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The understanding of the structure and evolution of stars is a longstanding problem in 
astrophysics, first addressed quantitatively by Eddington in 1926. Central to this problem is 
the description of stellar turbulent convection and how it transports heat and energy, how it 
redistributes angular momentum to yield large scale flows such as differential rotation and 
meridional circulation, and how it generates, maintains and organizes magnetic fields (see 
below).  
 
1) General Astrophysical Context 
 
Stars are dynamic objects, as dramatically demonstrated by our closest example, the Sun.  The  
surface of the Sun seethes with turbulent convective motions and larger-scale flows that also 
persist deep below the surface as revealed by helioseismology (Gough & Toomre 1991, 
Christensen-Dalsgaard 2003). Solar convection works together with rotational shear and 
global meridional circulations to generate patterns of magnetic activity such as the 11-year 
sunspot cycle.   Throughout the solar cycle, magnetic flux continually emerges and often 
destabilizes, producing eruptive events such as coronal mass ejections and solar flares.  
Understanding the origins of this diverse magnetic activity provides insight into similar 
processes occurring throughout the cosmos.  In this sense, the Sun is a laboratory for 
astrophysics; nowhere else can we observe the complex interactions between turbulent 
plasmas and magnetic fields with comparable detail. 
In stars the large size L of the system at hand and the low microscopic viscosity nu of the 
plasma yields very high Reynolds numbers (Re=v L/nu) even for weak characteristic 
velocities v, implying that motions must be highly turbulent. Given the complexity of 
describing turbulent nonlinear processes in rotating and magnetized systems (since all stars 
rotate and most are magnetically active), various simplified prescriptions have been 
developed over the last century in order to be able to describe at least qualitatively stellar 
convection zones (Spiegel 1971). A notable example is the so-called mixing length theory 
(MLT; see Bohm-Vitense 1958; Cox & Guili 1968, Schatzman & Praderie 1990, Hansen & 
Kawaler 1995) that is often used to account for convective heat transport in stellar evolution 
models. In MLT, a convective eddy (or blob, parcel, cell, rising element) is displaced from its 
equilibrium position over a distance Λ, the so-called mixing length, before releasing totally its 
heat content. It is generally assumed that Λ is proportional to the local pressure scale height 
Hp, e.g. Λ = αΜ Hp, with αΜ the mixing length coefficient. This coefficient αΜ is of order 
unity and it is calibrated thanks to accurate 1-D solar standard models whose luminosity, 
radius and chemical abundances (Z/X ratio) must be within 10-5 of the observed solar values. 
Current 1-D standard solar models all possess αΜ being between 1.5 to 2 (Brun et al. 2002, 
Turck-Chieze et al. 2004, Bahcall et al. 2005, Asplund et al. 2006, Antia & Basu 2005, 2006).  
While this simple prescription of convection has its merit to describe in one dimension the 
quasi static structure of stars over secular time, it lacks several important physical properties, 
such as a turbulent spatial and temporal energy distribution, velocity correlations, non locality 
etc… that are key to a modern understanding of the (magneto)-hydrodynamics of stars.  
 
2) What is convection? 
 
Convection is an instability occurring in a stratified fluid. It is a mechanism for transporting 
thermal energy by means of the bulk displacement of a fluid. What is hot goes up, what is 



cold comes down. A common instance is that of a pan of water set on a heat source (electric 
heating element, gas ring, etc.). The water heated at the bottom of the pan is lighter, and rises 
to the surface, where it cools, sinks back, is warmed again, rises once more, and so on. Such 
convective motion tends to reduce the difference in temperature between pan bottom and 
surface. In the case of a star, convective motions serve to carry away the nuclear energy 
generated in its core. Positioning of the convection zones is strongly dependent on the star’s 
mass. Cool stars are fully convective, hot stars have convective cores and an extended 
radiative envelope, and solar type stars possess a radiative interior surrounded by a convective 
envelope. When there is steep variation in density, as in the solar convection zone, the fluid’s 
entropy turns out to be the natural variable for the characterization of convection efficiency; 
highly efficient convection maintains a nearly adiabatic stratification such that the integrated 
heat flux through the convection zone is small relative to the thermal energy of the plasma. In 
nature, thermal-energy transport may also occur through conduction (direct contact between a 
hot and a cold body) or radiation. In main sequence stars, conduction plays a negligible role 
compared to radiation and convection. 
 
 2a) Schwartzschild & Ledoux criteria for convective stability 
 
In the inviscid limit (ν=κ=0), the criteria to not trigger convection is very simple. Let’s 
displace a fluid element by a small radial distance dr in a stratified media (s=surrounding & 
e=element), we get: 
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where α, δ, φ are thermodynamic coefficients. Substituting equation 5 in equation 4 leads to: 
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Where ρe*, ρe are respectively, the density of the element before and 
after the displacement dr, and ρs*, ρs the density of the surrounding 
media (and the same convention is used for the pressure P and 
temperature T). Let’s take the difference between equations (1) & (2): 
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Now, let’s consider the following general equation of state (with µ the mean molecular 
weight): ρ=ρ(P,T,µ) 

If positive, then the equilibria is stable 
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Let’s assume an atmosphere in which the energy is transported only per radiation, then 

 . Let’s test the stability of this atmosphere by considering the adiabatic 

displacement of an element:   
 
The atmosphere is convectively stable if: 
Ledoux: 

 
Schwartzschild (if no variation of composition or ionization is assumed): 
 

 
 
Remark: The gradient of the specific entropy per unit mass S can easily be related to the 

difference between   and  such that (in the case where we neglect variation of 
composition or ionization): 

 
with cp the specific heat at constant pressure. This leads to a simple criteria for inviscid 
convection: There is convection when dS/dr is negative or it is convectively stable for a 
positive dS/dr. 
 
 2b) Rayleigh number 
 
In reality even though atomic viscosity can be very small in a stellar plasma, the threshold to 
trigger convection will be higher than in the inviscid limit since diffusion effects will suppress 
the convection instability. The instability criteria for a horizontal layer heated from below is 
described in detail by Chandrasekhar (1961) and subsequent works have considered rotating 
spherical shells (Roberts 1968, Busse 1970; Gilman 1975). For illustration, we briefly list the 
instability criteria for the case of a convective layer heated from below assuming either no slip 
or stress free boundary conditions for the velocity field. The Rayleigh number is defined as: 
 

         in Boussinesq (i.e nearly incompressible) convection. 
 
For stress free conditions, top & bottom, the critical Rayleigh number is : Rac = 658 
For stress free & no slip : Rac = 1100 
For no slip top & bottom: Rac = 1708 
 

Stable eq (7) 

eq (8) 

Remark : for a perfect gas  P = R ρ T/ µ 

=> α=δ=φ=1 

Since Pe= Ps & Pe*= Ps* (pressure equilibrium) and dµ null for the element, we get 
after multiplying by the pressure scale height Hp = -1/(d ln P/dr), the following 
stability criteria: 

eq (9) 

eq (10) 

or using stellar physics classical gradient notation: 

eq (11) 



The Rayleigh number has to be above this threshold for convection to start. In stellar 
convection zones the Rayleigh number can exceed 1015 so such instability conditions are 
easily realized. 
 
The presence of an imposed field generally raises the instability threshold; magnetic fields 
have a stabilizing influence. For stress-free velocity boundary conditions and a purely radial 
magnetic field at the boundaries, Rac depends on the Hartman number Ha such that Rac = 
π2(Ha)2 for Ha >> 1. 

The Hartman number is defined as:  
 
So stronger is the imposed magnetic field more difficult it is to trigger convection (check 
Cattaneo, Emonet & Weiss 2003 for a recent discussion on dynamo and magnetoconvection 
in an unstable slab with an externally imposed field). 
 
3) Going beyond MLT: 3-D HD & MHD models of stellar convection 
 
While linear stability analysis are very useful to understand the behaviour near the threshold 
of the instability, the huge Reynolds and Rayleigh number present in stellar convection zones 
advocate for a nonlinear study of this process. With the arrival of petaflop supercomputers it 
will become more and more possible to tackle directly the 3-D modelling of stellar turbulent 
convection zones. Even with the current computers Re numbers as large as 1012 are not yet 
tractable but sustained effort over the last decade has permitted a significant step forward in 
our understanding of highly nonlinear convection systems under the influence of rotation and 
magnetism and of the generation of strong magnetic fields through dynamo action (see for 
instance Brandenburg et al. 1996, Brummell et al. 1996, 1998, Cattaneo 1999, Porter & 
Woodward 2000, Woodward et al. 2003, Emonet & Cattaneo 2001, Miesch et al. 2000, 2008, 
Brun & Toomre 2002, Brun 2004, Brun et al. 2004, 2005, Robinson et al. 2003, 2004, Rincon 
et al. 2005, Stein & Nordlund 1998, 2006, Vogler et al. 2007).  
 
  3a) Convection structure and boundary layers 
 
To a good approximation, stellar interiors are nearly in hydrostatic balance so the pressure, 
density, and temperature decrease outward.  Across deep convection zones such as that in the 
Sun the density decreases by several orders of magnitude.  This has a profound influence on 
the structure of stellar convection as illustrated in Figure 2.  Plasma flowing upward expands 
as its density drops, creating broad convection cells surrounded by an interconnected network 
of downflow lanes.  The convection pattern changes continually as cells are sheared and 
fragmented.  Flow converging into the downflow lanes acquires intense cyclonic vorticity 
from the Coriolis force, evident in Figure 2 as swirling downflow plumes with a counter-
clockwise and clockwise sense in the northern and southerm hemispheres respectively.  



 
Fig 2: Shown is the radial velocity (downflows dark, upflows yellow/orange) realized in high 
resolution simulations of solar convection (left panel; Miesch et al. 2008) and of convection in 
a solar-type star rotating five times faster than the Sun (right panel; Brown et al. 2007). 
 
In Figure 2 the influence of rotation is also evident at low latitudes where downflow lanes 
tend to align in a north-south orientation in order to mitigate the stabilizing influence of the 
Coriolis force.  Such alignment is barely discernible but becomes much more apparent in 
simulations of more rapidly rotating stars.  Figure 2b shows the simulated convection pattern 
in a solar-type star rotating five times faster than the Sun.  Here there is a clear dichotomy 
between the small-scale, nearly isotropic convection pattern near the poles and the larger cells 
near the equator which are elongated in latitude but relatively narrow in longitude.  The 
transition occurs near the so-called tangent cylinder, an imaginary cylindrical surface which is 
parallel to the rotation axis and tangent to the base of the convection zone. 
 
The simulation shown in Figure 2b also exhibits modulated convection in which vigorous 
motions occur only in a restricted range of longitudes. Such convection patches can persist for 
thousands of days or, in deeper convection zones, can come and go in sporadic bursts of 
activity (Grote et al 2000; Ballot et al 2007; Brown et al 2007).  In the limit of very rapid 
rotation, convection cells become aligned with the rotation axis as is thought to occur in the 
Earth's outer core (Busse 2000). In RGB and AGB stars the huge extented convective 
envelope combined with large density contrast results in the presence of only a few broad 
warm upflows surrounded by a network of narrow downflow lanes over the whole star’s 
surface (Palacios & Brun 2007, Woodward et al. 2003, Freytag 2006). These evolved stars are 
slow rotators as a direct consequence of their inflated radius. The reduced rotational influence 
leads to convection patterns that are similar to non rotating convection in spherical shells, 
with a large l=1 dipole in temperature being established (Chandrasekhar 1961, Woodward et 
al. 2003, Palacios & Brun 2007). This drives a large meridional circulation. By contrast fast 
rotator exhibit a banded temperature structure in longitude associated with a self established 
thermal wind balance (Pedlosky 1987, Miesch et al. 2006, Brown et al. 2007). As the mass of 
stars increases, core convection progressively broadens and surface convection becomes 
shallower and shallower until it disappears altogether. In such convective core the density 
contrast is much smaller, yielding large scale convective patterns with almost no asymmetry 
between upflows and downflows (Browning et al. 2004). 
 
As in many turbulent flows, boundary layers can play an important role in stellar convection.  
The upper boundary of the solar convection zone is the photosphere where there is again a 
transition from convective energy transport to radiation; this is where stars shine.  Radiative 



energy transfer, coupled with ionization and a sharp drop off in density, temperature, and 
pressure drives another type of stellar convection known as granulation.  This is the type of 
convection one sees in telescopic images of the solar surface which is blanketed by millions 
of granulation cells, each about 1000 km across. 
 
When modeling relatively small-scale features such as granulation whose physical scale is 
well below the Sun’s Rossby radius (~30,000 km, i.e the size above which Coriolis effects are 
playing fully), there is no need to consider the full spherical geometry which would require 
memory and operation counts far exceeding the capabilities of even the most powerful 
supercomputers.  Instead, numerical simulations of granulation are confined to local Cartesian 
geometries (see Vogler et al. 2007, Stein & Nordlund 1998, 2006 (link scholarpedia article by 
Stein), Abbett et al. 2001, Abbett 2007).  Despite the simplified geometry, granulation 
simulations face a formidable challenge in accurately capturing the complicated transition 
region from the solar interior, through the photosphere and chromosphere, and on to the 
corona.  Much of the complexity arises from magnetic fields which continually emerge 
through this transition region, often destabilizing and triggering explosive events such as 
coronal mass ejections and solar flares. 
 
The base of the solar convection zone is no less complex.  The inner 70% of the Sun by radius 
is stably stratified, meaning vertical velocity and temperature variations propagate as internal 
gravity waves rather than overturning as convection cells.  However, downward-travelling  
convective motions can overshoot the base of the convection zone by virtue of their own 
inertia (Zahn 1991, Rieutord & Zahn 1995).  Convective overshoot at the base of stellar 
envelopes is generally dominated by isolated, intermittent, downflow plumes which are 
eventually decelerated and dispersed by the buoyancy force.  Such overshoot regions are 
typically very thin, extending less than one percent of the stellar radius. 
 
Furthermore, near the base of the solar convection zone there is a sharp transition from 
differential rotation above (such that the equator spins about 30% faster than the poles) to 
nearly uniform rotation below (Thompson et al 2003).   This rotational shear layer is known 
as the solar tachocline (Spiegel & Zahn 1992) and it is thought to play an essential role in the 
solar dynamo (link to articles by Rudiger, Charbonneau).  The solar tachocline and overshoot 
region support a variety of instabilities and waves that are driven by buoyancy, magnetism, 
and shear and that mediate the thermal, mechanical, and magnetic coupling between the 
convection zone and the radiative interior.  For a recent overview see Gough & McIntyre 
(1998), Tobias (2004), Miesch (2005), Miesch et al. (2006), Brun & Zahn (2006), Zahn et al. 
(2007),  Rudiger & Kitchatinov 2007, Kim & Leprovost 2007 and the special volume on the 
tachocline, Hughes et al. (2007). 
 
Other cool stars likely exhibit boundary layers similar to the Sun.  However, some cool stars 
such as M dwarfs, are convective throughout their interiors so they have a photosphere but no 
overshoot region or tachocline.  Hotter stars such as A stars, on the other hand, are inverted 
Suns, with convection in their cores and stable outer envelopes.   Here overshoot occurs at  
the outer boundary of the core convection zone, far from the photosphere (although many hot 
stars also exhibit a thin surface convection zone, from late A to early F stars). Recent 
simulations of core convective stars reveal that penetrative convection varies significantly 
with latitude, being stronger near the poles (Browning et al. 2004). 
 
 
 



  3b) Convective transport and associated large scale mean flows 
 
Helioseismic inversions of large-scale, axisymmetric, time-averaged flows in the Sun 
(Thompson et al. 2003) currently provide the most important observational constraints on 
global-scale models of solar convection (BT02, Miesch et al. 2006, 2008). Of particular 
importance and reasonably well constrained by helioseismology, is the mean longitudinal 
flow, i.e. the differential rotation Ω (r,θ), which is characterised by a fast equator, slow poles 
and a profile almost independent of radius at mid latitudes (conical). In the most recent global 
simulations a fast equator, a monotonic decrease of Ω with latitude and some constancy along 
radial line at mid latitudes are established, all these attributes being in reasonable agreement 
with helioseismic inferences.   Convection can redistribute angular momentum directly 
through the Reynolds stress or indirectly by establishing mean (longitudinally-averaged) 
circulations in the meridional (radius-latitude) plane.  In a steady state without magnetism and 
neglecting the (tiny) viscous effects, these two mechanisms must balance one another. Mean 
meridional circulations may be maintained by Reynolds stresses, Coriolis forces, or by 
latitudinal gradients of temperature and entropy through what is known as baroclinicity.  In 
stars like the Sun that possess a substantial rotational influence, baroclinicity tends to 
establish thermal wind balance such that variations of Ω parallel to the rotation axis are 
proportional to latitudinal entropy gradients.  Global simulations of solar convection do 
indeed exhibit thermal wind balance in the lower convection zone but this balance breaks 
down near the surface and in high shearing regions (BT02, MBT06). 
 

 
Fig 4: Shown are the angular velocity profiles (in nHz) realized in simulations of convection 
in the Sun (panels a & b, BT02) and in a 2 solar mass A-star (panels c & d, Browning et al. 
2004), averaged over longitude and time.  Different curves in panels b, d correspond to 
different latitudes as indicated. 
 
A study of the redistribution of angular momentum in our convective shells reveals that 
Reynolds stresses are at the origin of the equatorial acceleration but baroclinicity influences 
the form of the rotation profile (BT02; MBT06).   Recent mean-field models by Rempel 
(2005) and 3-D simulations by MBT06 suggest that some of this baroclinicity may arise from 
thermal coupling to the solar tachocline.  Thermal gradients in the tachocline may be 
transmitted to the convection zone by the convective heat flux, promoting a more conical 
rotation profile through thermal wind balance in better agreement with helioseismic 
inversions. However convection in rotating system also possesses strong latitudinal 
(anisotropic) enthalpy (heat) transport that contribute efficiently to latitudinal gradient of 
entropy and temperature. The near constancy of the isocontours of Ω(r,θ) along radial lines 



could be used in turn to assess the radial structure of the tachocline if this boundary layer is 
assumed to be in strict thermal wind balance (see Brun 2007a).  Elucidating the relative roles 
of convective Reynolds stresses, convective heat flux, and thermal coupling to the tachocline 
in maintaining the solar differential rotation and meridional circulation remains an area of 
active study. 
In other cool stars the depth of the convection zone and the existence or not of a tachocline 
(absent for late fully convective M-stars) as well as the rotation rate (slower or faster than the 
solar rate), yields a large variety of differential rotation profiles. The angular velocity tends to 
become cylindrical (in agreement with Taylor’s constraint of quasi 2-D dynamics, Pedlosky 
1987), if the rotation rate becomes too large or the tachocline is not sharp enough to impact 
the heat redistribution in the convective layer. When considering the dependence of the 
angular velocity contrast as a function of rotation rate, it is found that the absolute contrast 
increases with the rotation rate but the relative contrast reduces (Ballot et al. 2007, Brown et 
al. 2007, 2008). In more massive stars, such as A-stars, a column of fast or slow rotation is 
found in the convective core depending of the influence of the Coriolis force on the overall 
dynamics (Browning et al. 2004). 
 
  3c) Convective dynamos 
 
The rich display of magnetic activity observed in the solar atmosphere must be maintained by 
dynamic processes occurring below the surface. Much of the small-scale magnetic flux 
permeating the solar photosphere is thought to be maintained locally by solar granulation and 
is quickly replenished on a time scale of a few days (Cattaneo 1999; Schrijver & Title 2003).   
Turbulent motions in an electrically conducting fluid are known to generate magnetic fields 
through hydromagnetic dynamo action, sustaining them indefinitely against ohmic decay.  
However, observed patterns of flux emergence such as the 11-yr sunspot cycle are more 
enigmatic and although much progress has been made, there are still many open questions 
about how the global solar dynamo operates.  For a thorough discussion see Ossendrijver 
(2003), Brun et al. (2004), Charbonneau (2005), and Solanki et al (2006), as well as the 
accompanying scholarpedia articles by Charbonneau and Brandenburg (link to these). 
 
One thing is clear; turbulent convection and differential rotation must play an essential role.  
Convection generates mean fields directly through dynamo processes and it can convert 
toroidal flux to poloidal flux through the fragmentation and dispersal of photospheric active 
regions. We refer to this process generally as the alpha mechanism; within the specific context 
of mean-field dynamo theory it is known as the alpha-effect (link to Rudiger).  Turbulent 
compressible convection also transports magnetic flux preferentially downward in a 
phenomenon known as magnetic pumping (Tobias et al 2001; Dorch & Nordlund 2001,  
Ossendrijver et al 2002; Ziegler & Rudiger 2003).  Meanwhile, rotational shear converts 
poloidal flux to toroidal flux through what is known as the Omega-effect, closing the dynamo 
loop. 
 
Although there is much debate over precisely where the alpha mechanism occurs, most solar 
dynamo models place the Omega-effect in or near the solar tachocline (Tobias 2004; 
Charbonneau 2005).  Rotational shear in the tachocline organizes and amplifies toroidal flux 
until it fragments and rises as a consequence of magnetic buoyancy instabilities (Cline, 
Brummell, Cattaneo 2003).  Rising toroidal flux tubes emerge from the solar photosphere as 
bipolar active regions. Further hydrodynamical and MHD instabilities seem to play an 
important role in the dynamical evolution of the inner radiative interior here also with a likely 
feed back on the surface layers.  In so-called flux-transport solar dynamo models, cyclic 



variability arises from the advection of magnetic flux in the tachocline by an equatorward 
mean circulation.  Similar processes must also occur in other stars although the relative roles 
of the alpha mechanism, the Omega mechanism, turbulent transport, and meridional 
circulation may vary. For instance recent work on fastly rotating young suns or solar-like stars 
tend to indicate that meridional flows are weaker for faster rotation (Ballot et al. 2007, Brown 
et al. 2007, see however Kuker & Rudiger 2005 for an opposite result using 2-D mean field 
models). This slower mean MC flow will result in a slower activity cycle if the solar mean 
field dynamo flux transport framework is left unchanged (Dikpati et al. 2004, Jouve et al. 
2007, 2008). 
 
By including a weak seed magnetic field in simulation of turbulent convection, the nonlinear 
interactions between turbulence, rotation and magnetic fields can be studied in detail. It is 
found that the magnetic energy (ME) grows by many orders of magnitude through dynamo 
action if the magnetic Reynolds number (Rm=vL/η) of the flow is above a critical value (see 
Gilman 1983, Glatzmaier 1987, Brandenburg et al. 1996, Cattaneo 1999, Brun et al. 2004 
(BMT04)). Following the linear phase of exponential growth, ME saturates, due to the 
nonlinear feed back of the Lorentz forces, to a fraction of the kinetic energy (KE) and retains 
that level over many Ohmic decay times. Upon saturation, KE has been reduced significantly 
when compared to the initial hydrodynamical value.  In global models, this variation is mostly 
due to a reduction of the energy contained in the differential rotation. The energy contained in 
the convective motions is influenced less, which implies an increased contribution of the non-
axisymmetric motions to the total kinetic energy balance. 
 

 
Fig 5: In the left panel we display the magnetic field lines obtained in a model of the 
magnetized solar convection with potential extrapolation in the solar corona (Brun et al. 2004, 
red field lines are pointing radially outward). In the right panel we show (top) the mean 
toroidal field and (bottom) the angular velocity in a simulation of solar convection with a 
tachocline of rotational shear (Browning et al. 2006). 
 
The radial magnetic field generated through dynamo action is found to be concentrated in the 
cold downflow lanes, with both polarities coexisting having been swept there by the 
horizontal diverging motions at the top of the domain. The Lorentz forces in such localised 
regions have a noticeable dynamical effect on the flow, with ME sometimes being locally 
bigger than KE, influencing the evolution of the strong downflow lanes via magnetic tension 



that inhibits vorticity generation and reduces the shear. The magnetic field and the radial 
velocity possess a high level of intermittency both in time and space, revealed by extended, 
asymmetric wings in their probability distribution functions (Brandenburg et al. 1996, 
BMT04). Fast reversals of the poloidal field are observed (~ 400 days) in global 3-D models 
which are typical of a chaotic dynamical system but are inconsistent with the observed 11-yr 
solar cycle. In an attempt to resolve that issue Browning et al. (2006) have recently included a 
stably stratified tachocline of shear in a global magnetic simulation. They confirm through 
nonlinear simulations that the tachocline plays a crucial role in organising the irregular field 
produced by the convection zone into intense axisymmetric toroidal structures. The presence 
of this large scale mean field does seem to influence the nonlinear behaviour of the 
simulations leading to much less frequent if any magnetic field reversals or excursions. 
 
With fairly strong magnetic fields sustained in the global magnetic simulations, it is to be 
expected that the differential rotation Ω(r,θ) established in the purely hydrodynamical case 
will respond to the feedback from the Lorentz forces. Indeed Brun (2004) found that the main 
effect of the Lorentz forces is to extract energy from the differential rotation as the weakening 
of KE indicates. A careful study of the redistribution of the angular momentum in the shell 
reveals that the source of the reduction of the latitudinal contrast of Ω(r,θ) can be attributed to 
the poleward transport of angular momentum by Maxwell stresses (see Brun 2004, BMT04). 
The large-scale magnetic torques are found to be 2 orders of magnitude smaller, confirming 
the small dynamical role played by the mean fields in global MHD simulations without a 
tachocline of shear and a self-established 11-yr cycle. 
 
In other stars, again rotation plays an important role in determining the global properties of 
their magnetism. In fast rotating solar-type stars, large mean fields are found even without the 
presence of a tachocline at the base of their convective envelope (Browning et al. 2007b). 
This is due to a shift in the balance of forces driving the flow between the advection, Coriolis 
and Lorentz terms. As the rotation rate increases the Lorentz force tends to balance the 
Coriolis force yielding larger magnetic energy in superequipartion with the kinetic energy of 
the flow (as in the Earth’s iron core, see Rudiger & Hollerbach 2004). 
In more massive stars, convective core dynamos are found to be extremely effective. Mega-
gauss fields are found in the core at its sheared boundary layer (a kind of “upside down” 
tachocline, Brun et al. 2005). Such fields must interact with the probable fossil field that the 
extended radiative envelope of the hot star retained during the star’s formation. Recent 
simulations seem to indicate that dynamo action in such cores will be even more vigorous if 
the fossil field threads from the stable envelope through to the convective core (Featherstone 
et al. 2007). 
 
We have shown that numerical simulations of the complex internal solar and stellar 
magnetohydrodynamics are becoming more and more tractable with today's supercomputers. 
In particular we have studied how turbulent convection under the influence of rotation can 
establish a strong differential rotation and weak meridional circulation, generate magnetic 
fields through dynamo action and how Lorentz forces act to diminish the differential rotation 
such that poleward angular momentum transport by Maxwell stresses opposes the 
equatorward transport by Reynolds stresses (see BT02, BMT04, MBT06). Many challenges 
remain, among them the understanding of the 11-yr solar cycle and of the two shear layers 
present at the base (the tachocline) and at the top of the solar convection zone, or magnetic 
coupling to the solar atmosphere is a priority since these layers are directly linked to the solar 
dynamo and subsurface weather. Another challenge is to get a more accurate and deeper 
inversion of the meridional circulation present in the solar convection since it plays a crucial 



role in current mean field solar dynamo models (Dikpati et al. 2004, Jouve & Brun 2007a). 
Another key element of the solar dynamo is the emergence of magnetic flux from deep within 
the Sun up to its surface (Jouve & Brun 2007b, Fan 2008). For other stars the relative ordering 
of the convective and radiative zones, the extent of the convection, the presence of a 
tachocline of shear, the rotation rate all plays crucial roles in determining the convective 
patterns, the large scale flows (differential rotation, meridional circulation) and the level of 
magnetism (Brun et al. 2005, Dobler et al. 2006, Brown et al. 2007b, Featherstone et al. 2007, 
Browning 2008). 
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