and modeled in a simple cylindrical configura-
tion by Braithwaite (2006). We have found that it is not
as straightforward as these two authors suggest to actually
close the dynamo loop with just a large-scale shear and
Tayler’s toroidal instability (cf. Fig. 2 of Zahn et al. 2007).
Clearly nonlinearities have to play a major role in order to
regenerate the mean (m = 0) poloidal field that the large
scale shear has to shear such as to sustain Tayler’s toroidal
m = 1 instability and thus dynamo action. However in our
simulations with the ASH code we have not yet been able
to regenerate the mean poloidal field, even though we have
reached relatively high magnetic Reynolds number (∼105),
and as a consequence we do not find dynamo action (see
Gellert et al. 2007 for a similar result using a geometry
closer to that of Braithwaite). More work remains to be done
in order to clarify the conditions for which dynamo action
in stellar radiation zones can occur.

In Brun & Zahn (2006) and Zahn et al. (2007), we have
seen the development of the Tayler instabilities in presence
of rotation and of a latitudinal shear imposed at the top of
the tachocline. Here we report the results of a more recent
numerical study, in which we have computed non rotating
and rotating models of the solar radiative zone, but without
imposing the latitudinal shear as in the tachocline runs. In
Sect. 2 we briefly present the numerical model, in Sect. 3
we discuss the differences between non rotating, rotating
and tachocline runs and conclude in Sect. 4.
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Fig. 1 (online colour at: www.an-journal.org)Left: Temporal evolution of the ME & KE in the non rotating case. Note the fast growth
of FME & FKE and the rapid (but delayed) rise of TME & TKE.Middle: the case with rotation. Again FME & FKE grow fast but
saturate at a lower level.Right: the tachocline case. We clearly see the 2 phases of non-axisymmetric instability (characterized again by
the fast increase of FKE and FME): the first, fort < 7000 days, is associated with the unstable configuration of the dipolar field as with
the two other cases, and the second, fort > 7000 days, with the toroidal field produced by winding up the poloidal field through the
differential rotation.

2 The Numerical model

We make use of the numerical code ASH (Anelastic Spher-
ical Harmonic; see Clune et al. 1999) which was origi-
nally designed to model the solar convection zone (Brun
& Toomre 2002). It has since been extended to include the
magnetic induction equation and the feedback of the field on
the flow via Lorentz forces and Ohmic heating (see Brun,
Miesch & Toomre 2004 for more details) and adapted to
model stellar radiation zones (Brun & Zahn 2006). This
code solves the full set of 3-D MHD anelastic equations
of motion (Glatzmaier 1984) in a rotating spherical shell
on massively-parallel computer architectures. Here we ap-
ply it to examine the nonlinear evolution of Tayler’s non
axisymmetric instabilities in the presence or absence of ro-
tation and of a latitudinal shear. The computational domain
extends fromrbot = 0.35 R⊙ to rtop = R = 0.72 R⊙;
we thus focus on the bulk of the stably stratified zone, ex-
cluding the nuclear central region, and we ignore its pos-
sible back reaction on the convective envelope. We refer
the reader to Brun & Zahn (2006) for further information
on the equations that are solved, their boundary conditions
and the numerical method employed. To enable us to re-
solve the smallest scales, the diffusion coefficients (viscos-
ity, thermal and magnetic diffusivities) were all increased
with respect to their solar values, but we took care to re-
spect their hierarchy. The time-step was chosen such as to
accommodate the Alfvén crossing time. In the cases dis-
cussed here, we imposed initially a purely poloidal field of
dipolar type, which was buried belowrbot = 0.64 R⊙; its
strength of about 3 kG was taken so that the magnetic torque

could balance the advection of angular momentum through
the tachocline circulation (cf. Brun & Zahn 2006). Three
cases have been performed that all start with the same field
strength and topology but differ by having or not a rotating
reference frame or the presence of an imposed large scale
shear.

3 MHD instabilities in radiation zone and the
role of rotation and shear

The instabilities are best described in following the tem-
poral evolution of various components of the kinetic (KE)
and magnetic (ME) energies, averaged over the whole com-
putational domain (see Fig. 1). PKE & PME designate the
mean (axisymmetric) poloidal components of respectively
KE and ME, TKE & TME their mean toroidal components,
and FKE & FME their non-axisymmetric components (see
Brun et al. 2004 for their analytic expressions). In the left
panel of Fig. 1, we present the temporal evolution of KE and
ME and their components for the non rotating case. We ob-
serve the fast, exponential growth of both FKE and FME by
many orders of magnitude. The e-folding time is≈120 days
and the saturation of the fluctuating energies occurs around
8000 days, where it reaches almost the level of PME, mean-
ing that most of the energy of the poloidal field has been
drained to fuel the instability. In the process, some of the
fluctuating field has been transformed into mean toroidal
field TME, through non-linear self-interaction as revealed
by its growth-rate, which is about twice that of FME. Like-
wise, FKE saturates since the velocity fluctuations are in-
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Fig. 2 (online colour at: www.an-journal.org) Temporal evolution of the non axisymmetric longitudinal field (azimuthal average,
m = 0, has been subtracted off) for the non rotating case, the rotating case and for the tachocline case with rotation and shear. Note how
the nonlinear evolution of the instability differs in the presence of large scale shear, withBφ taking a ribbon like shape.

timately related to the magnetic field fluctuations and TKE
grows at a rate similar to TME. PKE starts growing when
FKE has significantly rose and reached a level of energy of
similar amplitude, but it then saturates much faster and de-
clines. Note however that the decay of FKE and FME dif-
fers, which is certainly due to the fact that our run uses a
magnetic Prandtl number of Pm= ν/η = 10−1, i.e larger
magnetic diffusion than viscous dissipation. The triggering
of the poloidal instability seems to be linked to the fact that
the field is seeking a more stable configuration, involving
both poloidal and toroidal components. Markey & Tayler
(1973) indeed showed that a toroidal field that reach an am-
plitude of the same order than that of the poloidal field will
make the magnetic field configuration stable. After satura-
tion, since most of the magnetic energy is now in form of the
fluctuating field, its Ohmic decay proceeds on a faster pace
than that of PME in the early phase. Characterizing now the
spatial properties of the instability, we see that the fluctu-
ations are first located at low latitude and at the bottom of
the domain (see Fig. 2 top left). We conclude that it is one
of the instabilities described in the pioneering works quoted
above, which occurs when the field is purely poloidal. When
analyzing the energy spectrum inm of the fluctuations
of the azimuthal fieldBφ, one sees clearly that the max-
imum growth occurs at rather high azimuthal wavenum-
ber:m ≈ 12. This is in agreement with Wright (1973) and
Markey & Tayler (1974), who found that the growth-rate
of the instability should increase withm in the non dissi-

pative case. Our simulations include dissipative effects and
thus we expect to find the maximum growth rate at an inter-
mediatem rather than atm = mmax = 85. Quickly after,
the instability starts filling up the whole sphere (Fig. 2 top
middle and top right), and progressively the maximum am-
plitude of the spectra shifts toward lowerm and ℓ as the
dissipation of the smallest scales starts kicking in. Note in
the middle panel of the top row of Fig. 2, how the insta-
bility develops, by having patches of positive and negative
polarity starting to rotate and entrain one another, not un-
like interchange instabilities. There is no sign of a dynamo
in this simulation, which is not surprising since there is no
energy available here to feed the process: all components of
the magnetic field and of the velocity fields end up decaying
away.

Considering now the rotating case, we notice in Fig. 1
(middle panel) that again FME and FKE rise by many or-
ders of magnitude with an e-folding of about 90 days. We
can conclude that for the poloidal instability, rotation does
not seem to delay the triggering of the instability and ac-
tually make the instability rise faster. This is surprisingbe-
cause rotation usually decreases the growth rate of the insta-
bility when compared to a non rotating case. Pitts & Tayler
(1985) actually showed that this is particularly true for the
m = 1 instability of a toroidal field. They also showed that
for a purely poloidal configuration, the stabilization and re-
duction of the growth rate by rotation is not as important
as in the purely toroidal configuration, in particular for high
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All m’s m =/= 0

Case Rotation & Shear

Fig. 3 (online colour at: www.an-journal.org) 3-D rendering of the magnetic field lines in the radiative interior of the case including
rotation and shear at the peak of the instabilityt ∼ 10

4 days. On the left we show all them’s whereas on the right we have subtracted
them = 0 component of the three components of the field. The fields are red (blue) when pointing towards (away from) the viewer. The
background image is located atr = 2.5 × 10

10 cm and represent the radial component of the field.

wave number disturbances. A spectral analysis of the insta-
bility in the rotating case confirms their analysis, since in
this case the instability actually possesses a much higher
dominantm, close to 40, compared to the non rotating case
where it is around 12. Since highm disturbances of purely
poloidal field are less sensitive to rotation, it can explain
why we do not see much difference in the growth rate of the
poloidal instability. However we do see differences between
the non rotating and the rotating case when comparing the
left and middle panel of Fig. 1. We note that FME in the ro-
tating case saturates at a much lower level (about 1000 times
smaller) than in the non rotating case. Further, PME is not as
affected as in the non rotating case (no slope change in the
curve), even though it still plays the role of energy reservoir
for the instability. Certainly rotation modifies the develop-
ment of the instability since all the energies reach a lower
level of saturation. This is certainly linked to the fact that
there is now a preferred direction along the rotation axis and
the instability can not fully develop as freely in the whole
sphere, thus occupying less volume. This is clearly seen in
Fig. 2 (middle row), where we again show the temporal evo-
lution of the longitudinal component of the magnetic field
after having subtracted the axisymmetric (m = 0) mean.
The instability starts at the bottom of the shell near the equa-
tor and develops mostly near the equatorial region. After
saturation, which occurs around 7000 days we also find as
in the previous case that the instability decays away when
the magnetic field has reached a more stable configuration.

We finally turn to the last case possessing both rotation
and shear (Fig. 1, right panel). From the onset, as in the two
previous cases, FKE & FME rise exponentially by many or-
ders of magnitude at a fast pace (the e-folding time is≈ 90

days). They saturate around 7000 days at a level similar to
the purely rotating case, about 1000 times below the energy
of the mean poloidal field (PME). Interestingly enough we
find that both rotating cases possess the same growth rate
and saturation level for FKE and FME which is set by the
high m poloidal instability as discussed previously. Again
the fluctuations are located at low latitude and at the bottom
of the domain (Fig. 2 bottom left) and peaked as in the ro-
tating case aroundm = 40. Thus the introduction of a large
scale shear does not seem to modify the poloidal instabil-
ity, which after saturation starts decaying as in the purely
rotating case. However it clearly changes the very late evo-
lution of the simulation when comparing to the purely ro-
tating case as can be seen in Figs. 1 and 2. Indeed we can
note the appearance of two bands of toroidal field of op-
posite polarity in the upper part of the domain (see Fig. 2
bottom/middle), one at mid latitude and the other close to
the rotation axis, with opposite sign in each hemisphere.
This field is generated by the shearing of the poloidal field,
which very soon encounters the differential rotation spread-
ing down from the convection zone where the latitudinal
shear is imposed. At about104 days the energy TME, av-
eraged over the whole domain, matches that of the mean
poloidal field, meaning that locally the toroidal field can be
much stronger than the poloidal field, since it occupies a
smaller volume. That toroidal field is unstable to lowm per-
turbations, with the strongest component atm = 1, as pre-
dicted by the theory (Markey & Tayler 1973; Spruit 2002;
Zahn, Brun & Mathis 2007). As a direct consequence of the
development of the toroidal instability, FME and FKE start
growing again reaching value comparable to that obtained
in the non rotating case with the highm poloidal instabil-
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ity. Note that the mean toroidal field and the associated in-
stability draw their energy from the differential rotation, as
indicated by the conspicuous inflection of the TKE curve
in Fig. 1 (right panel), near104 days. Clearly the presence
of a strong differential rotation modifies the nonlinear evo-
lution of the magnetic field and its topology. In this case
the magnetic field finally organizes itself into ribbon like
structures near the poles due to the strong and continuous
ω-effect present in this region. This is in sharp contrast with
the two previous cases that do not trigger them = 1 toroidal
instability. As the simulation evolves, the toroidal instability
develops over the entire sphere.

Thereafter all energies but one slowly decline, at a rate
that is controlled mainly by the Ohmic dissipation of the
mean poloidal field (PME): thee-folding time would be
R2/2π2η ≈ 18000 days for a uniform motionless sphere
(Cowling 1957), which is compatible with what we see here.
The decay of that field is particularly smooth, and there is
no sign that it is regenerated or even affected by the insta-
bility. The mean toroidal field accompanies closely the de-
cline of the mean poloidal field (see Fig. 1, right panel, and
Fig. 2, bottom right), and so do the non-axisymmetric com-
ponents FKE and FME, with the kinetic energy in these per-
turbations being about twice their magnetic energy. In the
tachocline case the only exception to that overall decline is
the mean toroidal kinetic energy TKE, which steadily in-
creases as the differential rotation spreads deeper and to
lower latitudes. The kinetic energy of the meridional flow
(PKE) is the smallest of all energies; it is mostly concen-
trated toward the top of the domain and it remains almost
constant during the whole evolution.

In Fig. 3, we further illustrate the topology of the mag-
netic field obtained in the tachocline case, by rendering in
three dimensions the magnetic field lines over the whole do-
main. To ease the visualization we have color coded the field
lines with the local sign of the radial component of the field,
red corresponding to positiveBr (i.e outward). On the left
panel we show the total field, including them = 0 axisym-
metric component, whereas in the right panel we subtracted
it, such as the non axisymmetric component become more
evident. The toroidal character of the field, is clearly ap-
parent in the left panel, in particular near the polar region
where displaced disk shape-like structures are evident. The
initial dipolar configuration is also obvious, with field lines
changing colors from red to blue when they cross the equa-
tor. The non axisymmetric field is much less organized, as
is the radial direction of the field, with the sign of the fluctu-
atingBr changing very often. The field lines near the poles,
where the shear and the toroidalm = 1 instability domi-
nate, are clearly displaced with respect to the rotation axis,
as anticipated by Spruit (2002).

4 Conclusion

Since we used a three-dimensional code, we were able to
observe the non-axisymmetric instabilities associated with

our field configurations. In the early phase as well as in the
late evolution of the purely rotating case, they occur in a
narrow equatorial belt at the base of the computational do-
main, and they are due to the purely poloidal field we have
imposed initially. Later on, depending on whether there is or
not a large scale shear present in the radiative stable zone,
they are present either at all depths near the poles, where the
shear of the differential rotation, which has spread from the
top of the radiation zone, keeps generating a strong toroidal
field or throughout the sphere with no latitudinal preference
and a much less organized parity antisymmetry or favored
direction. Their properties agree reasonably well with the
predictions of Tayler and his collaborators, which were re-
cently reviewed and completed by Spruit (1999, 2002).

An important result of our simulations is that these in-
stabilities do not interfere with the mean poloidal field; they
are able to distort the ‘isogyres’ (surfaces of constant angu-
lar velocityΩ), thus affecting somewhat the production of
the toroidal field, but even there they seem to have limited
impact. Thus we do not see a dynamo process occurring in
our simulated radiative interior, as was suggested by Spruit:
in all cases studied the mean poloidal field is not regener-
ated but it decays away through Ohmic diffusion. However
it is possible that the magnetic Reynolds number required
to trigger the dynamo mechanism is beyond that achieved
in our simulations. We have performed two cases with mag-
netic Reynolds numbers of order104 and105 (Zahn et al.
2007), but in none of the cases we have found dynamo ac-
tion. If such dynamo action occurs in radiative zone poss-
esing large scale field and shear, the dynamo loop is harder
to close than expected by Spruit (2002) and Braithwaite
(2006) as discussed in length in Zahn et al. (2007, cf. their
Fig. 2).
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