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ABSTRACT

The global scales of solar convection are studied through three-dimensional simulations of compressible convec-
tion carried out in spherical shells of rotating fluid that extend from the base of the convection zone to within 15 Mm
of the photosphere. Such modeling at the highest spatial resolution to date allows study of distinctly turbulent con-
vection, revealing that coherent downflow structures associated with giant cells continue to play a significant role in
maintaining the differential rotation that is achieved. These giant cells at lower latitudes exhibit prograde propa-
gation relative to the mean zonal flow, or differential rotation, that they establish, and retrograde propagation of
more isotropic structures with vortical character at mid and high latitudes. The interstices of the downflow networks often
possess strong and compact cyclonic flows. The evolving giant-cell downflow systems can be partly masked by the
intense smaller scales of convection driven closer to the surface, yet they are likely to be detectable with the helioseismic
probing that is now becoming available. Indeed, the meandering streams and varying cellular subsurface flows revealed
by helioseismology must be sampling contributions from the giant cells, yet it is difficult to separate out these signals
from those attributed to the faster horizontal flows of supergranulation. To aid in such detection, we use our simulations
to describe how the properties of giant cells may be expected to vary with depth and how their patterns evolve in time.

Subject headings: convection — Sun: interior — Sun: rotation — turbulence

1. INTRODUCTION

The highly turbulent solar convection zone serves as a labora-
tory to guide our understanding of the complex transport mech-
anisms for heat and angular momentum that exist within rotating
stars. One challenge is to explain the strong differential rotation
that is observed in the Sun and is likely to be also realized in
many other stars. Another concerns the Sun’s evolving magne-
tism with its cyclic behavior, which must arise from dynamo
processes operating deep within its interior. Both encourage the
development of theoretical models capable of studying the cou-
pling of convection, magnetism, rotation, and shear under non-
linear conditions. We have approached these challenges by turning
to numerical simulations of turbulent convection enabled by rapid
advances in supercomputing and to helioseismology that provides
an observational perspective of the interior dynamics. We report
here on our three-dimensional simulations of compressible con-
vection carried out in rotating spherical shells that capture many
of the attributes of the solar convection zone. The evolving solu-
tions discussed here are obtained from the most turbulent high-
resolution simulations conducted so far on massively parallel
machines. Such modeling permits us to assess, with hopefully
increasing fidelity, the likely properties of large-scale convection
expected to be present over a wide range of depths within the
solar interior. In this paper we will describe and analyze the fea-
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tures of such giant-cell convection, and in a subsequent paper
assess how signatures of these flows may be searched for using
helioseismic probing.

Helioseismology has shown that a broad variety of solar sub-
surface flows are detectable in the upper reaches of the solar
convection zone. These range from evolving meridional circu-
lations, to propagating bands of zonal flow speedup, to varying
cellular flows and meandering streams involving a wide range of
horizontal scales (Haber et al. 2002, 2004; Zhao & Kosovichev
2004; Hindman et al. 2004, 2006; Komm et al. 2004, 2005,
2007; Gonzalez-Hernandez et al. 2006). Such detailed probing
of flows, loosely designated as solar subsurface weather (SSW),
has become feasible through recent advances in local-domain
helioseismology that complement earlier studies of large-scale
dynamics, such as inferences of the differential rotation, using
global oscillation modes (e.g., Thompson et al. 2003). In local
helioseismology, the acoustic oscillations of the interior being
sampled by high-resolution Doppler imaging of the solar sur-
face can be analyzed over many localized domains to deduce the
underlying flow fields, variously using ring-diagram, time-distance,
and holographic techniques (e.g., Gizon & Birch 2005).

The horizontal resolution in such helioseismic flow probing,
using for instance inversions of acoustic wave frequency split-
tings measured by ring analyses, can be of order 1° in sampling
the upper few Mm just below the surface, and increases with
depth, becoming of order 4° at a depth of about 10 Mm. This sug-
gests that one can search for explicit signatures of the largest
scales of solar convection, or giant cells, which are a prominent
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feature in deep-shell simulations of convection zone dynamics
(e.g., Miesch et al. 2000; Brun & Toomre 2002; Brun et al. 2004)
but which are not readily evident as patterns in surface Doppler
measurements. The presence of the fast and evolving flows of
granulation and supergranulation, with combined rms horizon-
tal flow amplitudes of order 500 m s~!, may serve to mask the
anticipated weaker flows of giant cells. The helioseismic sam-
pling at depths of a few Mm or greater, where the granular signal
is likely to be sharply diminished and the supergranular one be-
ginning to decrease, may thus afford unique ways to search for
the largest scales of solar convection.

We here use our highest resolution, and thus most turbulent,
spherical shell simulations of solar convection to assess the pos-
sible character of the giant cells. We recognize that our solutions
are at best a highly simplified view of the dynamics proceeding
deep within the Sun. The real Sun may well possess more com-
plex flows, or possibly even greater order in the form of coherent
structures, since turbulence constrained by rotation, sphericity,
and stratification can exhibit surprising behavior (e.g., Toomre
2002). Further, our simulations here cannot yet deal explicitly
with either the near-surface shear layer nor with the tachocline,
concentrating instead on the bulk of the convection zone. How-
ever, we believe it prudent to use these models to provide some
guidance and perspective for what may be sought with local
helioseismic probing as the search for solar giant cells contin-
ues. The flows of SSW likely contain some signals from giant-
cell convection over a range of depths (e.g., Haber et al. 2002;
Hindman et al. 2004), as do power spectra of surface Doppler
measurements (e.g., Hathaway et al. 2000). In § 3 we discuss the
nature of the convective structures realized in our simulations, in
§ 4 analyze the differential rotation and meridional circulations
that are established, in § 5 show how the coherent downflow
structures of the giant cells can be identified and tracked with
time, and in §§ 67 consider the flow statistics and spectra of our
global-scale convection. In a subsequent paper we shall concen-
trate on discussions of what may be required to try to resolve and
possibly track the evolution of giant cells by helioseismic means.

2. MODEL DESCRIPTION
2.1. The ASH Code

The anelastic spherical harmonic (ASH) code solves the three-
dimensional equations of fluid motion in a rotating spherical
shell under the anelastic approximation. Details on the numer-
ical method can be found in Clune et al. (1999) and Brun et al.
(2004), and a discussion of the anelastic approximation can be
found in Gough (1969), Glatzmaier & Gilman (1981a), Lantz
& Fan (1999), and Miesch (2005). What follows is a brief sum-
mary of the physical model and computational algorithm.

The anelastic equations expressing conservation of mass, mo-
mentum, and energy are given by

V- (pv) =0, (1)
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These equations are expressed in a spherical polar coordinate
system rotating with an angular velocity of 2., with radius 7,
colatitude 6, and longitude ¢. The corresponding unit vectors
are F, 0, and ¢, and the velocity components are given by v =
v + v90 + vy . The density p, pressure P, temperature 7, and
specific entropy S are perturbations relative to a spherically sym-
metric reference state represented by 5, P, T, and S. This reference
state evolves in time, being periodically updated by the spheri-
cally symmetric component of the perturbations. Since convec-
tive motions contribute to the force balance, the final term on the
right-hand side of equation (2) is generally nonzero. The gravita-
tional acceleration g and the radiative diffusivity &, are indepen-
dent of time but vary with radius.

The components of the viscous stress tensor D are given by

1
and the viscous heating term is given by

® = 2pv {e,-jel-j ~ % (V- v)z} : (5)

In these expressions e;; is the strain rate tensor and ¢y is the
Kronecker delta. Summation over i and j is implied in equa-
tion (5). The kinematic viscosity v and the thermal diffusivity
represent transport by unresolved, subgrid-scale (SGS) motions.
In this paper they are assumed to be constant in space and time in
order to minimize diffusion in the upper convection zone, which
is of most interest from the perspective of helioseismology. The
thermal diffusion operating on the reference entropy gradient,
with diffusivity s, is treated separately, its main function being
to transport heat through the outer surface, where the convective
and radiative heat fluxes are negligible (see Fig. 3). The radial
profile of k¢ is chosen to minimize the width of the thermal
boundary layer such that convective heat transport dominates
through most of the convection zone.

The vertical vorticity ¢ and the horizontal divergence A are
defined as

(= (Vxv)-F (©)
A=V- (vﬁé + vo(?)). (7)

Equations (1)—(5) are solved using a pseudospectral method
with spherical harmonic and Chebyshev basis functions. A
second-order Adams-Bashforth/Crank-Nicolson technique is used
to advance the solution in time, and the mass flux is expressed in
terms of poloidal and toroidal streamfunctions such that equa-
tion (1) is satisfied at all times. The ASH code is written in
FORTRAN 90 using the MPI (message passing interface) library
and is optimized for efficient performance on scalably parallel
computing platforms.

2.2. Simulation Summary

In previous papers based on ASH simulations we have inves-
tigated parameter sensitivities, convective structure and transport,
the maintenance of differential rotation and meridional circula-
tion, and hydromagnetic dynamo processes (Miesch et al. 2000,
2006; Elliott et al. 2000; Brun & Toomre 2002; Brun et al. 2004;
Browning et al. 2006). In this paper we focus on a single, repre-
sentative high-resolution simulation and discuss aspects of the
flow field that can potentially be probed by helioseismology.
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The simulation domain extends from the base of the convec-
tionzoner; = 0.71 tor, = 0.98 R, where R is the solar radius.
Thus, the upper boundary is about 14 Mm below the photosphere.
Beyond » = 0.98 R, the anelastic approximation begins to break
down and ionization effects become important. The small-scale
convection that ensues (granulation) cannot currently be resolved
by any global model. We assume that the boundaries are imper-
meable and free of tangential stresses.

At the lower boundary we impose a latitudinal entropy gradient
as discussed by Miesch et al. (2006). This is intended to model the
thermal coupling between the convection zone and the radiative
interior through the tachocline. If the tachocline is in thermal wind
balance, as suggested by many theoretical and numerical models,
then the rotational shear inferred from helioseismology implies a
relative latitudinal entropy variation S/Cp ~ 4 x 10~°, where Cp =
3.5x10% erg g=! K~! is the specific heat at constant pressure.
This corresponds to a temperature variation of about 10 K, mono-
tonically increasing from equator to pole. We implement this by
setting

N
(—):a2Y20+a4Y40 (8)
Cp

at 7 = ry, where Y;" is the spherical harmonic of degree £ and
order m. Here we take ay = 2.7 x 10 % and ay = —6.04 x 1077
For further details see Miesch et al. (2006). For the upper
thermal boundary condition we impose a constant heat flux by
fixing the radial entropy gradient.

The imposed entropy variation, equation (8), has little effect
on the energy flux through the layer, which at the lower boundary
is dominated by the radiative heat flux F, = x,pCpO(T + T)/Or
(see Fig. 3 below). The latitudinal temperature variation of 10 K
is more than 5 orders of magnitude smaller than the background
temperature 7, which is 2.2 x 10 K at the base of the convection
zone. Thus, the flux through the lower boundary remains very
nearly independent of latitude, and its integrated value is equal
to the solar luminosity. This same luminosity is imposed at the
upper boundary by means of the fixed radial entropy gradient
and the modeled subgrid-scale flux F,, = ropT 0S/0r. A relative
thermal variation of 10~ is consistent with upper limits obtained
from helioseismic structure inversions (e.g., Christensen-Dalsgaard
2002).

Solar values are used for the luminosity L, = 3.846 x 103 erg s~
and the rotation rate 2, = 2.6 x 10 rad s~ !. The reference state,
the gravitational acceleration g, and the radiative diffusion «, are
based on a one-dimensional (1D) solar structure model as described
by Christensen-Dalsgaard et al. (1996). The density contrast across
the convection zone p(r})/p(r,) = 132, which is more than 3 times
higher than any previous simulation of global-scale solar convec-
tion. This large density contrast plays an important role in many
aspects of the flow field, including the scale of the downflow
network near the surface and the asymmetry between upflows and
downflows. Previous simulations did not have sufficient spatial
resolution to capture such dynamics.

The spatial resolution N, = 257, Ny = 1024, and N, = 2048
is higher than in any previously published simulation of global-
scale solar convection. In our triangular truncation of the spherical
harmonic series representation, this corresponds to a maximum
degree of /,,x = 682. High resolution has enabled us to achieve
turbulent parameter regimes that were inaccessible in previ-
ous simulations. We set v = 1.2 x10'2 cm? s~! and x = 4.8 x
10'2 cm? s~! throughout the computational domain, yielding a
Prandtl number Pr = v/k = 0.25. The velocity amplitude varies
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from about 250 m s~ ! near the top of the shell to about 50 m s~!
near the bottom (Fig. 15a). If we take the length scale to be the
depth of the convection zone, D = 187 Mm, then the Reynolds
number near the top of the shell is Re = UD/v ~ 400. The
Rossby number, Ro = U/(22,D), varies from 0.26 near the top
of the convection zone to 0.05 near the bottom, indicating a strong
rotational influence on the convective motions. However, the
Rossby number based on the standard deviation of the vertical
vorticity near the top of the convection zone, o =2 x 1072, is
much larger; Ro = 0,/2€), ~ 4. Thus, the small-scale, intermit-
tent downflows where most of the vorticity is concentrated are
less influenced by rotation.

The simulation was started from static initial conditions and
was evolved for 100 days with a four-fold longitudinal symmetry
in order to mitigate the computational expense. After 73 days of
further evolution in the full spherical geometry, a solar-like dif-
ferential rotation was introduced in order to further accelerate the
simulation’s approach to equilibrium. Soon afterward, the ther-
mal diffusivity «¢ was adjusted slightly to yield the proper flux
through the outer surface. The simulation has been evolved for
more than 560 days (27 rotation periods) with no further changes.
The results presented in this paper were sampled toward the end
of this simulation interval.

The structure of the convection responds rapidly to changes
in parameter values or boundary conditions. Coherent structures
and statistical measures such as those discussed in §§ 3, 5, 6, and
7 equilibrate after several convective turnover times (~20 days).
However, the mean flows presented in § 4 are established on
much longer timescales and may still be evolving slowly. In
particular, the differential rotation profile has changed signif-
icantly since the solar-like profile was imposed, losing more
than two-thirds of its initial kinetic energy (the convection and
meridional circulation kinetic energies have remained steady
over this time period). Although it appears to have leveled off
over the last 100 days of the simulation, we cannot rule out longer
term changes. For example, subtle changes may occur over the
thermal diffusion timescale, which is of order 1000 days. How-
ever, it is encouraging that the fluxes of angular momentum and
energy have very nearly equilibrated (see Figs. 3 and 7 below),
suggesting that such longer term evolution may be minimal.

3. OVERVIEW OF CONVECTIVE STRUCTURE

Figure 1 is a representative example of the convective pat-
terns achieved in the upper portion of the convection zone. Near
the top of our computational domain at » = 0.98 R, the struc-
ture of the convection resembles solar granulation but on a much
larger scale; an interconnected network of strong downflow lanes
surrounds a disconnected distribution of broader, weaker upflows.
The dramatic asymmetry between upflows and downflows can be
attributed primarily to the density stratification and is a charac-
teristic feature of compressible convection (Stein & Nordlund
1989, 1998; Cattaneo et al. 1991; Brummell et al. 1996; Porter &
Woodward 2000).

By » = 0.95 R the downflow network begins to fragment,
but isolated, intermittent downflow lanes and plumes remain.
At low latitudes many of the strongest downflow lanes have a
north-south orientation. These north-south (NS) downflow lanes
represent the dominant coherent structures in the flow at low lat-
itudes, and we discuss them repeatedly throughout this paper.
They can be identified within the intricate downflow network
near the surface, but they are more prominent deeper in the con-
vection zone.

The downflow network near the surface evolves rapidly, with
a correlation time of several days (§ 5). Convection cells interact
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Fic. 1.—Snapshots of the radial velocity v, at (@) = 0.98 R, and (b) r = 0.95 R.,,. Bright and dark tones indicate upflow and downflow, respectively, as indicated by
the color bar. The horizontal surfaces are displayed in a Molleweide projection that includes all 360° of longitude and in which lines of constant latitude are horizontal.
Dashed lines indicate latitudes of 0°, £30°, and 60° and longitudes of 0° and +90°.

with one another and are advected, distorted, and fragmented by
the rotational shear. At mid- and high latitudes, downflows posses
intense radial vorticity as demonstrated in Figures 2a and 2b. The
sense of this vorticity is generally cyclonic, implying a counter-
clockwise circulation in the northern hemisphere and a clockwise
circulation in the southern hemisphere (more generally, the vor-
ticity vector is referred to as cyclonic if it has a component parallel
to the rotation vector and anticyclonic if antiparallel). The vor-
ticity peaks at the interstices of the downflow network in localized
vortex tubes, which we refer to as high-latitude cyclones. Vortex
sheets also occur in more extended downflow lanes.

The cyclonic vorticity in downflow lanes arises from Coriolis
forces acting on horizontally converging flows. Near the top of
the convection zone there is a strong correlation between vertical
velocity and horizontal divergence as demonstrated in Figures 2a
and 2c¢. This is as expected from mass conservation; as upflows
approach the impenetrable boundary they diverge due to the den-
sity stratification and eventually overturn, with regions of hori-
zontal convergence feeding mass into the downflow lanes. Fluid
parcels tend to conserve their angular momentum, giving rise to
weak anticyclonic vorticity in diverging upflows and stronger

cyclonic vorticity in narrower downflow lanes. Thus, the kinetic
helicity of the flow, defined as the scalar product of the vorticity
and the velocity, is negative throughout most of the convection
zone, changing sign only near the base, where downflows diverge
horizontally upon encountering the lower boundary (Miesch et al.
2000; Brun et al. 2004).

The thermal nature of the convection is evident in Figures 2a
and 2d; upflows are generally warm and downflows cool. The
more diffuse appearance of the temperature structure relative to
the vertical velocity structure may be attributed to the low Prandtl
number Pr = 0.25. The most extreme temperature variations
are cool spots associated with the high-latitude cyclones. Global-
scale temperature variations are also evident in Figure 2d; in
particular the poles are on average 6—8 K warmer than the equa-
tor. This is associated with thermal wind balance of the differen-
tial rotation as discussed in § 4.

The correlation between temperature and vertical velocity
gives rise to an outward enthalpy flux F,, which dominates the
other flux components throughout most of the convection zone
as illustrated in Figure 3. Its integrated luminosity exceeds the
solar luminosity L, by as much as 70% at » = 0.92 R, This is
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FiG. 2.—Snapshot of convective patterns near the surface. The four columns illustrate (@) radial velocity v,, (b) radial vorticity ¢, (¢) horizontal divergence A, and
(d) temperature 7. The orthographic projections in the top row correspond to » = 0.98 R, and the north pole is tilted 35° toward the observer. The three rows below
show a45° x 45° patch in latitude (10°-55°) and longitude at » = 0.98, 0.95, and 0.92 R... Color tables for each column are indicated below the 0.98 R, patch, but scaling
varies with depth. The scales indicated on the color bar correspond to the 0.98 R, projections (upper two rows), while the scales used for the deeper layers are indicated
below each image.
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Fic. 3.—Radial energy flux as a function of radius, integrated over horizontal
surfaces and averaged over time (62 days). Components include F, (solid line),
F, (dashed line), Fy (dot-dashed line), and F, (dot-dot-dashed line), all nor-
malized by the solar flux F, = L./(47r?). The sum of these four components is
shown as a thick solid line. Vertical dotted lines indicate the radial levels illus-
trated in Fig. 2.

a consequence of the pronounced asymmetry between upflows
and downflows and has also been found in Cartesian simula-
tions of compressible convection (Chan & Sofia 1989; Cattaneo
et al. 1991; Stein & Nordlund 1998). Strong downflows gives
rise to a large inward kinetic energy flux Fy, (ocv?w,), which must
be compensated for by an enhanced outward enthalpy flux. This
has important consequences for 1D solar structure models based
on mixing-length theory, which often neglect F}, and thus as-
sume that the integrated convective enthalpy flux in the convec-
tion zone is equal to L,. More sophisticated models are needed
that do take into account negative F, and enhanced F, (e.g., Lydon
et al. 1992).

Near the boundaries both F, and F}, drop to zero due to the
impenetrable boundary conditions. Flux is carried through the
boundaries by radiative diffusion F, and subgrid-scale (SGS)
thermal diffusion F,, the latter of which is proportional to the
radial entropy gradient 9S/0r. Viscous heat transport is negligi-
ble and is therefore omitted from Figure 3. Complete expressions
for F,, Fy, F,, and F,, are given in Brun et al. (2004).

The variation of convective structure with depth throughout
the entire convection zone is illustrated in Figure 4. As noted
with regard to Figure 1, the downflow network near the surface
loses its connectivity deeper down but isolated downflow lanes
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and plumes persist. The strongest lanes and plumes remain coher-
ent across the entire convection zone, spanning approximately
190 Mm and 4.9 density scale heights. The low-latitude NS
downflow lanes identified in Figure 1 are most prominent in the
mid-convection zone; near the surface they merge with the more
homogeneous downflow network, and near the base of the con-
vection zone they fragment into more isolated plumes. By contrast,
the high-latitude cyclones identified in Figure 2 are largely con-
fined to the upper convection zone.

As in many turbulent flows, the enstrophy (the square of the
vorticity vector) provides a useful means to probe coherent struc-
tures within the flow. Figure 5 illustrates the enstrophy in a square
patch in the upper- and mid-convection zone. Near the surface,
the high-latitude cyclones dominate the enstrophy, and the vor-
ticity is predominantly radial (Fig. 5a). The high spatial inter-
mittency of these vortex structures produces some Gibbs ringing
in the enstrophy field, but this becomes negligible deeper in the
convection zone. The enstrophy in the mid-convection zone is
dominated by vortex sheets associated with turbulent entrainment
that line the periphery of downflow lanes and plumes (Fig. 5b).
Such horizontal entrainment vorticies also line the downflow net-
work atr = 0.98 R, but they are generally weaker than the ver-
tically aligned cyclones (Fig. 5a).

4. DIFFERENTIAL ROTATION
AND MERIDIONAL CIRCULATION

A primary motivation behind simulations of global-scale con-
vection in the solar envelope is to provide further insight into the
maintenance of differential rotation and meridional circulation.
These axisymmetric flow components play an essential role in
all solar dynamo models and have been probed extensively by
helioseismology and surface measurements. Although the focus
of'this paper is on the structure and evolution of global-scale con-
vective patterns, it is important to briefly describe the nature of
the mean flows produced and maintained in our simulation. How-
ever, these results should be interpreted with some care, since the
differential rotation and meridional circulation may just be ap-
proaching equilibrium (see § 2.2).

The differential rotation may be expressed in terms of the mean
angular velocity Q = Q, + (v4)/(r sin 6), and the meridional cir-
culation may be described by a mass flux streamfunction ¥ de-
fined such that

B S N G
p<1}r> _rz sin @ %a and p<09> - a.

©)

rsinf or

Angular brackets () denote an average over longitude. Equa-
tion (9) applies when the divergence of the mass flux vanishes

Fic. 4—Radial velocity v, at four horizontal levels (a) 0.98 R, (b) 0.92 R, (c) 0.85 R, and (d) 0.71 R, The color table is as in Fig. 1, with the range indicated in
each frame. Each image is an orthographic projection with the north pole tilted 35° toward the line of sight. The dotted line indicates the solar radius » = Ry,
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Fi6. 5.—Enstrophy (w?, where w = V x v) shown for a 45° x 45° patch in lat-
itude (10°-55°) and longitude at (a) » = 0.98 R, and (b) r = 0.85 R, The color
table is as in Fig. 1 but here scaled logarithmically. Ranges shown are () 10~'? to
1077572 and (b) 10~ to 1078 572,
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as required by the anelastic approximation. Time averages of
) and ¥ are shown in Figure 6.

The angular velocity profile is similar to the solar internal ro-
tation profile inferred from helioseismic measurements (Thompson
et al. 2003), although the variation is smaller, and there is some-
what more radial shear within the convection zone. The mean
angular velocity decreases by about 50 nHz (11%) from the equa-
tor to latitudes of 60°, compared to about 90 nHz in the Sun.
This difference may arise from viscous diffusion, which, although
lower than in previous models, is still higher than in the Sun,
or from thermal and mechanical coupling to the tachocline that
is only crudely incorporated into this model through our lower
boundary conditions (Miesch et al. 2006). For example, perhaps
the tachocline is thinner, and the associated entropy variation
correspondingly larger, than what we have imposed (§ 2). More
laminar models have more viscous diffusion, but they also have
larger Reynolds stresses, so many are able to maintain a stronger
differential rotation, some with conical angular velocity contours
as in the Sun (Elliott et al. 2000; Robinson & Chan 2001; Brun &
Toomre 2002; Miesch et al. 2006). A more complete understand-
ing of how the highly turbulent solar convection zone maintains
such a large angular velocity contrast requires further study.

At latitudes above 30° the angular velocity increases by about
4-8 nHz (1%-2%) just below the outer boundary (»r = 0.95—
0.98 R). This is reminiscent of the subsurface shear layer in-
ferred from helioseismology, but its sense is opposite; in the
Sun the angular velocity gradient is negative from » = 0.95 R,
to the photosphere (Thompson et al. 2003). This discrepancy
likely arises from our impenetrable, stress-free, constant-flux
boundary conditions at the outer surface of our computational
domain, » = 0.98 R.. In the Sun, giant-cell convection must
couple in some way to the supergranulation and granulation
that dominates in the near-surface layers. Such motions cannot
presently be resolved in a global three-dimensional simulation
and involve physical processes such as radiative transfer and
ionization, which lie beyond the scope of our model.

The meridional circulation is dominated by a single cell in
each hemisphere, with poleward flow in the upper convection
zone and equatorward flow in the lower convection zone (Fig. 6¢).
At a latitude of 30°, the transition between poleward and equa-
torward flows occurs at » ~ 0.84-0.85 R.,. These cells extend

Temperature
perturbation
K

Fic. 6.—Differential rotation, meridional circulation, and mean temperature perturbation averaged over longitude and time (58 days). Angular velocity shown as
(a) a 2D image and (b) a function of radius for selected latitudes as indicated. Contour levels in (@) are every 10 nHz, and the rotation rate of the coordinate system
(414 nHz) is indicated on the color bar (black line). Contours of the streamfunction VU in (c) represent streamlines of the mass flux with red (black contours) and blue
(gray contours) representing clockwise and counterclockwise circulation, respectively. The color table saturates at ¥ = 1.2 x 10?2 g s~!. Characteristic amplitudes
for (vg) are 20 m s~ (poleward) at » = 0.95 R and 5 m s~! (equatorward) at » = 0.75 R, Contour levels for the temperature perturbation (d) are every 1 K.
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from the equator to latitudes of about 60°. The sense (poleward)
and amplitude (1520 m s~ ') of the flow in the upper convection
zone is comparable to meridional flow speeds inferred from local
helioseismology and surface measurements (Komm et al. 1993;
Hathaway 1996; Braun & Fan 1998; Haber et al. 2002; Zhao &
Kosovichev 2004; Gonzalez-Hernandez et al. 2006). The equa-
torward flow in the lower convection zone peaks at  ~ 0.75 R,
with an amplitude of 5-10 m s~

Near the upper and lower boundaries there are thin counter
cells where the latitudinal velocity (vy) reverses. The presence of
these cells is likely sensitive to the boundary conditions and must
therefore be interpreted with care. Global-scale convection in the
Sun couples to the underlying radiative interior via the tacholine
and to the overlying photospheric convection (granulation, super-
granulation) in complex ways that are not yet well understood.
The sense and amplitude of the meridional circulation are cou-
pled to the differential rotation by the requirement that the time-
averaged angular momentum transport by advection balance that
due to Reynolds stresses. The weak counter cell near the upper
boundary (where the flow is equatorward) is thus related to the
positive radial angular velocity gradient at high latitudes seen in
Figure 6b and may arise from a misrepresentation of the Reynolds
stresses at the boundary. Likewise, the counter cell near the lower
boundary may be sensitive to the absence of a tachocline and
overshoot region. Previous simulations that include convec-
tive penetration tend to exhibit equatorward meridional circu-
lations throughout the lower convection zone and overshoot
region (Miesch et al. 2000). Further work is needed to clarify the
complex dynamics at the top and the bottom of the solar convec-
tion zone, and what effect it has on mean flow patterns.

Figure 7 illustrates angular momentum transport in our sim-
ulation including contributions from Reynolds stresses (RS),
meridional circulation (MC), and viscous diffusion (VD). These
corresponding fluxes are defined as (Elliott et al. 2000; Brun &
Toomre 2002; Brun et al. 2004; Miesch 2005)

FRS = Zrsin 9((0;1):/))?‘ + <vgv;>é), (10)
FMC = 5L ((0,)F + (v)0), (11)
FYP = —pur? sin?6V9Q, (12)
where
L =rsing(Qrsinb + (vy)) (13)

is the specific angular momentum and primes indicate that the
longitudinal mean has been removed, e.g., v, = v, — (v,).

The total angular momentum flux through perpendicular sur-
faces is obtained by integrating the various components as follows:

I(r) = / Fi(r,0)r? sin 0 d, (14)
0

r

1)) = / F(r,0)rsin 0 dr, (15)
r

where i corresponds to RS, MC, or VD. Figure 7 shows time av-

erages of these integrated fluxes.

The prograde differential rotation at the equator is maintained
primarily by equatorward angular momentum transport induced
by Reynolds stresses (Fig. 7b). This transport is dominated by
the NS downflow lanes discussed in § 3, which represent the
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FiG. 7.—(a) Radial and (b) latitudinal transport of angular momentum as
expressed in egs. (10)—(15), averaged over a time interval of 112 days (four rota-
tion periods). Shown are contributions due to Reynolds stresses (RS, solid lines),
meridional circulation (MC, dashed lines), and viscous diffusion (VD, dotted
lines). Zero is indicated by the dash-dotted line.

principal coherent structures at low latitudes (persistent over
relatively long times and large horizontal and vertical scales).
Coriolis-induced tilts in the horizontally converging flows that
feed these downflow lanes give rise to Reynolds stresses that
transport angular momentum toward the equator (see Miesch
2005; Fig. 15).

Reynolds stresses also transport angular momentum inward
throughout most of the convection zone (Fig. 7a). This is a sig-
nificant departure from previous simulations of global-scale solar
convection, which have exhibited an outward transport of angu-
lar momentum by Reynolds stresses (Brun & Toomre 2002; Brun
et al. 2004). Inward angular momentum transport by convection
is a common feature of many mean-field models, in which it is
typically parameterized by means of the so-called A effect (e.g.,
Kitchatinov & Riidiger 1993, 2005; Canuto et al. 1994; Riidiger
etal. 2005). However, in some models this inward transport arises
from a velocity anisotropy such that the standard deviation of v,
exceeds that of v, (e.g., Riidiger et al. 2005). Such is not the case
in our simulation, where the three velocity components are com-
parable in amplitude through most of the convection zone (see
Fig. 15a). The reversal in F RS and F" M€ near the boundaries is as-
sociated with the counter cells in the meridional circulation seen
in Figure 6¢.

Advection of angular momentum by the meridional circula-
tion gives rise to poleward and outward transport, nearly bal-
ancing the Reynolds stresses, while the transport due to viscous



No. 1, 2008

STRUCTURE AND EVOLUTION OF GIANT CELLS 565

Fic. 8.—Instantaneous snapshots of the meridional circulation streamlines at five times separated by an interval of 28 days, spanning the same interval as the time
average in Fig. 6. Color tables and contours are as in Fig. 6¢, but the normalization for W is 3 times larger, £3 x 10?2 g s~!. Peak amplitudes for vy reach 60 m s~ near the

top of the convection zone.

diffusion is relatively small. This approximate balance between
Reynolds stresses and meridional circulation with regard to an-
gular momentum transport is that which is expected to exist in
the convection zone of the Sun and in other stars where Lorentz
forces and viscous diffusion are negligible (Tassoul 1978; Zahn
1992; Elliott et al. 2000; Rempel 2005; Miesch 2005). The curves
shown in Figure 7 do not sum precisely to zero, indicating that
there is some evolution of the rotation profile over timescales that
are longer than the 112-day averaging interval.

The delicate balance between FR° and FMC plays an essen-
tial role in determining what meridional circulation patterns are
achieved. In previous global simulations, viscous angular mo-
mentum transport was significant, and this balance was disrupted.
Circulation patterns were generally multicelled in latitude and
radius (Miesch et al. 2000; Elliott et al. 2000; Brun & Toomre
2002; Brun et al. 2004). By contrast, the circulation patterns
shown in Figure 65 are dominated by a single cell in each
hemisphere.

Not only is the viscosity lower than in most previous simu-
lations, but this is the first global simulation to extend from the
base of the convection zone to » = 0.98 R, spanning a factor of
more than 130 in density (§ 2.2). Furthermore, we have incorpo-
rated some aspects of the coupling between the tachocline and
the convective envelope into our model by applying a weak lat-
itudinal entropy variation at the bottom boundary (§ 2.2). As
discussed by Miesch et al. (2006), this entropy variation is trans-
mitted throughout the domain by the convective heat flux and the
resulting baroclinicity promotes conical angular velocity profiles,
which satisfy thermal wind balance. Such profiles minimize dif-
fusive angular momentum transport in radius.

Baroclinicity is also produced by latitudinal variations in the
convective heat flux, which tend to establish warm poles even in
the absence of boundary forcing. Whatever their origin, latitudi-
nal entropy gradients likely play an important role in establishing
the noncylindrical rotation profile of the solar envelope via ther-
mal wind balance. This conclusion has been reached based on
convection simulations, as well as mean-field models (Kitchatinov
& Riidiger 1995; Durney 1999; Robinson & Chan 2001; Brun &
Toomre 2002; Rempel 2005; Miesch et al. 2006). However, the
solar rotation profile cannot be attributed solely to baroclinicity,
since induced circulations would tend to conserve angular mo-
mentum, spinning up the poles relative to the equator. Angular
momentum transport by Reynolds stresses produces prograde ro-
tation at the equator (Fig. 7), while baroclinicity alters the orien-
tation of the angular velocity contours.

The temperature variations associated with thermal wind bal-
ance are evident in Figure 6d. The poles are about 6—8 K warmer
than the equator on average. The background temperature varies
from 2.2 x 10° K at the base of the convection zone to 8.4 x 10* K
at the outer boundary, so the relative latitudinal variations are
small, 3x107% to 1074,

The differential rotation profile is steady in time; instantaneous
snapshots appear similar to Figure 6a, but with more small-scale
structure and somewhat more asymmetry about the equator. For
illustration, the amplitude of the temporal variations sampled at a
latitude of 30° relative to a two-month mean is 10 nHz toward
the top of the convection zone (~2%), decreasing to =5 nHz
toward the base. Angular velocity variations are larger at high
latitudes, where the moment arm (r sin €) approaches zero. The
amplitude and nature of these variations are comparable to solar
rotational variations inferred from helioseismology (Thompson
et al. 2003). However, in addition to more random fluctua-
tions, the solar rotation exhibits periodic torsional oscillations
that are not realized in our simulation. These are associated
with magnetic activity, which lies beyond the scope of our cur-
rent model (e.g., Covas et al. 2000; Spruit 2003; Rempel 2005,
2007).

By contrast, fluctuations in the meridional circulation are large
relative to the temporal mean, changing substantially over the
course of one rotation period as illustrated in Figure 8. Variations
in the axisymmetric latitudinal velocity (vg) at a latitude of 30°
reach 60 m s~ at the top of the convection zone and 10 m s~
near the base, as much as 300% of the two-month mean. Instan-
taneous circulation patterns are in general multicelled in latitude
and radius and asymmetric about the equator. Some asymmetry
persists even in two-month averages (Fig. 6¢). Large relative
variations in the meridional circulation are expected because it is
weak relative to the other flow components, so it is easily altered
by fluctuating Reynolds stresses and Coriolis forces. The volume-
integrated kinetic energy contained in the meridional circulation is
approximately an order of magnitude smaller than in the differ-
ential rotation and approximately 2 orders of magnitude smaller
than in the convection.

Determinations of the solar meridional circulation from sur-
face measurements and helioseismic inversions are generally
averaged over at least one rotation period (Komm et al. 1993;
Hathaway 1996; Braun & Fan 1998; Haber et al. 2002, 2004;
Zhao & Kosovichev 2004; Gonzalez-Hernandez et al. 2006).
The time variations are therefore less than in the snapshots illus-
trated in Figures 8/~8; but consistent with comparable running
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Fic. 9.—Temporal evolution of convective patterns near the equator. Each image shows the radial velocity field at» = 0.98 R, for all 360° of longitude and a latitude
range of 0°~25°. The color table is the same as in Fig. 1a. Snapshots at different times are stacked vertically, with time increasing upward. The interval between snap-
shots is 2 days. To facilitate comparison, the uppermost image illustrates the convection structure one rotation period (27.4 days at this latitude and radius) prior to the
At = 28 day image immediately below it. The tracking rate is the rotation rate of the coordinate system, 414 nHz, but the white arrow shows a propagation rate of 450 nHz

for reference.

time averages in the simulation. However, as with the angular
velocity, systematic variations in the solar meridional circulation
associated with the magnetic activity cycle are not captured in

this nonmagnetic simulation.

5. IDENTIFICATION AND EVOLUTION
OF COHERENT STRUCTURES

In § 3 we described recurring convective features including
NS downflow lanes found at low latitudes and intermittent, high-
latitude cyclones. In this section we discuss these coherent struc-
tures in more detail and address the lifetime, propagation, and

evolution of convective patterns.

Figure 9 illustrates the evolution of the low-latitude down-
flow network atr = 0.98 R,. Substantial changes are evident even
over the 2 day time interval between adjacent bands. Individual
convection cells typically lose their identity after only a few days,
and none are clearly recognizable after one rotation period. This
has important implications for subsurface weather diagrams in-

ferred from local helioseismology (§ 1); temporal sampling of a
day or less may be necessary to reliably follow the evolution of
flow fields associated with giant convection cells.

Embedded within the more rapidly evolving downflow net-
work are features that persist for a month or more. These are the
NS downflow lanes discussed in § 3, appearing in Figure 9 as
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Fic. 10.—Time evolution of the zonal velocity derivative Jvs/0¢ at r = 0.98 R The layout and time series correspond directly with Fig. 9, with bands spanning
0°-25° in latitude and time increasing upward. The color table saturates at +-200 m s~ !; bright tones denote convergence (Ovy/0¢ > 0) and dark tones denote divergence.

The white arrow corresponds to an angular velocity of 450 nHz as in Fig. 9.

dark vertical stripes although it takes some scrutiny to see them
amid the complex smaller scales. These propagate in an eastward
(prograde) direction relative to the rotating coordinate system as
illustrated by the white arrow.

The presence of NS downflow lanes is more readily appar-
ent when the divergence of the zonal velocity dv,/0¢ is plotted
as in Figure 10. Whereas the horizontal divergence A corre-
sponds closely to the radial velocity patterns shown in Figure 9,
the zonal component alone preferentially selects structures with
a north-south orientation. Thus, the NS downflow lanes are more
prominent, and their prograde propagation and persistence over
timescales of at least a month are evident. The propagation rate
varies as individual lanes continually catch up to others and sub-
sequently merge.

Using Figure 10 as a reference facilitates the detection of
NS downflow lanes within the intricate downflow network of
Figure 9. In other words, it is easier to distinguish the NS down-
flow lanes if one knows where to look. Furthermore, a close com-
parison of Figures 9 and 10 reveals that the horizontal scale of
the convective cells is somewhat smaller in the vicinity of the NS
lanes (see, for example, the downflow lane traced by the arrow).
This is consistent with the more general characteristic of turbulent
compressible convection that downflow lanes tend to be more
turbulent and vortical than the broader, weaker upflows (Brummell
etal. 1996; Brandenburg et al. 1996; Stein & Nordlund 1998; Porter
& Woodward 2000; Miesch 2005; see also Fig. 5). Advection of
smaller-scale convection cells and vortices into extended NS down-
flow lanes is apparent in animations of the radial velocity field.
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Fic. 11.—Temporal evolution of mid-latitude convection patterns. The radial velocity field is shown at » = 0.98 R, over a square 30° x 30° patch in latitude and
longitude, spanning latitudes of 30°~60°. The color table is as in Fig. 1a. The series shown spans one week, with an interval of 1 day between successive images. The patch
is tracked at an angular velocity of 410 nHz. Labels indicate (A) cyclonic vorticies, (B) dynamical buoyancy, (C) fragmentation, (D) collapse of convection cells, and

(E) the persistence of some cells for multiple days.

The longitudinal position of lanes of zonal velocity conver-
gence in the surface layers corresponds closely to the position
of NS downflow lanes in the mid-convection zone, where they
are more prominent in the radial velocity field (Fig. 4). Thus,
searching for lanes of zonal convergence in SSW maps inferred
from local helioseismology might be a promising way to detect
convective structures that extend deep into the convection zone.
However, care must be taken when interpreting such results. Even
if vy were isotropic in latitude and longitude, the 1D derivative
Ovg/O¢p would still exhibit a preferred north-south orientation.
Thus, anisotropy in dv,/0¢ should not be used naively as a cri-
terion for establishing the existence of NS downflow lanes, but
it may be used to track the propagation and evolution of such co-
herent structures if they are indeed present.

The NS downflow lanes are confined to latitudes less than about
30°. At higher latitudes the downflow network is more isotropic
in latitude and longitude and possesses intense cyclonic vorticity
(§ 3). An illustrative example of the evolution of mid-latitude
convective patterns is shown in Figure 11.

As demonstrated in Figures 2 and 5, intense, vertically ori-
ented, cyclonic vortices are prevalent throughout the downflow
network in the upper convection zone. Centrifugal forces can evac-
uate the cores of the most intense vorticies, leading to a reversal
in the buoyancy driving that siphons fluid up from below and cre-
ates a new upflow within the interstices of the downflow network.
This phenomenon has been referred to as “dynamical buoyancy”
and is a characteristic feature of rotating, compressible convection
(Brandenburg et al. 1996; Brummell et al. 1996; Miesch et al.
2000). The result is a helical vortex tube with upflow at its center
and downflow around its periphery. In the vertical velocity (or
the horizontal divergence) field these structures appear as small

convection cells, with a horizontal extent comparable to that of
supergranulation, about 10-30 Mm. Several examples of these
are indicated in Figure 11 (A).

The formation of one of these helical convection cells via
dynamical buoyancy is also indicated in Figure 11 (B). At a
(relative) time of 1 day, a counterclockwise swirl can be seen
near one of the interstices of the downflow network, reflecting
the presence of a vertically oriented vortex tube. Such cyclonic
swirl is evident throughout the downflow network in anima-
tions of the flow field. One day later, a strong downflow plume
develops and Coriolis forces continue to amplify the cyclonic
vorticity. By the next day, centrifugal forces have evacuated the
vortex core and reversed the axial flow. After formation, such
upflows may spread horizontally due to the density stratifica-
tion or they may dissipate through interactions with surrounding
flows.

The horizontal spreading of a new upflow is limited by in-
teractions with adjacent convection cells and by the need to
transport heat outward and ultimately through the boundary, as
discussed by Rast (1995, 2003). As can be seen in Figure 11
(see also Fig. 2a), the strongest upflows occur adjacent to the
downflow lanes. As a convection cell expands horizontally, the
upward flow at the center of the cell drops, leading to a reduc-
tion in the outward enthalpy flux. Cooling of the fluid due to
the upper boundary condition eventually reverses the buoyancy
driving, thus forming a new downflow lane that bisects and
thereby fragments the existing convection cell. This occurs con-
tinually in our simulation as demonstrated in Figure 11 (C). Sim-
ilar dynamics also occur at lower latitudes, as can be seen by
careful scrutiny of Figure 9. Such fragmentation induced by cool-
ing near the upper boundary is the principal factor in determining
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Fic. 12.—The acf is shown as a function of tracking rate €2, and lag 7 for
latitude band 0°-20° at (a) r = 0.98 R, and (b) r = 0.85 R, For each tracking
rate, the acf drops from a value of unity (yellow) to zero (white) with contour

levels spaced at intervals of 0.05. Dotted lines indicate the optimal tracking rate
and the associated correlation time.

the size and lifetime of the cells that make up the downflow
network.

Convection cells may also be squeezed out of existence, or
collapse, via the horizontal spreading of adjacent cells as illus-
trated in Figure 11 (D). Shearing of convection cells by differ-
ential rotation also limits their lifetime and horizontal scale. Such
processes typically occur over the course of several days, but
some convection cells can persist with little distortion for nearly
a week (Fig. 11, E).

A quantitative measure of the lifetime and propagation rate of
convective patterns can be obtained by considering the auto-
correlation function, acf, defined as follows:

aCf(ra Z Qh T) =
512 f()zﬂ- Ur(l", 97 ¢7 t)vr(r, 9, ¢ - QzT, t+ 7') sin 0d0d¢

02 [y 02, 0,6, ) sin0.d0 do ’

(16)

where (), is the tracking rate (expressed as an angular velocity),
7 is the temporal lag, and 6, and 6, specify the desired latitudinal
band (averaged over the northern and southern hemispheres). Re-
sults are illustrated in Figure 12.

The acf is unity at 7 = 0 and drops monotonically with in-
creasing lag. For each value of €); one may define a correlation
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TABLE 1
CoRRELATION TiMES AND OPTIMAL TRACKING RATES

Radius
Parameter (R;)  0°-20°  20°-40°  40°-60°  60°-90°
Q (nHz) .............. 0.98 414-421  421-408  408-375 375-358
0.85 429-415  415-400 400-372  372-358
Q. (nHz)............. 0.98 450 430 380 330
0.85 440 424 400 390
7. (days) ............. 0.98 2.6 2.0 2.0 22
0.85 9.0 8.2 8.0 8.0

time as the time beyond which the acf drops below a fiducial
threshold, here taken to be 0.05. We then define an optimal track-
ing rate (). as that value of );, which maximizes the correlation
time, 7.. Optimal rates and correlation times for various latitude
bands are listed in Table 1. Also listed for comparison is the var-
iation of the mean rotation rate {2 across each latitude band for
the radius and time interval used to compute the acf.

The acfin Figure 12a corresponds to low-latitude convective
patterns near the surface, such as in Figure 9. Here the flow is
dominated by the intricate, continually evolving downflow net-
work, and correlation times are only a few days. The maximum
correlation time of 2.6 days is achieved with a tracking rate
of 450 nHz, which corresponds to the propagation rate of the
NS downflow lanes as indicated by the arrow in Figure 9. These
NS downflow lanes are the longest lived structures within the
downflow network, and they propagate faster than the mean ro-
tation rate of 414—421 nHz (Table 1). Thus, they are propagating
convective modes as opposed to passive features being advected
by the differential rotation.

The NS downflow lanes are more prominent deeper in the con-
vection zone, and this is reflected in the acf of Figure 125. The
acf is more strongly peaked at the optimal tracking rate, and the
associated correlation time is longer, 7. = 9.0 days. At 440 nHz,
), is somewhat less at » = 0.85 R than at» = 0.98 R, but it is
still faster than the local rotation rate (Table 1).

The prograde propagation of NS downflow lanes can be at-
tributed to the approximate local conservation of potential vor-
ticity, and in this sense they may be regarded as thermal Rossby
waves (Busse 1970; Glatzmaier & Gilman 1981b). NS down-
flow lanes are related to banana cells and columnar convective
modes that occur in more laminar, more rapidly rotating, and
more weakly stratified systems and that have been well studied
both analytically and numerically (reviewed by Zhang & Schubert
2000; Busse 2002). In general, their propagation rate depends on
the rotation rate, the stratification, and the geometry of the shell.

At mid-latitudes, the correlation times are somewhat smaller,
and the optimal tracking rates are slower, comparable to the local
rotation rate (Table 1). Near the poles €2 and €2, become less re-
liable because the small momentum arm induces large temporal
variations in angular velocity. Linear theory indicates that polar
convective modes should propagate slowly retrograde (Gilman
1975; Busse & Cuong 1977), but it is uncertain whether such
linear modes persist in this highly nonlinear parameter regime.
Correlation times at high latitudes are comparable to those at
mid-latitudes, about 2 days for the downflow network in the upper-
convection zone and about § days for the larger scale flows in the
mid-convection zone.

We emphasize that statistical measures such as 7. can drasti-
cally underestimate the lifetime of coherent structures within a
turbulent flow such as this. It is evident from Figures 9 and 10 that
some NS downflow lanes persist for weeks and even months.
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Fic. 13.—Power spectra plotted as a function of spherical harmonic degree ¢, summed over all orders m # 0 and averaged over a time interval of 62 days. Solid and
dotted lines sample spherical surfaces » = 0.98 and 0.92 R, respectively. Quantities include (a—c) the velocity components, () the horizontal divergence, (e) the vertical

vorticity, and (/) the temperature fluctuations.

Likewise, some higher latitude convective cells at ¥ = 0.98 R,
can persist for up to a week (e.g., Fig. 11, E).

6. HORIZONTAL SPECTRA AND LENGTH SCALES

In § 3 we discussed the convective patterns realized in our
simulations, and in § 5 we described their temporal evolution.
In this and the following section we consider univariate and
bivariate statistics in order to gain further insight into the nature
of the convective flows. Throughout this analysis we are con-
cerned solely with fluctuating quantities (m > 0), indicated by
primes. The structure and evolution of mean flows is discussed
in § 4. Furthermore, we focus on the upper portion of the con-
vection zone, which is most relevant to local helioseismology.

Figure 13 shows the spherical harmonic spectra of the veloc-
ity and temperature fields at two levels in the upper convection
zone as a function of spherical harmonic degree ¢, which may be
regarded, as the total horizontal wavenumber. At r = 0.98 R,
the radial velocity spectrum (Fig. 13a) increases with ¢ approx-
imately as /3, reaching a maximum at £ ~ 80. Afterward it drops
with a best-fit exponent of n ~ —5, where the power P({) o ¢".
Near the top of the convection zone there is a slight buildup of
power at the highest wavenumbers, which is also seen in other
fields, most notably the vertical vorticity (Fig. 13¢). This can be
attributed to Gibbs ringing associated with localized vortex tubes
and sheets as seen in Figure 5a. Such ringing suggests that we are
pushing the limits of our spatial resolution, but it likely has little
influence on the nature of larger scale flows.

The spherical harmonic degree ¢ = 80 corresponds to a hor-
izontal scale L of 54 Mm, which may be regarded as a charac-
teristic scale of the downflow network illustrated in Figures la
and 4a and in the upper row of Figure 2a. However, a single
characteristic scale is somewhat misleading as the downflow
network exhibits structure on a vast range of scales. A look at
the convective patterns in Figure 11, for example, reveals con-

vection cells 10°-20° (100-200 Mm) across, as well as cyclonic
vortices spanning only a few degrees (10—30 Mm). Meanwhile,
NS downflow lanes can extend to latitudes of +25° or more, span-
ning more than 500 Mm (e.g., Fig. 10).

Deeper in the convection zone, the convective scales are gen-
erally larger. The radial velocity spectrum at » = 0.92 peaks at
{ = 26, corresponding to a horizontal scale of about 150 Mm
(Fig. 13a, dotted line). Furthermore, the high-¢ dropoff in power
is somewhat steeper than at » = 0.98 R, with an exponential
providing a better fit than a polynomial; P(¢) x exp(«?), with
a = —0.015.

The horizontal velocity spectra peak at £ = 10-20 (L ~ 200—
400 Mm) for both radial levels sampled in Figures 135 and 13c.
These scales are larger than for the radial velocity as a conse-
quence of mass conservation. Near the impenetrable boundary,
equation (1) implies v,/6 ~ A, where ¢ is the distance to the
boundary and where we have neglected geometric factors. The
horizontal divergence scales roughly as A ~ fv,/r, where v, is
the horizontal velocity, and ¢/r may be regarded as the total
wavenumber. This then implies that v, ~ (#/8)v.£~'.

Thus, from mass conservation we expect that the horizontal
velocity power spectra should be functionally similar to the power
spectrum of v, but with an extra factor of #~2. This accounts for the
shift of the v and v}, spectra toward lower / seen in Figures 13a
and 135. However, at high ¢, the horizontal velocity spectra are
dominated by nondivergent vortical motions, and their spectra
become even flatter than the radial velocity spectrum rather than
steeper (n =~ —4.6 as opposed to —5). At = 0.92 R, the veloc-
ity field is more isotropic and the v, and v/, spectra, like the v/
spectrum, are best fit by exponentials with @ ~ —0.016.

The correspondence between the radial velocity v, and the
horizontal divergence A near the upper boundary is apparent
when comparing frames a and d of Figure 13. Atr = 0.98 R,
the two spectra are nearly identical when normalized by their
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FiG. 14.—Probability density functions (PDFs) are shown for (a) v}, (b) vj, (c) vy, (d) A, (e) ¢',and (f) T'. The PDFs shown correspond to spherical surfaces at
r = 0.98 R, (solid lines) and r = 0.92 (dotted lines) and are averaged over time (62 days). Moments of the fluctuating velocity PDFs as a function of depth are shown in

Fig. 15.

maximum value. By » = 0.92 differences become significant,
with the A’ spectrum shifted toward higher wavenumber relative
to the v/ spectrum.

The vertical vorticity spectra in Figure 13e peak at an even
higher wavenumber, £ = 140 (L ~ 30 Mm) at7 = 0.98. This re-
flects the presence of the high-latitude cyclones discussed in
(§ 3), which are highly intermittent in space and time. Beyond
this maximum, the ¢’ spectrum decays approximately as £~2.
Deeper in the convection zone at » = 0.92 R, the peak shifts
toward lower wavenumber (¢ ~ 100, L ~ 40 Mm), and the spec-
trum steepens (n ~ —4).

The spectrum of temperature fluctuations is flatter than the ve-
locity field at low £, with a broad maximum at ¢ ~ 16 (260 Mm).
This reflects the low Prandtl number and the large-scale thermal
variations associated with thermal wind balance (§ 4). The slope
at high ¢ is comparable to the velocity field, with n ~ —4.2 at
r=0.98and a ~ —0.019 at» = 0.92 R.

7. PROBABILITY DENSITY FUNCTIONS
AND MOMENTS

More detailed information about the nature of the flow field
may be obtained from probability density functions (PDFs) as
shown in Figure 14. These are normalized histograms on hori-
zontal surfaces, which take into account the spherical geometry.
The shape of a PDF f(x) may be described through its moments
of order n, defined as

T 2w
M= / (o — ()" () dx = % /0 /0 (x — (x))" sin 0 d0 d.
(17)

We then define the standard deviation o, the skewness S, and the
kurtosis K as follows: 0 = (M*)'?, § = M?073, and K =

M*o~*. Results are illustrated in Figure 15 as a function of
radius.

Near the top of the convection zone, the radial velocity PDF
exhibits a bimodal structure, with two distinct maxima at positive
and negative v, (Fig. 14a, solid line). These maxima suggest char-
acteristic velocity scales of ~6 m s~! for upflows and ~30 m s~!
for downflows. However, these values are substantially smaller
than the standard deviation (rms value) of v/, which peaks at
160 m s~ at » = 0.96 R and then drops to zero at the upper
boundary (Fig. 15a).

The larger amplitude of the positive peak reflects the larger
filling factor of upflows relative to downflows. By » = 0.92 R,
the negative peak has largely disappeared, and the negative tail
of the PDF becomes nearly exponential (dotted line). This sig-
nifies turbulent entrainment, whereby much of the momentum
of downflow lanes and plumes is transferred to the surrounding
fluid and dispersed. The asymmetry between narrow, stronger
downflows and broader, weaker upflows is a consequence of the
density stratification (§ 3) and is manifested as a large negative
skewness that persists throughout the convection zone (Fig. 15b).

The kurtosis K is generally regarded as a measure of spatial
intermittency, but large values can also arise from bimodality. A
unimodal Gaussian distribution yields KC = 3, whereas an expo-
nential distribution yields /C = 6. The v, PDF has an even larger
kurtosis ranging from 3 to 12 across the convection zone (Fig. 15¢),
reflecting both intermittency and bimodality.

By comparison, the horizontal velocity PDFs shown in Fig-
ures 14b and 14¢ appear more symmetric with nearly exponen-
tial tails (C = 3-5; Fig. 15¢). The positive skewness of the v(;
PDF is a signature of the NS downflow lanes discussed in §§ 3
and 5. Their north-south orientation and prograde propagation
implies converging zonal flows in which the eastward velocities
on the trailing edge of the lanes are somewhat faster on average
than the westward velocities on the leading edge.
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FiG. 15.—(a) Standard deviation, (b) skewness, and (c) kurtosis of the three velocity components are shown as a function of radius, averaged over a time interval of
62 days. The solid, dotted, and dashed lines represent v/, vy, and v(’p, respectively. Horizontal dashed lines show skewness and kurtosis values for a Gaussian distribution

(S =0, K = 3) for comparison.

Velocity amplitudes increase with radius due to the density strat-
ification, with horizontal velocity scales reaching over 200 ms~!
near the surface (Fig. 15a). In the mid-convection zone the ve-
locity field is nearly isotropic, with a characteristic amplitude of
about 100 m s~! for all three components.

The horizontal divergence PDF shown in Figure 14d is nearly
identical to the v PDF in Figure 14q atr = 0.98, but as with the
spectra in Figure 134, this correspondence breaks down by r =
0.92 R, In the mid-convection zone the A PDF becomes more
symmetric with nearly exponential tails (S = —0.13, £ =9.2
at r = 0.92 R;). Non-Gaussian behavior such that X > 3 for
velocity differences and derivatives is a well-known feature
found in a wide variety of turbulent flows (e.g., Chen et al. 1989;
Castaing et al. 1990; She 1991; Kailasnath et al. 1992; Miesch
et al. 1999; Jung & Swinney 2005; Bruno & Carbone 2005). In
particular, the PDF of velocity differences between two points
separated in space is often modeled using stretched exponentials
f(x) ox exp (—|x|“3 ), where 3 approaches unity for small spa-
tial separations (as sampled by derivatives) and becomes more
Gaussian (3 = 2) as the spatial separation increases.

The vertical vorticity PDFs shown in Figure 14e also exhibit
nearly exponential tails. However, near the surface (r = 0.98 R)
the distribution is bimodal with prominent tails signifying an
abundance of extreme events (C = 180). These tails arise from
the intense, intermittent cyclones that develop at the interstices
of the downflow network at mid- and high latitudes as discussed
in§3. By r = 0.92 R, the bimodality is absent, although the PDF
is still highly intermittent (JC = 25). This is consistent with Fig-
ure 2b, which suggests that the high-latitude cyclones are confined
to the outer few percent of the convection zone (r 2 0.95 R.,).

The signature of high-latitude cyclones is also present in
the PDF of temperature fluctuations as a prominent exponential
tail on the negative side at r = 0.98 R, (Fig. 14f"). As with the
radial velocity PDF, the bimodality disappears by » = 0.92 R,
due to entrainment, and the negative tail becomes unimodal
and exponential. The asymmetric shape of the temperature PDFs
arises from the asymmetric nature of the convection noted in § 3;
cool downflows are generally less space filling and more intense
than warm upflows. The temperature PDFs remain asymmetric
(S < 0) and intermittent (/C > 3) throughout the convection
zone, becoming most extreme near the surface where S = —1.6
and K = 12. The standard deviation of the temperature fluctu-
ations ranges from 0.4 K in the lower convection zone to a max-
imum of 4 K at » = 0.96 R,

Correlations between vertical velocity and temperature fluc-
tuations may be investigated further by means of two-dimensional
(2D) PDFs (histograms) as illustrated in Figure 16 for» = 0.98 R....
Although warmer and cooler temperatures are associated with up-

flows and downflows, respectively, the relationship is not linear.
Upflows exhibit a prominent maximum at »/ ~20 m s~ and
T’ ~ 2 K, whereas downflows are more distributed, both in the
range of velocity amplitudes and in the spread of temperature
variations for a given v... This spread increases somewhat toward
higher latitudes due to the preponderance of intermittent cyclo-
nic plumes, but the average correlation shown in Figure 16/ is
insensitive to latitude. The reversal in the sense of the tempera-
ture variation at high radial velocity amplitudes is due in part to
poor statistics (few events), but it does have physical implica-
tions. As noted in § 3, the strongest upflows occur adjacent to
downflow lanes. Cool regions associated with downflow lanes
tend to be more diffuse than the lanes themselves as a result of
the low Prandtl number (Pr = 0.25). Thus, the fastest upflows
can be relatively cool. Similarly, the fastest downflows occur in
localized regions adjacent to warmer upflows such that the tem-
perature fluctuations are diminished by thermal diffusion.

Correlations between the horizontal velocity components vj,
and v; are of particular interest because these may be compared
with analogous correlations obtained from local helioseismology.
Such correlations not only represent a potential diagnostic for
giant-cell convection, but they also reflect latitudinal angular
momentum transport by Reynolds stresses, which plays an es-
sential role in maintaining the differential rotation profile (§ 4).
However, the 2D PDFs in Figures 16a, 16d, and 16¢g appear
nearly isotropic, implying that the horizontal velocity compo-
nents near the surface (r = 0.98 R) are only weakly correlated.
At high latitudes there is a weak positive correlation signifying
equatorward angular momentum transport, but at mid-latitudes
the sense of the correlation reverses (Fig. 167). At low latitudes
there is no clear systematic behavior, as expected if horizontal
velocity correlations are induced by the vertical component of
the rotation vector.

The lack of prominent horizontal velocity correlations in the
near-surface downflow network may be attributed to the rela-
tively small spatial and temporal scales of the convection. The
effective Rossby number here is greater than for the larger scale
motions deeper in the convection zone, implying weaker rota-
tional influence (§ 2.2). Coriolis-induced correlations are con-
sequently weaker. Since the differential rotation is maintained
primarily by horizontal Reynolds stresses (§ 4), weaker horizontal
velocity correlations help account for the decrease in latitudinal
shear found in our simulation near the outer boundary.

A near-surface shear layer is also found in helioseismic in-
versions, but its structure is quite different than that found in our
simulation (Thompson et al. 2003). The radial angular velocity
gradient appears to be positive at all latitudes, and the latitudinal
shear remains roughly constant across the layer. As discussed in
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§ 4, the rotation profile in the uppermost portion of the convec-
tion zone is likely sensitive to the subtle dynamics of the surface
boundary layer and may require more sophisticated modeling
approaches to capture fully. In any case, if a decrease in horizontal
velocity correlations does indeed occur near the surface of the
Sun as suggested by our simulations, then such correlations would
be difficult to detect in helioseismic inversions.

A more promising diagnostic to search for in SSW maps may
be correlations between horizontal divergence and vertical vor-
ticity. Although there is much scatter, Figures 165, 16¢ and 164
demonstrate a clear correlation between cyclonic vorticity and
horizontal convergence, which becomes more prominent at higher
latitudes. This correlation is a signature of the Coriolis force, as
described in § 3. There is also a correlation between anticyclonic
vorticity and horizontal divergence, but this only occurs for small
values of . The most intense vorticity of both signs occurs in re-
gions of horizontal convergence. This is consistent with the inter-
pretation discussed in § 3 in which downflow lanes are generally
more turbulent than upflows. Vorticity of all orientations is gene-
rated by shear and entrainment and amplified by vortex stretching.

Komm et al. (2007) have presented evidence for correlations
between ¢’ and A’ in SSW maps derived from SOHO MDI and
the Global Oscillation Network Group (GONG) data. These cor-
relations are approximately linear in regions of low magnetic
activity, with cyclonic and anticyclonic vorticity associated with
horizontal convergence and divergence, respectively. This is qual-
itatively consistent with our simulation results, since the high-
amplitude anticyclonic vorticity in our simulations is associated
with localized features, which would be filtered out by the spatial
averaging inherent in the helioseismic inversions. A more detailed
comparison between our simulation results and SSW maps will
be carried out in a subsequent paper.

8. SUMMARY AND CONCLUSIONS

High-resolution simulations of turbulent convection provide
essential insight into the nature of global-scale motions in the
solar convection zone, often referred to as giant cells, and into
how these motions maintain the solar differential rotation and
meridional circulation. Such insight is essential to inspire and
interpret investigations of solar interior dynamics based on helio-
seismic inversions and photospheric observations. Although the
simulation that we focus on here is nonmagnetic, our results have
important implications for solar dynamo theory and may be used
to assess, calibrate, and further develop other modeling strategies
such as mean-field models of solar and stellar activity cycles.

The convective patterns realized in our simulations are intri-
cate and continually evolving. Near the top of our computational
domain at » = 0.98 R, there is an interconnected network of
downflow lanes reminiscent of photospheric granulation but on a
much larger scale. The power spectrum of the radial velocity peaks
at £ ~ 80, corresponding to a horizontal scale of about 50 Mm.
However, a visual inspection of the convective patterns (Figs. 1,
2,4, and 11) reveals a wide range of scales, with many cells span-
ning 10°-20° (100—200 Mm). Characteristic horizontal velocity
scales are 250 ms~! at 7 = 0.98 R, dropping to ~100 m s~ ! in
the mid-convection zone. Near the surface, zonal flow ampli-
tudes (v),) are on average about 10% larger than latitudinal flow
amplitudes (vj), but in the mid-convection zone all three velocity
components have a comparable amplitude. Deep in the convec-
tion zone the surface network fragments into disconnected down-
flow lanes and plumes, but the skewness of the radial velocity
remains strongly negative (Fig. 155).

A close inspection of the downflow network near the surface
reveals a distinct tendency for structures to align in a north-south
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orientation at low latitudes. Such NS downflow lanes represent
the largest and longest lived features in the convection zone.
Whereas correlation timescales for the downflow network are
only a few days, NS downflow lanes can persist for weeks or
even months. They are traveling convective modes that propagate
in longitude about 8% faster than the equatorial rotation rate. Near
the bottom of the shell the lanes fragment into downwelling
plumes, but some coherence extends across the entire convection
zone (e.g., Fig. 4).

At higher latitudes, the downflow network is more isotropic
and possesses intense cyclonic vorticity, induced by Coriolis forces.
Localized cyclonic vortices are prevalent near the interstices of
the network at latitudes above about £30°. These structures are
similar to the turbulent helical plumes observed by Brummell
etal. (1996) in Cartesian f~plane simulations and are associated
with downward flow, horizontal convergence, and cool temper-
atures, as well as cyclonic radial vorticity. They are confined
to the upper-convection zone (» 2 0.95 R), and their horizon-
tal scale is comparable to that of supergranulation, about 10—
30 Mm. Typical lifetimes are several days to a week (e.g., Fig. 11).
High-latitude cyclones are highly intermittent and give rise to
prominent exponential tails in the radial vorticity and temperature
PDFs (Fig. 14).

Near the surface, the horizontal divergence A’ is highly cor-
related with the radial velocity v/. Thus, horizontal divergence
fields obtained from SSW maps should provide a good proxy for
the radial velocity, at least on large scales. Furthermore, there is
a strong correlation between A’ and the radial vorticity ¢/, with
intense cyclonic vorticity in regions of horizontal convergence
(downflows) amid a background of weaker anticyclonic vorticity
in broader regions of divergence (upflows). This correlation ap-
plies over most of the horizontal surface area but breaks down for
localized, high-amplitude events; the most intense vorticies, both
cyclonic and anticyclonic, occur in downflow lanes (A’ < 0).
Correlations between ¢’ and A’ represent a promising diagnostic
for the investigation of large-scale flow patterns in SSW maps
(Komm et al. 2007).

A significant new feature of the simulation presented here rel-
ative to previous models is the manner in which the differential
rotation is maintained. As demonstrated in Figure 7, the resolved
convective motions transport angular momentum equatorward
and inward by means of Reynolds stresses, while the meridional
circulation opposes this transport, such that

V- (F® + FM%) ~ 0. (18)

This simulation has thus crossed a threshold in which viscous
diffusion F¥P no longer contributes significantly to the angular
momentum balance.

This result should be interpreted with some caution because
the mean flows may not be fully equilibrated (see § 2.2), but if it
persists, the implications are profound. Although there are subtle
nonlinear feedbacks, the meridional circulation pattern is largely
determined by FR® under the constraint that the resulting mean
flows satisfy equation (18). Convective motions (particularly
NS downflow lanes) redistribute angular momentum, and the re-
sulting differential rotation induces circulations through Coriolis
forces until a steady state is reached. Baroclinicity also plays
an important role, breaking the Taylor-Proudman constraint that
favors cylindrical rotation profiles. Baroclinic torques arise in
part from thermal coupling to the tachocline, which is represented
in our simulation by imposing a latitudinal entropy gradient on
the lower boundary at the base of the convection zone (§ 2.2).
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The mean flows that result are similar to those inferred from
helioseismic inversions. The mean angular velocity decreases
monotonically with latitude with nearly radial contours at mid-
latitudes. This is similar to the solar rotation profile, although
the angular velocity contrast of ~50 nHz between 0° and 60° is
smaller than the ~90 nHz in the Sun (Thompson et al. 2003).
The time-averaged meridional circulation is dominated by a
single cell in each hemisphere with poleward flow of about
20 ms~! in the upper-convection zone (notwithstanding a flow
reversal near the upper boundary that may be artificial). The
sense and amplitude of this circulation are comparable to those
inferred near the surface of the Sun from Doppler measurements
and helioseismic inversions. The lower convection zone currently
lies beyond the reach of helioseismic probing, but many have
proposed that an equatorward return flow may exist and further-
more that this global circulation pattern may play an essential role
in establishing the solar activity cycle (e.g., Dikpati & Charbonneau
1999; Dikpati et al. 2004 ). For a review of these so-called flux-
transport dynamo models, see Charbonneau (2005). The mean
meridional circulation in our simulation is similar to that used in
many flux-transport dynamo models, but month-to-month fluc-
tuations about this mean are large.

In order to gain further insight into how the global solar dy-
namo operates and into how mean flows are maintained, we must
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extend the lower boundary of our computational domain below
the solar convection zone and thus explicitly resolve the complex
dynamics occurring in the overshoot region and tachocline. Fur-
thermore, we must incorporate magnetism and investigate how
magnetic flux is amplified, advected, and organized by turbulent
penetrative convection, rotational shear, and global circulations.
Such efforts are already underway (Browning et al. 2006) and
will continue. Future work will also focus on improving our un-
derstanding of the upper-convection zone, including how gran-
ulation and supergranulation influence giant cells and mean flow
patterns, and how signatures of internal flows and magnetism
might be manifested in helioseismic measurements and photo-
spheric observations.
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