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The magnetic fields of the Earth and other planets deviate in varying degrees from symmetry about the 
rotational axis. While. for example, the field of Saturn is highly symmetric, that of Uranus shows a 
striking asymmetry. With these observations in mind we investigate excitation conditions of axisym- 
metric and non-axisymmetric field modes in spherical mean-field dynamo models. In models of a2-type 
the marginal dynamo numbers for modes with different azimuthal dependences are close together if the 
z-effect is concentrated in a thin layer. Preference of non-axisymmetric modes over axisymmetric ones 
occurs if we include weak differential rotation, anisotropies of the a-effect or the y-effect, the last one 
corresponding to a radial transport of magnetic flux. We discuss consequences of these results for 
planetary dynamos. 

K E Y  WORDS: Magnetohydrodynamics, mean-field dynamos, non-axisymmetric magnetic fields. 

1. INTRODUCTION 

A great number of spherical kinematic mean-field dynamo models have been 
investigated which proved to be helpful for understanding the processes respon- 
sible for the magnetic fields of the Earth, the planets, the Sun and solar-type stars, 
the magnetic stars and other objects; e.g., Krause and Radler (1980). In these 
models the distributions of the electric conductivity and the fluid motions are 
assumed to be symmetric with respect to both the rotation axis and the equatorial 
plane. It turned out that the modes of the mean magnetic field occurring in these 
models are not necessarily symmetric but may well be non-axisymmetric with 
respect to the rotation axis. In addition they can be symmetric or antisymmetric 
about the equatorial plane. The possibility of non-axisymmetric modes has first 
been investigated for aw-dynamos by Stix (1971), Krause (1971), and Roberts and 
Stix (1972); further results have been presented by Ivanova and Ruzmaikin (1983, 
Radler (1986a), and Ruzmaikin et al. (1988). Non-axisymmetric modes in 
a2-dynamos were first found by Rldler (1975) and have been investigated for a 
variety of models by Rudiger (1980) and Radler (1986a). For a wide range of 
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46 A. BRANDENBURG ET AL. 

assumptions the axisymmetric modes are favored over the non-axisymmetric ones, 
i.e. an axisymmetric mode is most easily excited. In some ao-models a slight 
preference of non-axisymmetric modes has been found for moderate magnitudes of 
differential rotation. For sufficiently large differential rotation there are good 
reasons to assume that it is always an axisymmetric mode which is easiest to 
excite (Radler, 1986b). In cr2-models a clear preference for non-axisymmetric modes 
occurs if particular anisotropies of the cr-effect or related effects are taken into 
account. 

The possibility of both axisymmetric and non-axisymmetric modes of the mean 
magnetic field in the models envisaged is of interest for understanding the 
observed fields of the objects mentioned. The magnetic field of the Earth clearly 
deviates from axisymmetry, as also, to varying degrees, do  the fields of other 
planets. Only the Saturnian field shows a surprisingly high degree of axisymmetry, 
whereas the Uranian field exhibits an extremely high asymmetry. Deviations of the 
solar magnetic field from axisymmetry are indicated by its well-known sectorial 
structure (e.g. Bai, 1988). Likewise the observations of magnetic stars can only be 
understood by assuming non-axisymmetric structures of the magnetic fields, often 
discussed in terms of the “oblique rotator” model. (However the magnetic fields of 
the early type stars may possibly be of “fossil”, not of dynamo, origin.) 

The relation between the magnetic field modes defined here and the magnetic 
fields generated by real dynamos is still a matter of debate. In contrast to the 
kinematic, i.e. linear dynamo, real dynamos are subject to the back-reaction of the 
magnetic field on the motions, that is, they operate in a nonlinear regime. Some 
symmetric dynamo models in the above sense have been studied with simple 
assumptions about the back-reaction. There are results which suggest that it is the 
most easily excitable mode only which determines the magnetic field of a steady 
state in the nonlinear regime, and that the other modes are then no longer of 
interest; see Krause and Meinel (1988) and Radler and Wiedemann (1989). There 
are, however, other results which show that the magnetic field in the steady state 
may depend on the initial conditions and that an oscillatory field may consist of 
several parts which are related to different modes; see Brandenburg et al. 
(1989a, b). Moreover, it seems reasonable to admit even in the kinematic theory, 
slight asymmetries of the models, e.g. asymmetries in the distribution of the 
motions. Then it can be expected that the magnetic field generated, in addition to 
a part related to the most easily excitable mode of the corresponding symmetric 
model, contains also parts related to other modes with comparable excitation 
conditions; see Radler (1989). 

We present here a few more results concerning excitation conditions of 
axisymmetric and non-axisymmetric magnetic field modes in dynamo models of 
cr2-type, considering also influences of anisotropies of the a-effect, of related 
induction effects of the fluctuating motions and of differential rotation. Our 
investigations have been partly motivated by a comparative study of the magnetic 
fields observed on the Earth, Jupiter, Saturn and Uranus presented by Radler and 
Ness (1988), from which, in the sense explained above, several questions arose 
concerning the circumstances under which the excitation conditions of the 
axisymmetric and certain non-axisymmetric modes lie closely together. 
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NON-AXISYMMETRIC MAGNETIC FIELDS 47 

2. THE MODEL AND THE NUMERICAL METHOD 

We consider dynamo processes in a spherical rotating body of electrically 
conducting fluid surrounded by free space. The mean magnetic flux density, B, is 
supposed to obey the induction equation 

(1) 
dB -=qAB+curl(ux B+b) 
at 

inside the fluid body and to continue as an irrotational field outside. Here is the 
magnetic diffusivity of the fluid, which is considered to be constant, u the velocity 
of the mean motion of the fluid and d the mean electromotive force caused by the 
fluctuations of the motions and of the magnetic field. 

As mentioned above, we assume symmetries of the mean motion and the 
distribution of the fluctuating motions about both the rotation axis and the 
equatorial plane. More precisely, we assume that all mean quantities are invariant 
under rotation of the total velocity field about the rotation axis and under 
reflection about the equatorial plane. We also assume that the mean motions and, 
on average, also the fluctuating motions are steady, that is, all mean quantities are 
also invariant under translations of the velocity field along the time axis. Under 
these circumstances the general solution of the equations governing the B-field can 
be understood as a superposition of B-modes having the form of 

B = We (B exp {im+ +(A- iw)r}). (2) 

Here B is a vector field which is symmetric about the rotation axis, either 
symmetric or antisymmetric about the equatorial plane, and steady. m is a non- 
negative integer indicating the azimuthal variation of the mode, 4 the azimuthal 
coordinate, I and w are real constants, the first of which describes the growth rate 
of the mode. As usual, we denote these modes by Am or Sm, according to their 
antisymmetry or symmetry about the equatorial plane and to their azimuthal 
variation, that is, we speak of AO, SO, Al ,  S1, ... modes. We restrict our attention 
to the most easily excitable mode of each type, that is, to that with the largest 
value of 1. We furthermore consider only marginal cases, that is, we determine for 
a given mode the magnitude of induction effects such that A=O. In the marginal 
case the axisymmetric modes, m=O, are steady if w=O or, if w#O, they have the 
form of oscillations with a steady amplitude and the frequency w. The marginal 
non-axisymmetric modes, m #O, are waves with steady amplitudes and migrating 
in azimuthal direction with an angular velocity w/m. 

As far as the mean electromotive force d is concerned we accept the usual 
assumption that this quantity, at a given point in space and time, can be 
represented ‘by B and its first spatial derivatives in this point. Even under this 
assumption, d has in general a complex structure; e.g. Radler (1980). We restrict 
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48 A. BRANDENBURG ET AL. 

our attention here, with some arbitrariness, to a few particular contributions to 8 
which are given by 

The coefficients 2 , .  r4. and y l  are determined by the assumptions about the fluid 
motions; i and i are unit vectors parallel to the rotation axis and in the radial 
direction. respectively. Due to the assumed symmetry of the fluid motions, these 
coefficients depend only on radius and latitude but not on the azimuthal 
coordinate, and they are symmetric about the equatorial plane. 

As for the mean motion we include only a differential rotation, that is, 

u=Zlr.ixi, (4) 

where R and r are the mean angular velocity and the radial coordinate, 
respectively. For the coefficients describing the induction effects we now write 

where the dimensionless parameters C,,, Cai, C.,,, and Cn describe the magnitudes 
of these effects. R is the radius of the fluid body, and x = r / R .  We further write 

1 - 1  for ZnS - 1 

for tn2 1 

where a stands for a or y, and xu, d,, x,, and dn are constants. These specifications 
ignore any latitudinal dependence of a,, a4, yl, and R; they coincide with 
specifications used by Radler (1986a). Note that f;f,(x)dx= 1 if x , - d , I O  and 
X,+d,Z 1. 

The equations governing the B-field pose an  eigenvalue problem for the complex 
parameter 1-io or. if we put i = O ,  for a pair of parameters consisting of one of 
the quantities C,,, C,,, C.,,, or Cn and of w. Representing B by 

B= -curl(r x VS) - r  x V T  (11) 
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NON-AXISY MMETRIC MAGNETIC FIELDS 49 

Table I Marginal values of C,, and the 
corresponding frequencies w (in units of 
q / R 1 )  of Am modes in a model with 
z,-efTect versus d,, for x,=0.8. Note that 
for very thin 1-layers the difTerences of 
C,, for different m are smaller. The trun- 
cation level was N,= 18 and N,= 150 

d ,  A0 A 1  A2 A3 A4 

c a  1 

0.10 2.57 2.63 2.79 3.00 3.23 
0.08 2.43 2.48 2.61 2.78 2.97 
0.06 2.28 2.32 2.43 2.56 2.70 
0.05 2.20 2.24 2.33 2.44 2.56 

w 
0.10 0 1.20 0.94 0.64 0.42 
0.08 0 1.02 0.81 0.55 0.37 
0.06 0 0.82 0.67 0.45 0.29 
0.05 0 0.71 0.59 0.40 0.25 

by the defining scalars S and T and expanding them into series of spherical 
harmonics we can reduce this problem to an eigenvalue problem for an infinite set 
of ordinary differential equations for the coefficients of these expansions, which 
depend on the radial coordinate only. I t  is assumed that the solutions of this 
problem are approximated by the solution of the corresponding problem for a 
finite set of equations, which results from the infinite one by omitting all 
coefficients belonging to spherical harmonics the order 1 of which exceeds a 
sufficiently large bound, N , .  This finite set of equations is subject to a discretiza- 
tion with respect to the radial coordinate x, using a sufficiently large number of 
gridpoints, N , .  In  this way the eigenvalue problem for differential. equations is 
reduced to a matrix eigenvalue problem, and this is solved numerically by 
standard methods. 

3. NUMERICAL RESULTS 

3.1 Models with Isotropic a-effect 

Let us first deal with models where only the a,-effect is involved. Earlier 
investigations show that the marginal dynamo numbers of the AO, SO, A l ,  and Sl 
modes are always rather close together, whereas the higher modes A2, S 2 ,  A3, 
S3, . . .  are less easily excited. There are some reasons to believe that the 
discrimination of the modes with higher m disappears if the a-layer becomes 
thinner, and if it is shifted closer to the surface. In Tables 1 and 2 and in Figure 1 
the results of the present computations for models considered earlier by Radler 
(1986a) are summarized. The differences of C,, for different m become smaller if d, 
decreases or xu increases, but the changes are rather small in all cases. Note that 
SAf,(x)dx< 1 for x,>O.9. This is the reason for the sharp increase of C,, when the 
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50 A. BRANDENBURG ET AL. 

Table 2 Marginal values of C,, 
and the corresponding frequencies 
w (in units of q /Rz )  of Am modes 
in a model with =,-effects versus 
x,, for d,=0.1. The truncation 
level was N,= I8 and N,= 150 

x, A0 A1 A2 A3 
c 
L a ,  

0.8 2.51 2.63 2.79 3.00 
0.9 2.83 2.87 2.98 3.13 
0.92 2.95 2.99 3.09 3.23 
0.94 3.18 3.22 3.32 3.45 
0.96 3.63 3.67 3.75 3.88 

w 
0.8 0 1.21 1.50 1.23 
0.9 0 1.91 2.28 2.12 
0.92 0 2.19 2.84 2.80 
0.94 0 2.50 3.50 3.68 
0.96 0 2.77 4.11 4.61 

- - A 3  
- A 2  

. . .  . AT 
A0 

/ 
/ 

/ 
c -  - _ - - -  - .  -.  / 

2.6 - :.-.- _ _ _ - - - -  .. . . .  - - .  . -  
/ 

2.8 - 

2 .4  1--- - '  

2.2  v 2 

/ 

,.. . .  . - '  _ - - -  ~ . . . . .  .... ...... :---- 

1 u, 2 -  I 

0.05 0.06 0 07 0.08 0.09 0.1  

2 --I 1 I 

0.8 0.85 0.9 o 95 1 

Figure 1 
panel), and versus x,, for d,=0.1 (lower panel). 

Marginal values of C,, for Am modes in a model with *,-effect versus d, ,  for x,=0.8 (upper 

cr-layer is shifted closer to the surface (lower panel in Figure 1). The magnetic field 
structure of different modes is presented in Figure 2 (for d,=0.1) and in Figure 3 
(for d,=0.05). The main effect of a thinner a-layer is an enhanced concentration of 
the E,-field in the radial direction whereas the latitudinal structure remains 
more-or-less unchanged. 

However, adding a weak differential rotation can change the sequence of the 
marginal C,, values such that A1 and/or S1 are slightly preferred over the A0 and 
SO modes. This can be seen from Table 3 showing values of C,, and w for the AO, 
SO, A1 and S1 modes with and without differential rotation. As Figure 4 shows, 
the field structure seems to be more complex in the presence of differential 
rotation. 
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NON-AXISYMMETRIC MAGNETIC FIELDS 5 1  

. .  . .  

. . . .  
Figure 2 Thz magnetic field configuration of the Am model with ?,-effect, x,=0.8 and d,=O.1. (The 
values for C,, and w are given in Table 1.) In the first row vectors (B,B,)  are plotted in a quadrant of 
an arbitrarily chosen meridional plane. The second row shows contours of constant B ,  in the same 
plane. Solid lines refer to positive values of B,, dashed lines to negative ones. 

Figure 3 Sames as Figure 2 but d,=0.05. Note the concentration of the B,-field. The field vectors 
(E,, B,) are merely unaffected. 

Figure 4 The magnetic field configuration of the AO, SO, Al, and S1 modes in a model with a,-effect 
and weak differential rotation, s,=0.8, d,=0.1, .xn=0.5, &=0.1, and C,= -300. (The values for C,, 
and w are given in Table 3.1 

A 0  A 1  A 0  A 1  
c.,=o C.,/C.,=-O .5 

Figure 5 The magnetic field configuration of the A0 and A1 modes in a model with a,- and a,-effect, 
x,=0.5, d,=0.4. The profile in this case is smoother than in the previous ones and a has its maximum 
at half the radius. (The values of C,, and w are given in Table 4.) 
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A. BRANDENBURG ET AL. 

Table 3 Marginal values of C,, and 
the corresponding frequencies w (in 
units of q,’RL) for the AO, SO, A l ,  and 
S1 modes in a model with or,-effect 
and differential rotation, x, =0.8, d ,  = 
0.1, 1,=0.5, and d,=0.1. The trunca- 
tion level was N , =  18 and N , =  150 

cfl A0 SO A1 S l  

0 2.57 2.57 2.63 2.63 
-300 2.65 2.65 2.64 2.64 

w 
0 0 0 1.21 1.29 

-300 0 0 1.17 1.21 

Table 4 Marginal values of C,, and the corres- 
ponding frequencies w (in units of q / R 2 )  of the AO, 
Al ,  A2, and A3 modes in a model with z,- and 
a,-effect and differential rotation, x,= 0.5, d,=0.4, 
.rQ=0.8, and dn=O.l. The first non-axisymmetric 
mode is easiest to excite for a wide range of C,. 
The truncation level was N , =  16 and N , =  100 

~~ 

CJC,, Cn A0 A1 A2 A3 

0 
-0.5 
- 0.5 
-0.5 
-0.5 

0 

- 0.5 
- 0.5 
- 0.5 
-0.5 

c z  I 

0 4.66 4.85 6.29 

0 8.31 7.05 10.08 
- 100 8.99 7.36 
-300 10.14 7.49 10.49 
-loo0 4.84 7.57 10.58 

w 
0 0 -0.20 -0.15 

0 0 0.02 0.37 
-100 14.1 95.0 
-300 5.4 297.1 597.1 
- 1M)o 78.7 999.7 1998.0 

7.82 

13.18 

13.51 
13.61 

- 0.08 

0.27 

896.8 
2991.3 

3.2 Models with Anisotropic a-effect and Related Effects 

Anisotropies of the a-effect can, under certain circumstances, give rise to a 
preference of non-axisymmetric modes over axisymmetric ones. For example, in a 
model including the al-  and a,-effects, considered by Radler (1986a), the A1 and 
S l  modes are favored over the A0 and SO modes, if C,,/C,, < -0.2. We have 
studied the influence of a weak differential rotation in the same model. Table 4 
gives results for A modes. (For S modes the marginal values of C,, are quite close 
to those for the A modes, S1 being slightly easier to excite than Al.) The 
preference of the A1 mode over the other Am modes is even more pronounced by 
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NON-AXISYMMETRIC MAGNETIC FIELDS 53 

Table 5 Marginal values of C,, and the 
corresponding frequencies w (in units of 
q / R 2 )  of the AO, Al,  and A2 modes in a 
model with 2,- and y,-effect and differen- 
tial rotation, x,=x,=O.S, d,=d,=0.4, 
xn=0.8, and dn=O.l. Note that now also 
the A0 mode becomes oscillatory even 
without differential rotation. The trunca- 
tion level was N , =  16 and N , =  100 

0 

0 
- 50 
- 100 
- 200 

0 

0 
- 50 
- 100 
- 200 

c a  I 

4.66 4.85 6.29 

9.51 8.79 9.98 
9.53 8.82 
9.51 8.84 
8.95 8.85 

w 
0 -0.20 -0.15 

50.7 66.5 57.2 
50.0 117.3 
48.7 167.6 
42.4 267.7 

differential rotation in a range of small C,. Figure 5 gives examples of field 
structures. The reason why the axisymmetric modes are relatively hard to excite 
could be that the a,-effect is partly cancelled by the a,-effect. From (3) it is evident 
that this can happen for negative values of C,,/C,, if B is directed parallel to i or 
to i. Figure 5 shows that this is the case for the A0 mode (Blli on the axis), but 
not so much for A1 ( B l i  on the axis). 

Finally, in  Tables 5 and 6 we present some results for the ?,-effect. Earlier i t  has 
been found by Radler (1986a) that a preference of the A1 and S1 modes is 
obtained in a model involving the aI- and y-effect when IC,,I>3. Our new 
interesting finding is the possibility of oscillatory A0 modes even in the absence of 
differential rotation. Furthermore, the effect of differential rotation is that the 
preference of the A1 mode becomes smaller and presumably disappears as C, 
grows. Similarly, if a- and y-layers are thin and situated close to the surface (Table 
6 ) ,  the preference of the A1 mode disappears. The behavior is opposite to that 
without y-effect (Section 3.1). Figure 6 gives the field geometry. The field is now 
concentrated closer to the surface, demonstrating that y l-effect, with positive C,,, 
corresponds to a transport.of magnetic flux outwards in the radial direction. 

4. CONCLUSIONS 

Our numerical results confirm the suggestion that in the pure a'-regime the 
differences in the excitation conditions between the modes with m=O or m =  1 and 
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54 A. BRANDENBURG ET AL. 

Table 6 Marginal values of C,, 
of the AO, At ,  and A2 modes in a 
model with a,- and y,-effect, x,= 
x,=O.8, d , = d , = O . l ,  C,. The pro- 
files of a,- and y,-effect are 
steeper and closer to the surface 
than in the case of Table 5. The 
truncation level was N , = 1 6  and 
N,= 100 

C,, A0 A1 A2 
" 
' a ,  

0 2.51 2.63 2.79 
1.0 3.01 3.05 3.15 
1.5 3.53 3.55 3.61 

w 
0 0 1.21 1.50 
1.0 0 3.41 5.49 
1.5 0 3.80 1.26 

I 
A1 A 0  A 1  A0 

c,=o c,=5 

Figure 6 Same as Figure 5 but taking the y,-effect into account instead of the a,-effect, x,=x,=0.5, 
d,=d,=0.4. Note the concentration of the B,-field to the surface when C,#O. (The values of C,, and w 
are given in Table 5.) 

those with rn> 1 becomes smaller if the a-layer becomes smaller or is shifted 
toward the surface of the fluid body. This result supports the suggestion made by 
Radler and Ness (1988) to understand the relatively strong m = 2 contributions to 
the magnetic fields of Earth and of Jupiter as an indication that the dynamo 
works in a thin layer. Our results also show several possibilities to favor non- 
axisymmetric modes, in particular A1 and S1 modes, over axisymmetric ones. A 
weak differential rotation may act in this sense as well as anisotropies of the a- 
effect and related effects, in particular the a4- and y,-effect. The different degrees of 
non-axisymmetry of the magnetic fields of the planets may be related to the 
different magnitudes of such induction effects. However, these effects can hardly 
explain the occurrence of modes with m >  1, since usually they then become more 
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NON-AXISYMMETRIC MAGNETIC FIELDS 55 

difficult to excite than those with m=O or  m =  I .  The  relevance of these results for 
dynamos in the nonlinear regime remains to be investigated. 

References 

Bai, T., "Distribution of flares on the Sun during 1955-1985: 'hot spots' (active zones) lasting for 30 
years," Astrophys. J .  328, 860 (1988). 

Brandenburg, A., Krause, F., Meinel, R., Moss, D. and Tuominen, I., "The stability of nonlinear 
dynamos and the limited r61e of kinematic growth rates," Astron. Asrrophys. 213, 411 (1989a). 

Brandenburg, A.. Moss, D. and Tuominen, I., "On the nonlinear stability of dynamo models," Geophys. 
Asrrophys. Fluid Dyn. this volume (1989b). 

Ivanova, T.S. and Ruzmaikin, A. A., "Three-dimensional model for generation of the mean solar 
magnetic field," Asrron. Nachr. 306, 177 (1985). 

Krause, F., "Zur dynarnotheorie magnetischer sterne: Der symmetrische Rotator als Alternative zum 
schiefen Rotator," Asrron. Nachr. 293, 187 (1971). 

Krause, F. and Meinel, R., "Stability of simple nonlinear a2-dynamos," Geophys. Astrophys. Fluid Dyn. 
43, 95 (1988). 

Krause, F. and Ridler, K.-H., Mean-Field Magnetohydrodynamics and Dynamo Theory,  Akademie- 
Verlag, Berlin and Pergamon Press, Oxford (1980). 

Radler, K.-H.. "Some new results on the generation of magnetic fields by dynamo action," Mem. SOC. R. 
Sc. Liege VIII, 109 (1975). 

Radler. K.-H.. "Mean field approach lo spherical dynamo models," Astron. Nachr. 301, 101 (1980). 
Radler, K.-H., "Investigations of spherical kinematic mean-field dynamo models," Asrron. Nachr. 307, 

Radler, K.-H.. "On the effect of differential rotation on axisymmetnc and non-axisymrnerric magnetic 

Radler. K.-H.. "Mean-field dynamo theory and the geodynamo," Geophys. Astrophys. Fluid Dyn. this 

Radler, K.-H. and Ness, N. F., "The symmetry prcperties of planetary- magnetic fields," J .  Geophys. 

Radler, K.-H. and Wiedemann, E., "Numerical experiments with a simple nonlinear mean-field dynamo 

Roberts, P. H. and Stix, M., %-effect dynamos, by the Bullard-Gellman formalism," Asrron. Asrrophys. 

Rudiger, G., "Rapidly rotating 2'-dynamo models," Astron. Nachr. 301, 181 (1980). 
Ruzmaikin, A. A., Sokoloff, D. D. and Starchenko, S. V., "Excitation of non-axially symmetric modes of 

Stix, M., "A non-axisyrnmetric z-effect dynamo," Asrron. Astrophys. 13, 203 ( 1971). 

89 ( I986a). 

fields of cosmical bodies," Plasma Physics, ESA SP-25 I ,  569 (1986b). 

volume (1989). 

Res., in press (1988). 

model," Geophys. Asrrophys. Flitid Dyn., this volume ( 1989). 

18, 453 (1972). 

the sun's magnetic field." Solar Phjs .  115, 5 (1988). 

D
ow

nl
oa

de
d 

by
 [

T
ul

an
e 

U
ni

ve
rs

ity
] 

at
 1

5:
55

 2
0 

Ja
nu

ar
y 

20
15

 




