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ABSTRACT

Context. The solar magnetic activity and cycle are linked to an internal dynamo. Numerical simulations are an efficient and accurate
tool to investigate such intricate dynamical processes.
Aims. We present the results of an international numerical benchmark study based on two-dimensional axisymmetric mean field solar
dynamo models in spherical geometry. The purpose of this work is to provide the scientific community with reference cases that can
be analyzed in detail and that can help in further development and validation of numerical codes that solve such kinematic problems.
Methods. The results of eight numerical codes solving the induction equation in the framework of mean field theory are compared for
three increasingly computationally intensive models of the solar dynamo: an αΩ dynamo with constant magnetic diffusivity, an αΩ
dynamo with magnetic diffusivity sharply varying with depth and an example of a flux-transport Babcock-Leighton dynamo which
includes a non-local source term and one large single cell of meridional circulation per hemisphere. All cases include a realistic profile
of differential rotation and thus a sharp tachocline.
Results. The most important finding of this study is that all codes agree quantitatively to within less than a percent for the αΩ dynamo
cases and within a few percents for the flux-transport case. Both the critical dynamo numbers for the onset of dynamo action and the
corresponding cycle periods are reasonably well recovered by all codes. Detailed comparisons of butterfly diagrams and specific cuts
of both toroidal and poloidal fields at given latitude and radius confirm the good quantitative agreement.
Conclusions. We believe that such a benchmark study will be a very useful tool for the scientific community since it provides detailed
standard cases for comparison and reference.
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1. Introduction

The Sun is an active star, whose magnetism has a direct impact
on the Earth and our technological society. Being able to un-
derstand and anticipate this magnetic activity is crucial and has
thus been the subject of intense research. It is currently believed
that the Sun operates an internal dynamo to generate, sustain and
organize magnetic fields on both small and large scales. Given
the complexity of the problem, i.e. the self-generation of mag-
netic field by a turbulent rotating plasma and the non-linear in-
teractions which yield this wide range of dynamical phenom-
ena, numerical models of the magnetohydrodynamics of the Sun
have been developed (Gilman 1983; Glatzmaier 1987; Cattaneo
1999; Brun, Miesch & Toomre 2004). One class of such models
are called mean field solar dynamo models and rely on the mean
field theory developed mainly in the 1960s and 1970s (Steenbeck
et al. 1966; Steenbeck & Krause 1969; Roberts 1972; Stix 1976;
Moffatt 1978; Krause & R ädler 1980). In this framework, we
seek to model the large scale mean field and use a simplified
closure relationship in modeling the electromotive force (such
as the α-effect). Recently 2-D mean field models have made sig-
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nificant progress to model the characteristic magnetic features
that the Sun possesses, such as its butterfly diagram, its 11-yr cy-
cle period, the phase relationship between poloidal and toroidal
fields and the mainly dipolar polarity observed (Bonanno et al.
2002; Dikpati et al. 2004; K üker et al. 2001). They are even be-
ing used to predict the next solar cycle (cycle 24) (e.g. Dikpati
& Gilman 2006).

However, as of today, no systematic comparison of the nu-
merical programs used by the various groups involved in under-
standing the solar dynamo and magnetism has been performed.
We here propose to start such a comparison by defining a ref-
erence benchmark for the two dimensional solar dynamo prob-
lem. This benchmark is intended to be used by any scientist
who wishes to calibrate and validate his or her code or to de-
velop a new one. It is based on a set of simple and well-defined
test cases, representative of what has been done in the kine-
matic approach of mean field theory so far. We wish to make
it clear that this benchmark is not intended to be exhaustive
and to include a test case for all types of mean field dynamo
models that have been performed over the last four decades.
For instance, non-linear models of Malkus-Proctor type (see
e.g. Brandenburg et al. 1991; Moss & Brooke 2000; Bushby
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2006) will not here be considered since we only want to focus
on solving the induction equation and not the Navier-Stokes
equation. We thus compute 2-D axisymmetric mean field mod-
els of αΩ and of flux-transport Babcock-Leighton (BL) type
(Babcock 1961; Leighton 1969; Wang et al. 1991; Choudhuri et
al. 1995; Durney 1995; Dikpati & Charbonneau 1999), in which
we progressively introduce physical ingredients thought to play
a key role in the solar dynamo. These ingredients are magnetic
diffusivity sharply varying with depth, realistic large scale flows
(differential rotation and meridional circulation) and a non-local
source term for poloidal field. Moreover, we check the influence
of imposing two different types of boundary conditions at the top
of the domain. We choose here to study for these models the dy-
namo threshold and the temporal evolution of the magnetic field
in cases called ’critical cases’ and we will present a more precise
quantitative study of some cases in which the dynamo action is
well-established, the ’supercritical cases’.

The paper is organized in the following manner. In section 2,
we present the equations, the initial and boundary conditions, the
ingredients of the model and we present the test cases; section
3 lists the numerical techniques used by the various groups to
solve the induction equation. In §4, we discuss the results of our
study and compare the solutions provided by the different codes
and we conclude in §5.

2. The solar dynamo model

2.1. Mean field equations

To investigate the global solar cycle features produced by so-
lar dynamo models, we start from the hydromagnetic induction
equation, governing the evolution of the magnetic field B in re-
sponse to advection by a flow field U and resistive dissipation
due to the microscopic magnetic diffusivity ηm.

∂B
∂t

= ∇ × (U × B) − ∇ × (ηm∇ × B). (1)

As we are working in the framework of mean field theory, we
express both magnetic and velocity fields as a sum of large scale
(that will correspond to mean field) and small scale (associated
with hydrodynamic turbulence) contributions. Averaging over
some suitably chosen intermediate scale makes it possible to
write two distinct induction equations for the mean and the fluc-
tuating parts of the magnetic field. The mean field equation reads

∂〈B〉
∂t

= ∇ × (〈U〉 × 〈B〉) + ∇× 〈u′ × b′〉 − ∇ × (ηm∇ × 〈B〉), (2)

where 〈B〉 and 〈U〉 refer to the mean parts of the magnetic and
velocity fields and u′ and b′ to the fluctuating components. A
closure relation is then used to express the electromotive force
〈u′ × b′〉 in terms of the mean magnetic field 〈B〉

〈u′ × b′〉i = αi j〈B〉 j + βi jk
∂〈B〉 j

∂xk
(3)

= α〈B〉i − β (∇ × 〈B〉)i if isotropic.

This leads to the simplified mean field equation1

∂〈B〉
∂t

= ∇ × (〈U〉 × 〈B〉) + ∇× (α〈B〉) − ∇ × (η∇ × 〈B〉), (4)

1 When they are isotropic, the pseudo-tensor αi j = αδi j where δi j

is the Kroenecker symbol and the tensor βi jk = βεi jk where εi jk is the
Levi-Civita symbol.

where η = ηm + β is now the effective magnetic diffusivity. For
Babcock-Leigthon models, a surface term S êφ is used instead of
the α-effect term α〈B〉 which is involved only in our αΩ models.
Quantities will be considered henceforth as mean values so that
we will omit the 〈.〉. Working in spherical coordinates and under
the assumption of axisymmetry, we write the total mean mag-
netic field B and the velocity field U as

B(r, θ, t) = ∇ × (Aφ(r, θ, t)êφ) + Bφ(r, θ, t)êφ, (5)

U(r, θ) = up(r, θ) + r sin θΩ(r, θ)êφ. (6)

We then introduce this poloidal/toroidal decomposition in Eq.
(4). We get two coupled partial differential equations, one in-
volving the poloidal potential Aφ and the other concerning the
toroidal field Bφ . In order to write these equations in a dimen-
sionless form, we choose as length scale the solar radius R� and
as time scale the diffusion time R2

�/ηt based on the turbulent dif-
fusivity in the envelope ηt = 1011 cm2s−1,

∂Aφ
∂t

= η̃D2Aφ − Re
up

$
· ∇($Aφ) + CααBφ + CsS , (7)

∂Bφ
∂t

= η̃D2Bφ +
1
$

∂($Bφ)

∂r
∂η̃

∂r
− Re$up · ∇

(
Bφ
$

)

+ CΩ$
(
∇ ×

(
Aφêφ

))
· ∇Ω, (8)

with D2 =
(
∇2 − 1

$2

)
,$ = r sin θ and η̃ the normalized magnetic

diffusivity.
Four adimensioned numbers characterize the intensity of

the various ingredients and enable all the quantities to be di-
mensioneless. The intensity of the rotation Ω is characterized
by CΩ = ΩeqR2�/ηt where the rotation rate at the equator is
Ωeq/2π = 456 nHz. The intensity of the meridional circulation
up is characterized by Re = u0R�/ηt where the peak amplitude
of the meridional flow is u 0 = 10 ms−1.

The α-effect is characterized by Cα = α0R�/ηt and the BL
source term by Cs = s0R�/ηt. In the critical cases, the intensity
α0 of the α-effect or s0 of the BL source term are determined
by looking for the threshold for dynamo action whereas in the
supercritical cases, α0 and s0 are fixed to a value about ten times
higher than the threshold. Moreover, we note that an α-effect is
considered only for the regeneration of poloidal field and not for
toroidal field so that we choose to study only αΩ or Babcock-
Leighton flux-transport dynamos.

2.2. Initial and boundary conditions

Equations (7) and (8) are solved in a segment of meridional
plane with the colatitude θ ∈ [0, π] and the normalized radius
r ∈ [0.65, 1] i.e. from slightly below the tachocline (e.g. r = 0.7)
up to the solar surface. At θ = 0 and θ = π boundaries, we im-
pose regularity conditions, i.e. both Aφ and Bφ are set to 0. At
r = 0.65, we use a perfect conductor condition

Aφ = 0 and
∂(rBφ)

∂r
= 0. (9)

At the upper boundary, we can implement either of two different
types of boundary conditions: we smoothly match our solution
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to an external potential field, i.e. we have a vacuum region for
r ≥ 1

Bφ = 0 at r = 1 and D2Aφ = 0 for r ≥ 1, (10)

or we set a pure radial field condition meaning

Bφ = Bθ = 0 at r = 1. (11)

As initial conditions we use an arbitrary large scale field, that
can be for instance a confined dipolar field, i.e.

Aφ =
sin θ

r2
if r ≥ 0.7 and Aφ = 0 otherwise and Bφ = 0. (12)

2.3. The physical ingredients

The model “ingredients” are described below, shown in Figure 1
and listed for each case in Table 1.

Fig. 1. The physical ingredients corresponding to Equations (14), (15),
(17), (13) and (19). The angles indicated in the legends refer to the
latitude. BL stands for Babcock-Leighton, DR for Differential Rotation
and MC for Meridional Circulation.

The rotation profile captures some realistic aspects of the
Sun’s angular velocity, deduced from helioseismic inversions,
assuming a solid rotation below 0.66 and a differential rotation
above the interface.

Ω(r, θ) = Ωc +
1
2

[
1 + erf(

r − rc

d
)
] (

1 − Ωc − c2 cos2 θ
)
, (13)

with rc = 0.7, d = 0.02, Ωc = 0.92 and c2 = 0.2. With this
profile, the radial shear is maximal at the tachocline.

We assume that the diffusivity in the envelope η is dominated
by its turbulent contribution whereas in the stable interior ηc �
ηt. We smoothly match the two different constant values with
an error function which enables us to quickly and continuously
transit from ηc to ηt i.e.

η̃(r) =
ηc

ηt
+

1
2

(
1 − ηc

ηt

) [
1 + erf

( r − rc

d

)]
, (14)

with ηc = 109 cm2s−1.

The α-effect is distributed in the whole convection zone
(CZ), with a sharp variation with depth at the base of the CZ.
It is antisymmetric with respect to the equator.

In this paper, two types of models are being studied. We
have models in which we seek to evaluate the dynamo thresh-
old and supercritical models for which we introduce a non-linear
quenching in the source term of the poloidal field. The α-effect
profile will thus be different in these two cases.

In the models for which we investigate the thresholds for
dynamo action, the profile of α is given by

α(r, θ) =
3
√

3
4

sin2 θ cos θ
[
1 + erf(

r − rc

d
)
]
, (15)

where the factor 3
√

3/4 comes from normalization to unity. For
the supercritical cases, since we are in a linear regime, the mag-
netic energy will grow exponentially with time and this will
make it difficult to compare our results.

Thus for the supercritical cases, keeping all the other in-
gredients identical, we use a quenched form for α, now time-
dependent, given by

α(r, θ, t) =
3
√

3
4

sin2 θ cos θ
[
1 + erf

( r − rc

d

)]
(16)

×
1 +

(
Bφ(r, θ, t)

B0

)2
−1

,

with B0 being an arbitrary normalization constant.

In Babcock-Leighton flux-transport dynamo models, the
poloidal field owes its origin to the twist of magnetic loops
emerging at the solar surface. Thus, the source has to be con-
fined to a thin layer just below the surface and since the process
is fundamentally non-local, the source term depends on the vari-
ation of Bφ at the base of the convection zone. For the critical
cases, the expression is

S (r, θ, t) =
1
2

[
1 + erf

(
r − r1

d1

)] [
1 − erf

(
r − 1

d1

)]

× cos θ sin θ Bφ(rc, θ, t). (17)

For the supercritical cases, here too a quenching term is intro-
duced to prevent the magnetic energy from growing exponen-
tially without bound.

S (r, θ, t) =
1
2

[
1 + erf

(
r − r1

d1

)] [
1 − erf

(
r − 1

d1

)]

×
1 +

(
Bφ(rc, θ, t)

B0

)2
−1

cos θ sin θ Bφ(rc, θ, t), (18)

with r1 = 0.95, d1 = 0.01.

In these BL flux-transport dynamo models, meridional cir-
culation is used to link the two sources of magnetic field namely
the base of the CZ and the solar surface. For its profile, we use
a large single cell per hemisphere, directed poleward at the sur-
face, vanishing at the bottom boundary r = 0.65 and thus pene-
trating a little below the tachocline. We take a stream function

ψ(r, θ) = −2
π

(r − rb)2

(1 − rb)
sin

(
π

r − rb

1 − rb

)
cos θ sin θ, (19)
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which gives, through the relation up = ∇ × (ψêφ), the following
components of the meridional flow

ur = −2(1 − rb)
πr

(r − rb)2

(1 − rb)2
sin

(
π

r − rb

1 − rb

)
(3 cos2 θ − 1), (20)

uθ =

[
3r − rb

1 − rb
sin

(
π

r − rb

1 − rb

)
+

rπ
1 − rb

(r − rb)
(1 − rb)

cos

(
π

r − rb

1 − rb

)]

× 2(1 − rb)
πr

(r − rb)
(1 − rb)

cos θ sin θ, (21)

with rb = 0.65.

2.4. Description of the test cases

Cases A and B are 2 different cases of pure αΩ dynamos, all
using the conical differential rotation profile (13) with a sharp
tachocline and an α-effect distributed in the whole convection
zone. Case A involves a constant diffusivity whereas in cases B
and C, we introduce a diffusivity gradient between the core and
the envelope.

Case C is a Babcock-Leighton flux-transport dynamo, in
which the source term for poloidal field is due to the twisted
nature of active regions observed at the solar surface. The merid-
ional circulation (MC) is introduced as one large single cell di-
rected poleward at the surface, in accordance with solar obser-
vations. In this model, we keep the magnetic diffusivity gradient
and a solar-like differential rotation.

Cases A, B, C (A′, B′, C′) are computed with potential (ver-
tical) field boundary conditions at the surface. Introducing these
two types of boundary conditions will enable researchers who
are new to the field to test their codes with BCs whose imple-
mentation can demand careful work.

In addition to these cases seeking to assess the dynamo
threshold, we perform a more detailed comparison of the mag-
netic field behaviour when the dynamo number has a value well
above the dynamo threshold. These computations are also per-
formed with radial field boundary conditions at the surface and
with a fixed resolution of 101×101 grid points. Since these cases
are the supercritical cases of A′, B′ and C′, they are denoted as
SA′ , SB′ and SC′.

3. The codes involved

Eight different codes based on various numerical techniques are
used to solve the mean field induction equation presented in the
preceding section. The main methods are finite differences, finite
elements and spectral decomposition. This enables this bench-
mark to compare very different techniques representative of what
has been done as of today in the community to solve equations
(7) and (8). The codes are described briefly in this section and
detailed descriptions can be found in the references given.

3.1. STELEM code

The STELEM (STellar ELEMemts) code uses a finite element
method in space and a third order scheme in time (Burnett 1987;
Jouve & Brun 2007). The code solves equations 7 and 8 by seek-
ing the approximate solutions Ãφ and B̃φ as linear combinations
of trial functions ζi(r, θ) (Lagrange interpolating polynomials of
degree 1 associated to the grid points (linear functions) for 1st

order interpolation). The coefficients of the two linear combina-
tions are dependent on time only.

The main steps of the method are the following:

– Our domain (defined by rb ≤ r ≤ 1, 0 ≤ θ ≤ π) is di-
vided into smaller regions called elements. These elements
are quadrilaterals with a node at each corner when the trial
functions are 1st order Lagrange polynomials.

– In each element, the PDEs are transformed into ordinary dif-
ferential equations in time involving the coefficients of the
linear combinations.

– The terms in the element equations are numerically evalu-
ated for each element in the mesh. The resulting numbers
are assembled into a much larger set of equations called the
system equations.

– The boundary conditions are taken into account. They are
here implemented as Dirichlet type conditions: the top
boundary condition is a potential field or purely radial field.
We assume a perfectly conducting bottom boundary.

The temporal scheme that we use is adapted from Spalart et
al. (1991). The 3 steps of this explicit scheme enable us to get an
error as small as O(∆t3) (see Jouve & Brun 2007, Charbonneau
2005).

3.2. NDYND code

NDYND is a nonlinear dynamo code with density evolu-
tion (the density does not evolve in our present calculations)
(Brandenburg et al.1992). It is an explicit code that solves the
mean field dynamo equations on a uniform mesh in r and θ
to second order. Advection-type terms are solved to fourth or-
der. For mesh points on the boundaries one-sided second order
derivative formulae are used whilst on the axis appropriate sym-
metry conditions are used. Following Proctor (1977), the equa-
tions are stepped forward in time using a second order Dufort-
Frankel scheme that treats the diffusion operator semi-implicitly.
The potential field boundary condition is implemented by calcu-
lating the value of Aφ on the boundary through matrix multipli-
cation in terms of the values two mesh points inside the domain
(Jepps 1975). The matrices are calculated prior to the simula-
tion for a given mesh. For case C described below, the value
of Bφ(r = 0.7) is obtained by linear interpolation between two
neighbouring mesh points.

3.3. MBRK (Moss Brooke Runge-Kutta) code

This code integrates the dynamo equations over rb ≤ r ≤ 1,
0 ≤ θ ≤ π, on a uniform 2-D grid. Spatial derivatives are sec-
ond order, and time-stepping is by a second order Runge-Kutta
method (in tests, a fourth order Runge-Kutta scheme gave in-
distinguishable results). When vacuum boundary conditions are
used at the outer boundary, r = 1, a non-local matrix multipli-
cation method is used (as in NDYND above). On other bound-
aries, when needed, derivatives on the boundaries are evaluated
by their one-sided second order representations. In case C, the
coefficient Bφ(rc, θ) occurring in the source term is obtained by
linear interpolation from the neighbouring values. The code is
basically that of Moss & Brooke (2000).

3.4. MEFISTO (MEan FIeld STellar simulatiOn) code

The MEFISTO code solves the induction equation in a spherical
shell from rb to 1 and 0 ≤ θ ≤ π in radius and latitude, respec-
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Table 1. Summary of the test cases, the cases followed by a prime have radial field boundary conditions (BC) at the top and the cases preceded by
S are Supercritical (computed with a value of Cα or Cs well above the dynamo threshold).

Case Ω-effect Poloidal source term Diffusivity Meridional flow CΩ Cα Cs Re Top BC
A Eq. (13) α: Eq. (15) η̃ = 1 (ηc = ηt in Eq. (14)) NO 1.40 · 105 Ccrit

α (A) 0 0 Potential
A′ Eq. (13) α: Eq. (15) η̃ = 1 (ηc = ηt in Eq. (14)) NO 1.40 · 105 Ccrit

α (A′) 0 0 Radial
SA′ Eq. (13) α: Eq. (16) η̃ = 1 (ηc = ηt in Eq. (14)) NO 1.40 · 105 3.5 0 0 Radial
B Eq. (13) α: Eq. (15) Eq. (14) NO 1.40 · 105 Ccrit

α (B) 0 0 Potential
B′ Eq. (13) α: Eq. (15) Eq. (14) NO 1.40 · 105 Ccrit

α (B′) 0 0 Radial
SB′ Eq. (13) α: Eq. (16) Eq. (14) NO 1.40 · 105 3.5 0 0 Radial
C Eq. (13) BL: Eq. (17) Eq. (14) Eq. (19) 1.40 · 105 0 Ccrit

s (C) 700 Potential
C′ Eq. (13) BL: Eq. (17) Eq. (14) Eq. (19) 1.40 · 105 0 Ccrit

s (C′) 700 Radial
SC′ Eq. (13) BL: Eq. (18) Eq. (14) Eq. (19) 1.40 · 105 0 35 700 Radial

tively (K äpyl ä et al. 2006). The grid is uniformly spaced and
spatial derivatives are computed using explicit second order ac-
curate finite differences. As time-stepping methods, either first-
order Euler, or second order Adams–Bashforth schemes can be
used. The boundary conditions are implemented using one-sided
expressions of the first derivatives to yield the boundary value.
For case C described above, the value of Bφ(rc, θ) is obtained
from linear interpolation between the adjacent grid points.

3.5. HAO Dynamo code1

The dynamo code of M. Rempel uses a fully explicit finite dif-
ference scheme, which is second order in time and space (the ad-
vection terms are discretized using a MacCormack scheme). In
its current version the code only supports a vertical field bound-
ary condition at the surface. The code has been used recently by
Rempel (2006) to study non-linear Lorentz-force feedback on
differential rotation and meridional flow. For the purpose of this
benchmark study, the non-linear terms were switched off and the
code was used in a purely kinematic way. The results presented
in this paper were computed in only one hemisphere with sym-
metry imposed through the equatorial boundary condition.

3.6. HAO Dynamo code2

The dynamo code of M. Dikpati numerically solves the two cou-
pled partial differential equations of advection-diffusion type by
using a semi-implicit scheme, namely the Peaceman-Rachford-
Alternating-Direction-Implicit scheme (Ames 1992; Press et al.
1992). Writing the equations in operator notation as

∂Bφ
∂t

= [Lr + Lθ] Bφ + S 1, (22)

∂A
∂t

= [Lr + Lθ] A + S 2, (23)

in which, Lr contains all the operators in r and Lθ in θ and S 1
and S 2 denote the cross-terms, the first half of the time-step is
advanced by treating the r-direction explicitly and θ-direction
implicitly, the next half time-step in the reverse manner. The
time-step is determined by satisfying the CFL condition. Since
the diffusive terms are parabolic, whereas the advective terms
are hyperbolic, a space-centered finite differencing scheme for
the diffusive terms and a Lax-Wendroff scheme for the advective
terms have been applied in order to maintain the second order ac-
curacy in these mixed systems (see Dikpati 1996 and Dikpati &
Charbonneau 1999, for more details regarding the calculations

of the tridiagonal elements, initialization and boundary condi-
tions).

3.7. CTDYN (Catania Dynamo) code

The dynamo code used for the benchmark is a pseudospectral
eigenvalue code.

The induction equation is solved with a finite-difference
scheme for the radial dependence and a Legendre polynomial
expansion for the angular dependence. In particular, the follow-
ing expansions for the field is used

Â(x, θ) = eλt
∑

n

an(x) P(1)
n (cos θ), (24)

B̂(x, θ) = eλt
∑

m

bm(x) P(1)
m (cos θ), (25)

where λ is the (complex) eigenvalue, n = 1, 3, 5, . . . and m =
2, 4, 6, . . . for antisymmetric modes, and n ↔ m for symmetric
modes. Vacuum boundary conditions at the surface and perfectly
conducting conditions at x = xi = 0.65 are then translated into
simple ordinary differential equations involving the coefficients
an and bm.

By substituting (24) and (25) in the induction equation, an
infinite set of ODEs is obtained, that can be conveniently trun-
cated in n when the desired accuracy is achieved. The system is
in fact solved by means of a second order accurate finite differ-
ence scheme and the basic computational task is thus to compute
numerically eigenvalues and eigenvectors of a block-band diag-
onal real matrix of dimension M × n, M being the number of
mesh points and n the number of harmonics, M(α)v = λv and v
is in general a complex eigenvector.

This basic algorithm is embedded in a bisection procedure
in order to determine the critical dynamo number needed to find
a purely oscillatory solution, for which<e(λ) = 0 Numerically
a zero is accepted when the dimensionless quantity<e(λ)R2

�/ηt

is no greater than 10−3 in the following calculations. Greater ac-
curacy requires usually a more refined spatial grid; see Bonanno
(2004) for further details about the code.

3.8. HOLLERBACH code

The MHD code developed by Hollerbach (2000) is an incom-
pressible, spherical, spectral scheme which solves the momen-
tum equation, the induction equation, and the temperature equa-
tion in the Boussinesq approximation. The dynamo benchmark
performed by R. Arlt employs only the induction equation. Full
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MHD computations of the magnetorotational instability with
this code are given in Arlt et al. (2003).

The magnetic field is decomposed into two scalar potentials,
g and h, defined by

B = ∇× (gêr) + ∇ × ∇ × (hêr) , (26)

where êr is the radial unit vector. The potentials depend on r,
θ, and φ. The actual equations being solved are the radial com-
ponent of the induction equation and the radial component of
the curled induction equation. The potentials g and h are used
in their spectral representation with spherical harmonics for the
azimuthal and latitudinal structure, such that

g(r, θ, φ) =

±M∑

m=0

L∑

l=m′
glm(r, t)P|m|l (cos θ)eimφ, (27)

where m′ = max(m, 1) and L and M are the truncations of the
spectral expansion. In this paper, we set M = 0 for all compu-
tations because of axisymmetry. Finally, these expressions are
reintroduced in the induction equation which is integrated nu-
merically.

The radial dependence of g and h is further expanded in
Chebyshev polynomials which have a high density of zeros near
the radial boundaries, hence providing very good resolution in
the boundary layers. Two additional modes are used to imple-
ment the radial boundary conditions for the magnetic field. The
physical condition for a boundary with vacuum is ∇ × B = 0
for the exterior and leads to particular conditions for g and h and
likewise for the conditions for perfectly conducting boundaries.

The diffusive part of the system is solved implicitly. The
time-stepping is a Runge-Kutta integration with a second order
predictor and corrector steps. While the determination of criti-
cal dynamo numbers of α-type dynamos is a linear problem, we
have kept the scheme in order to be able to add nonlinearities
such as quenching functions or nonlocality to the source term S .

The non-linear routine consists of a transformation of the
spectral potentials into a real-space B, the computation of U×B+
S , and the curling and back-transformation into spectral space.
The velocity field U and the source term S are only defined in
real space.

4. Results

The goal of this benchmark is to publish detailed analysis of
the results obtained by 8 different codes running on well-defined
test cases and to assess quantitatively the agreement between the
codes. It aims at providing the community with precise standard
solar dynamo cases to which to refer. In order to compare both
qualitatively and quantitatively our results, we indicate in tables
for each case the critical dynamo number Ccrit

α above which the
solution is exponentially growing, and the corresponding fre-
quency ω, defined by ω = 2π/T with the magnetic cycle pe-
riod T (i.e. twice the period of the sunspot cycle) in terms of
the diffusive time R2

�/ηt. In addition to these quantitative results,
we provide the butterfly diagrams and the evolution of the field
lines in a meridional plane for each case, in order to follow the
behaviour of the magnetic field configuration over time. For the
supercritical cases, since the intensity of the magnetic field is
saturated through the quenching term, we can make a detailed
comparison of the field intensity at selected points in the com-
putational domain during a part of the cycle. We can then see
the deviation of each curve obtained by the different codes from
the mean curve, which will be considered to be the “optimal so-
lution”. Finally, to confirm that all codes converge to the same

solution, we run convergence tests for 2 particular cases (B and
C′), which allow us to follow the evolution of the values of Cα

or Cs and ω as the spatial resolution is increased.

4.1. Case A

4.1.1. Critical cases

Table 2. Critical values of dynamo numbers and frequencies for case
A (with potential boundary conditions) and case A′ (with radial field
conditions) with the spatial and temporal resolution for each code. We
indicate the mean value, the standard deviation and the relative standard
deviation (R.S.D) (standard deviation divided by the mean value) for
each case. Asterisks indicate particular cases: for HOLLERBACH, the
resolution is given in terms of the number of spectral modes and for
CTDYN in terms of grid points in r and spectral modes in θ. CTDYN
does not evolve the system in time, that is why we do not indicate any
time-step for this code.

Case Code Resolution ∆t Ccrit
α ω

A STELEM 65 × 65 10−5 0.385 157
A NDYND 81 × 81 5 · 10−6 0.385 158
A MBRK 81 × 81 5 · 10−6 0.390 159
A CTDYN 70 × 70 * - 0.388 160
A HAO2 101 × 101 10−5 0.388 156
A HOLLER 60 × 60 * 5 · 10−5 0.385 159

Mean val 0.387 158.1
Std Dev. 0.002 1.472
R. S. D. 0.006 0.009

A′ STELEM 65 × 65 10−5 0.366 158
A′ NDYND 81 × 81 5 · 10−6 0.369 156
A′ MBRK 81 × 81 5 · 10−6 0.372 158
A′ MEFISTO 121 × 121 10−6 0.368 158
A′ HAO1 128 × 128 3 · 10−6 0.368 157

Mean val 0.369 157.4
Std Dev. 0.002 0.894
R. S. D. 0.006 0.006

Table 2 shows the results for the critical dynamo numbers
and periods for cases A and A′. The results are in good agree-
ment with each other, the relative standard deviation reaching
only the value of 0.006 for Cα in both cases, meaning that the
values are all gathering close to the mean. The agreement on the
period is also quite satisfactory, the relative standard deviation
being again of the order of a few parts in a thousand.

In these cases, we find that only relatively low spatial res-
olution is needed for convergence and close agreement. Even
though the error function representations of α and Ω imply rel-
atively rapid changes in these functions, they are smooth and
the models do not produce strong radial or latitudinal gradi-
ents in the induced toroidal or poloidal fields. Instead, the mag-
netic fields are organized in very large structures that smoothly
match the boundary conditions. Since these solutions occur for
dynamo numbers only slightly above critical, no strong gradients
in toroidal or poloidal fields should arise at later times either. We
see that the solutions satisfying radial field boundary conditions
at r = 1 are excited at lower dynamo numbers than for the po-
tential field boundary conditions. But the dynamo frequency is
nearly the same for both boundary conditions, about 158 (cor-
responding to a period of 30.9 years in dimensional units, com-
pared to 11 years for the solar cycle). Figures 2 and 3 show the
behaviour of the solution over time. Figure 2 shows the evolution
of the field lines in the meridional plane in the northern hemi-
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t=0.115 t=0.118 t=0.122

t=0.125 t=0.130 t=0.135

CASE A

Fig. 2. Results for case A: pure αΩ dynamo with constant magnetic
diffusivity. The results are shown for Cα = Ccrit

α . The figure shows the
evolution of the contours of the poloidal potential (left panel) and of
the toroidal field (right panel) during half a magnetic cycle. Red (blue)
colours indicate positive (negative) toroidal field and plain (dotted) lines
indicate clockwise (anticlockwise) poloidal field lines.

Fig. 3. Case A: butterfly diagram i.e. time-latitude cut of the toroidal
field at 0.7R� (upper panel) and of the radial field at the surface (lower
panel). Red (blue) colours indicate positive (negative) values of the
field.

sphere during half a magnetic cycle and Fig. 3 shows a time-
latitude cut of the toroidal field at the base of the convection
zone (r = 0.7) and of the radial field at the surface in both hemi-
spheres. In this case the solution produces a butterfly diagram
whose ’wings’ for the toroidal field slope toward the poles with
increasing time, opposite to the solar case.

4.1.2. Supercritical case

We have previously discussed models A and A′ in the case where
Cα was at its critical value, i.e. in the case of a quasi-stationary
magnetic energy. We now compare the various codes for a su-
percritical case of model A′ (with vertical field conditions at the

Fig. 4. Same as case A but for case SA′.

Fig. 5. Case SA′: comparison between the values of Bφ(r =
0.7, latitude = 60◦) and Br(r = 1, latitude = 30◦) normalized by B0

obtained by the different codes during a cycle. The right panels show a
zoom on the first maximum of the field and on the first time the field re-
turns to zero after one cycle period. The thick line represents the mean
value of the field and the coloured lines represent the curves obtained by
the different codes. The colour coding is the following: HAO1 in blue,
MBRK in red, STELEM in green, NDYND in black dashed, HAO2 in
black and MEFISTO in black dotted.

surface). We thus choose for this case a value of Cα of 3.5, al-
most 10 times the critical value of Cα in this case.

Figure 4 represents the butterfly diagram obtained in case
SA′. The evolution of the magnetic field is close to what we
found for the critical case. We can nevertheless notice that the
high latitudes polar branch is reduced in this case compared to
case A but, in the latitudinal band where the sunspots appear, we
again see that the toroidal field is moving poleward, contrary to
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what is observed in the Sun. We also see that increasing the Cα

decreases the cycle period in this case.
Figure 5 shows the deviation from the mean value of cuts

at various radii and latitudes of the toroidal and radial fields in
the magnetic energy-saturated regime for the different codes. All
curves were adjusted so that Bφ at the base of the convection
zone is exactly 0 at t = 0. We show for each curve a zoom on the
first maximum of Bφ at the base of the convection zone and of
Br at the solar surface and on the crossing of zero after one cycle
period. This procedure enables us to compare both the amplitude
shift and the phase shift caused by the various codes.

We first see that the deviations between the codes are more
significant for Br at the surface. This could be due to various ef-
fects such as the imposition of the boundary conditions or the
sharper profile of Br close to its maximum compared to Bφ .
Nevertheless, the deviation from the mean curve stays under 7%
of the maximum value of the field and this deviation drops to
about 1.2% for Bφ. The agreement on the fields maxima is thus
very satisfactory.

Looking at the instant where Bφ and Br return to zero after
one period enables us to see the significance of the phase shift
between the various solutions. Again the differences are more
pronounced for the curves for the radial field. The curves all
cross zero in the very small time interval [0.0444, 0.0450] which
is about 1.6% of the cycle period. The length of this time interval
is the same for the curves for the toroidal field.

This pure αΩ dynamo model includes a constant magnetic
diffusivity. This ingredient of the model is one of the most poorly
known but we can reasonably assume that the net diffusivity
should be much lower in the convection-free radiative core than
in the turbulent envelope and thus that the diffusivity should vary
with depth in our computational domain. In the following case,
we refine our model to test the influence of applying a gradient
of magnetic diffusivity in a pure αΩ model and how the various
codes cope with this more challenging computation.

4.2. Case B

In this case, the magnetic diffusivity is no longer constant, as
indicated by Eq. (14). This refinement enables to test how the
various codes cope with a non constant diffusivity profile in the
model. Here again, the comparison is made by looking at the
critical Cα , at the periods, and at the strength of the magnetic
field during one cycle.

4.2.1. Critical cases

As Table 3 shows, the agreement of all codes on the critical val-
ues of Cα is quite good, even at low resolution. We note that the
diffusivity gradient makes it more difficult for the dynamo to be
excited and produces shorter cycles (see Table 2 for a close com-
parison with case A), indeed the frequency is now close to 170,
which corresponds to a sunspot period of 28.7 years, given our
choice of ηt.

We note again that in this case the dynamo is more easily
excited when radial BCs are imposed, and that the period of the
dynamo waves is slightly increased in case B′. Moreover, the
agreement on the value of the critical dynamo number is better
in case B′, showing that the imposition of potential boundary
conditions can induce some divergence between codes. We then
conclude that, even in this simple αΩ model the choice and im-
plementation of boundary conditions can already be a delicate
issue.

Table 3. same as for Table 2, for cases B and B′.

Case Code Resolution ∆t Ccrit
α ω

B STELEM 129 × 129 10−6 0.410 172
B NDYND 81 × 81 10−5 0.405 172
B MBRK 128 × 128 10−6 0.411 172
B CTDYN 70 × 70 * - 0.411 172
B HAO2 101 × 101 10−5 0.403 171
B HOLLER 60 × 60 * 5 · 10−5 0.408 173

Mean val 0.408 172
Std Dev. 0.003 0.632
R. S. D. 0.008 0.004

B′ STELEM 65 × 65 10−5 0.387 169
B′ NDYND 81 × 81 10−5 0.385 168
B′ MBRK 128 × 128 10−6 0.391 169
B′ MEFISTO 121 × 121 10−6 0.387 169
B′ HAO1 128 × 128 3 · 10−6 0.387 169

Mean val 0.387 168.8
Std Dev. 0.002 0.447
R. S. D. 0.006 0.003

Fig. 6. Convergence test for case B: evolution of the values of Ccrit
α and

ω as functions of the spatial resolution. The colour coding is the fol-
lowing: HAO2 in black, CTDYN in blue, STELEM in green, MBRK in
red, HOLLER in light green for which the resolution is the number of
collocation points, twice the number of Chebyshev polynomials.

Figure 6 indicates the convergence behaviour of each code
toward the values quoted in Table 3 for case B with potential
BC’s. Note that for each quantity (Ccrit

α and ω), the spread of the
values in the converged part of the diagram is less than 1% of
the absolute value. That is, all results that fall in the diagram
agree within better than 1%, as we can already see in Table 3.
All results seem to converge approximately towards the same
point, especially for the frequency, where the agreement is ex-
tremely good. We note that in this case, most codes have already
converged with a resolution of 80 × 80, confirming that this cal-
culation does not require a very high resolution in spite of the
sharp diffusivity profile and the imposition of potential bound-
ary conditions. We note that the convergence is very fast for the
pseudospectral code CTDYN, since the values at a resolution of
40 × 40 are already close to the converged value.
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CASE B

t=0.115 t=0.118 t=0.122

t=0.125 t=0.130 t=0.133

Fig. 7. Same as Fig. 2 but for case B: pure αΩ dynamo with a jump
of magnetic diffusivity from 0.01ηt below the tachocline to ηt in the
convection zone. The results are shown for Cα = Ccrit

α .

Fig. 8. Same as Fig. 3 but for case B.

As we can see in Fig. 7 and 8, the magnetic field behaviour is
close to what was found in the constant diffusivity case (case A)
except that the poloidal field lines seem to be less diffuse in the
tachocline due to the presence of the sharp diffusivity gradient in
this zone. In the meridional plane, the regions of generation and
destruction of the magnetic structures are the same and the di-
rections of rise and migration of the field are identical to case A.
However, we notice on the butterfly diagram that the regions of
strongest magnetic intensity are confined in a much smaller re-
gion around 30◦ latitude approximately in the region of strongest
α-effect. The polar branch at high latitudes (above 60◦) of the
toroidal field is more stretched in time and less intense com-
pared to the regions of strongest intensity than in case A. The
addition of variable diffusivity and thus of diffusivity gradients
have some impact on the field location and its organization in
finer structures.

4.2.2. Supercritical case

Figure 9 shows the butterfly diagram obtained in case SB ′. It is
again very similar to case SA′ shown in Fig.4; we indeed re-

cover the poleward migration of the toroidal field, with a pole-
ward branch at high latitudes being a little more pronounced than
in case SA′. This was also one of the main differences between
case A and case B.

Fig. 9. Same as Fig. 4 but for case SB′: Supercritical case of pure αΩ
dynamo with variable diffusivity: butterfly diagram i.e. time-latitude cut
of the toroidal field at 0.7 (upper panel) and of the radial field at the
surface (lower panel).

Figure 10 shows the comparison between the values of the
toroidal and radial fields at specific latitude and radius. The
agreement is again very reasonable between all codes. Indeed,
the difference between the various curves is hardly distinguish-
able if we do not zoom in on particular areas of the graphs.
Zooming on the maximum of Bφ indicates that the deviations
to the mean curve do not exceed 1.5% of the maximum value of
the field. The phase shift is also very small, all curves recover
quite well the instant of zero-crossing. If we do not take into ac-
count the extreme curve which is a little further from the mean
curve, we find the deviation does not exceed 0.6% of the mean
value. This extremely small value indicates that the codes can
reproduce very precisely the cycle period.

The agreement between all codes for the radial field at
latitude=30◦ at the surface is reduced compared to the toroidal
field at latitude=60◦ at the base of the convection zone.
Nevertheless, the deviation from the mean curve stays under 3%,
despite the very sharp profile of Br when it reaches its maxi-
mum. The deviations at the instant where Br vanishes after one
cycle do not exceed 3.5% of the cycle period. Most of the curves
are located so close to each other that it is difficult to distinguish
them even on the zoomed frame, where the range represents only
about 9% of the cycle period.

The agreement in cases A and B of αΩ dynamos are thus
very satisfactory, despite the strong gradients of α, Ω and of
magnetic diffusivity in case B. We now compare a completely
different solar dynamo model which includes the meridional cir-
culation, the large scale flow which is observed in the Sun and
which may play a role in the dynamo loop.

4.3. Case C

Case C is a Babcock-Leighton flux-transport dynamo which in-
corporates a solar-like differential rotation, magnetic diffusiv-
ity sharply varying with depth, meridional circulation and a
non-local Babcock-Leighton source term for poloidal field. This
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Fig. 10. Same as Fig. 5 but for case SB′.

model thus takes into account two observed solar features, which
may play a role in dynamo action: meridional flow and the
twist of active regions at the surface. As we wish to be in the
advection-dominated regime, we want an efficient connection
between the magnetic field source regions (the base of the CZ
and the surface) by means other than magnetic diffusion, i.e. the
meridional circulation (see Eq. (19)). Moreover, in this model,
the poloidal field owes its origin to the twisted nature of active
regions at the solar surface due to Coriolis force, which is again
an observed feature of the solar magnetic activity. This mecha-
nism is modeled by the non-local surface source term S of Eq.
(17) which appears in the equation for the evolution of Aφ .

4.3.1. Critical cases

Looking at Table 4, we notice that cases C and C′ require more
spatial and temporal resolution for convergence than the αΩ
cases. A high resolution is needed to obtain a reasonably good
agreement between all codes.

The imposition of radial field boundary conditions in case
C′ can partly explain the high resolution needed. At the sur-
face, poloidal field and consequently Bθ is created and the outer
boundary conditions force the component Bθ to be zero. The lat-
itudinal component of B has thus to move smoothly from a non-
zero value in a thin layer below the surface to zero at the surface,
which requires the resolution to be sufficient to handle this strong
gradient.

The dispersion of the values for Ccrit
s in case C is higher than

in the previous cases but the relative standard deviation is de-
creased from 3% to 0.5% if we remove the value of 2.355 of the
HOLLERBACH code, which is quite far from the other results.
The cycle frequency is also sensitive to the numerical method
used, although all codes agree to within less than 2%. We note
that the agreement is increased in case C′ , when radial boundary
conditions are used.

This more sophisticated flux-transport model (in comparison
to the previous αΩ models) leads to a higher though still rea-

Table 4. same as for Table 2, for cases C and C′.

Case Code Resolution ∆t Ccrit
α ω

C STELEM 129× 129 10−6 2.520 542
C NDYND 81 × 81 10−6 2.513 525
C HAO2 101× 101 10−5 2.515 546
C MBRK 151× 151 10−6 2.540 532
C HOLLER 100× 100 * 5 · 10−8 2.355 538

Mean val 2.489 536.6
Std Dev. 0.075 8.295
R. S. D. 0.03 0.015

C′ STELEM 129× 129 10−6 2.460 544
C′ NDYND 321× 321 5 · 10−7 2.469 534
C′ MBRK 256× 256 5 · 10−7 2.473 537
C′ MEFISTO 201× 201 10−6 2.463 539
C′ HAO1 128× 128 3 · 10−6 2.450 537

Mean val 2.463 538.2
Std Dev. 0.009 3.701
R. S. D. 0.004 0.007

Fig. 11. Same as Fig. 6 but for case C′. The colour coding is now the
following: STELEM in green, NDYND in black dashed, MBRK in red,
HAO1 in blue and MEFISTO in black dotted.

sonable dispersion of the values. This higher dispersion is to be
expected, since this case includes a meridional flow and a non-
local source term for poloidal field and is therefore numerically
more challenging.

Figure 11 shows the convergence behaviour of each code to-
ward the values quoted in Table 4 for case C′. Again, the agree-
ment among the various codes is very satisfactory, the spread
of the values in the converged part of the diagrams in the con-
verged part is less than 1% of the absolute value. However, in
this case, contrary to case B, most of the codes need a minimum
resolution of 100× 100 to be considered as converged. As stated
before, since this case includes more sophisticated ingredients,
it is numerically more challenging and more spatial resolution is
required.

Figures 12 and 13 show the behaviour of the magnetic field
in this Babcock-Leighton flux-transport model. We first notice
that we get in this case an equatorward butterfly diagram, in
agreement with the solar observations. Indeed, we get a very
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CASE C

t=0.116 t=0.117 t=0.118

t=0.119 t=0.120 t=0.122

Fig. 12. Same as Fig. 2 but for case C: Babcock-Leighton flux-transport
dynamo with a jump of magnetic diffusivity and with a meridional cir-
culation of 10 ms−1 at the surface. The results are shown for Cs = Ccrit

s .

Fig. 13. Same as Fig. 3 but for case C.

strong branch moving from 55◦ latitude toward the equator, visi-
ble on the time-latitude cut of Bφ at the base of the CZ. Here the
magnetic field follows the advective path created by the merid-
ional flow and consequently this large scale flow plays a key
role in these dynamo solutions. Figure 13 shows that the but-
terfly diagram of this BL case differs significantly from that of
the previous αΩ cases. Unlike cases A and B, the field is not
organized in very large and smooth structures; on the contrary
the poloidal field is very concentrated near the poles in a narrow
structure that will expand into lower latitudes as poloidal flux
is advected poleward by the meridional circulation. The toroidal
field, advected by the meridional flow, is also stretched in nar-
row bands especially when it reaches the base of the CZ. The
creation of these fine structures, organized in narrow latitudinal
bands causes strong field gradients to be created, which require
both spatial and temporal resolution to be high.

4.3.2. Supercritical case

Increasing Cs to 35 (about 14 times supercritical for dynamo
action) enables us to see the fields in the regime of a well-
established flux-transport dynamo.

Fig. 14. Same as Fig. 4 but for case SC′.

Figure 14 shows that the associated butterfly diagram for
toroidal field is similar to case C shown in Fig. 13. Some dif-
ferences are nevertheless visible on the evolution of the radial
field at the surface like the appearance of finer structures close
to the equator.

Fig. 15. Same as Fig. 5 but for case SC′.

In this flux-transport model, the physical ingredients are
more sophisticated and thus the uncertainty on the critical Cs and
on the cycle period seems to be more significant. Nevertheless,
as Fig. 15 shows, the agreement on the values of the toroidal and
radial field at specific points is again very good. The deviation
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from the mean curve is of the order of 1% for both the maxima
in the toroidal fields and for the differences in phase.

This time, the agreement on the behaviour of the radial field
in one cycle period is as good as the agreement in the toroidal
field. Both the maximum of the field and the instant where Br
vanishes are very well reproduced and are very close to the mean
‘optimal’ solution.

5. Conclusions

Understanding the activity and magnetic cycle of the Sun is cru-
cial since its variability has a direct impact on our technological
society by disturbing high frequency signals, impairing satellites
and damaging power grids. For decades the scientific community
has developed observational, theoretical and numerical tools in
order to be able to understand the inner workings of the Sun,
while at the same time aiming to be able to predict its activity.
The current accepted scenario states that this surface magnetism
is linked to an internal dynamo. Two dimensional mean field dy-
namo models have proved to be very useful tools to test and val-
idate ideas and distinguish among scenarii of the solar dynamo
such as αΩ, α2 or flux-transport and to progress in our effort to
understand the Sun as a whole.

The inclusion of the meridional circulation in the dynamo
theory of the solar cycle turns out arguably to be essential in
reproducing the most important features of the 11-yr cycle. On
the other hand if the eddy diffusivity ηt is as low as 1011 cm2s−1,
the magnetic Reynolds number Re = u0R�/ηt reaches values of
the order of 103 for a flow of about 10 ms −1.

How robust are then the predictions of dynamo codes for
purely kinematic models? In this paper eight different codes,
based on finite differences, finite elements and spectral decom-
position, have been considered in order to solve the 2-D induc-
tion equation in spherical geometry in the presence of strong
gradients of the turbulent diffusivity, realistic differential rotation
profile and high magnetic Reynolds number. Again, we wish to
stress that the cases discussed in this paper are not intended
to cover exhaustively all the solar dynamo models that have
been published in the literature so far, such as for instance
non-linear Malkus-Proctor models (see e.g. Brandenburg et
al. 1991, Moss & Brooke 2000 or Bushby 2006). However,
we believe they are representative of typical mean field kine-
matic dynamo models.

By defining three standard solar dynamo cases, namely cases
A, B and C that are made increasingly sophisticated by intro-
ducing well defined physical ingredients, we hope to have been
able to provide useful test models easily reproducible by anyone
seeking to validate their code. Cases A, B and C have poten-
tial boundary conditions on top of the domain. Similar cases are
computed using radial field boundary conditions (cases A′, B′
and C′) since the imposition of BCs are known to be a delicate
issue and is consequently a phase of code development that also
needs to be carefully validated. For each case we list in sum-
mary tables the ingredients used, the critical dynamo number
for the onset of dynamo action, and the resulting cycle period
for each code. Moreover, we display typical realizations of the
poloidal and toroidal fields in the meridional plane over half a
cycle and butterfly diagrams of the toroidal field at the base of
the convection zone as well as the radial field at the surface.
In order to show that the solutions of these test cases are con-
firmed by several independent codes and are converged to high
accuracy, we show convergence plots for two particular cases
namely B and C′. Further, for each set of parameters chosen,
we compute supercritical cases (SA′, SB′ and SC′) including

non-linear quenching of the poloidal source term (the α effect
for cases A and B and the Babcock-Leighton term for case C)
at a fixed resolution of 101 × 101 and display the butterfly dia-
gram obtained in that high dynamo number regime. In order to
facilitate more quantitative analysis of the results of the various
codes, we plot for six of the eight codes used in this study spe-
cific cuts of the toroidal and radial fields at fixed latitude and
radius. Given the quite good agreement of the different solutions
obtained with the various numerical codes, these later figures
serve two purposes: a) they help in determining the intrinsic de-
viation among all codes and b) they allow a quantitative compar-
ison of the prediction made by the codes for the strength of the
radial and toroidal fields in the numerical domain.

The key point to be extracted from our analysis is that the
agreement between the different codes used in this benchmark
study is indeed quite good, being of the order (or even less than)
of 1% for the reference αΩ dynamo cases A and B, in spite of
the non-trivial pattern of differential rotation and for case B the
presence of a strong gradient of the turbulent diffusivity. It is
also important to note that in the search for critical values of
the dynamo numbers, the eigenvalue code and the time-evolving
codes agree rather well.

When the meridional flow is present as in case C, the agree-
ment is still reasonably good but with a dispersion of the order
of a few percent in the values of the critical dynamo number and
in the periods. It must be noted that this case includes merid-
ional flow, a solar-like differential rotation, a sharp tachocline,
a gradient of magnetic diffusivity and a non-local source term
for poloidal field. It is thus numerically more challenging and
requires more resolution to converge, whatever the numerical
technique used. Nevertheless the values of the toroidal field at
the base of the convection zone and the butterfly diagrams are
very well reproduced by all the codes for all the cases consid-
ered.

We anticipate that the well-documented benchmark cases
presented here will be a useful tool for any researcher who in-
tends to develop/validate his/her code, since they provide stan-
dard cases to which to refer and detailed tables and figures for a
quantitative comparison.
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Bonanno, A., Elstner, D., R üdiger, G., & Belvedere, G. 2002, A&A, 390, 673
Bonanno, A., MemSait, 2004, 4, 17B
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