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In  order to gain a better understanding of the processes that may give rise to non-axisymmetric 
magnetic fields in galaxies, we have calculated field decay rates for models with a realistic galactic 
rotation curve and including the effects of a locally enhanced turbulent magnetic diffusivity within the 
disc. In all cases we have studied, the diNerential rotation increases the decay rate of non-axisymmetric 
modes, whereas axisymmetric ones are unaffected. A stronger magnetic diffusivity inside the disc does 
not lead to a significant preference for non-axisymmetric modes. Although Elsasser’s antidynamo 
theorem has not yet been proved for the present case of a non-spherical distribution of the magnetic 
diffusivity, we do not find any evidence for the theorem not to be valid in general. 

KEY WORDS: Galactic magnetic fields, hydromagnetics, disc dynamos, Elsasser theorem. 

1. INTRODUCTION 

During the last decade observational techniques for magnetic field measurements 
in galaxies have been improved considerably. The observations seem to indicate 
that the magnetic field of an appreciable fraction of all spiral galaxies with a 
global spiral pattern is of a bisymmetric nature, that is, the magnetic field is 
pointing in opposite directions in alternate spiral arms (Sofue et al., 1988; Beck, 
1990). These observations pose a considerable challenge to dynamo theories to 
find the origin of the galactic magnetic field. In fact, in all dynamo models known 
to us the fastest growing (or most slowly decaying) mode is axisymmetric 
(Brandenburg et al., 1990). One purpose of our work is to see how realistic models 
for gas motions in galaxies will affect the growth or decay of galactic fields. 

This work was inspired by a study by Skaley (1985), who found dynamo action 
already due to the combined effect of a non-spherically symmetric distribution of 
the magnetic diffusivity q and a differential rotation. This is a special case for 
which Elsasser’s anti-dynamo theorem ( 1946) does not apply. This theorem says 
that a magnetic field cannot be maintained by a purely toroidal flow. However, it 
has been proved so far only for the case of a constant or, at most, for a spherically 
symmetric distribution of q. The situation for a latitude-dependent q is therefore 
open, as was earlier pointed out by Radler (1983, p. 30). If Skaley’s “tfw- 
mechanism” works then it can provide a way for explaining the non-axisymmetric 
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122 K. J .  DONNER AND A. BRANDENBURG 

magnetic fields in galaxies. Whether the galactic magnetic field is axisymmetric or 
bisymmetric would depend on the relative importance of the am- and qw-effects. 

The analytical models of the disc dynamo (Ruzmaikin et al., 1985; Baryshnikova 
et al., 1987) assume a thin disc and a tightly wound spiral field. Since the field is 
essentially dependent on global boundary conditions, asymptotic approximations 
leading to a local equation for the field have to be treated with some caution, as 
has been stressed by Krause (1990) and Radler and Wiedemann (1990). In our 
models such restrictions will not be made and more open spiral patterns are also 
allowed. 

2. BASIC MODEL 

We shall take as our basic model of the galaxy a turbulent differentially rotating 
gas disc embedded in a spherical halo. Since the mean density of ionized gas is 
probably lower in the halo than in the disc we assume generally a small 
conductivity in the halo, that is, the turbulent magnetic diffusivity is stronger in 
the halo than in the disc. On the other hand the turbulence in the disc may also 
give rise to an enhanced effective magnetic diffusivity in the disc. Because of this 
uncertainty we shall also consider the possibility of a highly conducting halo. A 
similar model has been used by Stepinski and Levy (1988) for accretion discs. 
However, these authors only studied axisymmetric modes. 

In the following we shall use spherical coordinates (r, 9, $), because well tested 
numerical procedures can be adopted in this case. In particular the boundary 
conditions can be easily formulated on a sphere r =  L such that the magnetic field 
matches to a potential field in the outer space r>L .  In our calculations we have 
also taken L to be the radius of the disc. The idea of avoiding problems with the 
boundary conditions by embedding a dynamo in a conducting domain has been 
previously proposed by Elstner et a/.  (1990). 

The rotation curve will be assumed to be of the Brandt (1960) form, modified to 
give constant rotational velocity at large radii: 

r=ro.[ 1 +(:,)”]-”“. 
r0 

where o0 is the value of the circular velocity u at large radii, ro is roughly the 
radius at which differential rotation begins, and n describes how rapid is the 
transition from rigid body to differential rotation. Mostly we shall take n = 2 .  For 
simplicity, in this paper we have assumed that the angular velocity w=u/rsinO is 
constant on spherical shells. Most of the observed rotation curves (see Rubin et al., 
1985 and references therein) can be approximately represented by (1) by varying uo 
and ro. 

Equation (1) may give a better representation of actual rotation curves if r is 
replaced by the distance from the axis, rsin8. In our formalism this would give 
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MAGNETIC FIELDS IN DISCS 123 

rise to further terms in the expansion of w, but we shall neglect these in the 
present paper. 

We shall take a turbulent magnetic diffusivity q of the form 

where the halo diffusivity q h  is assumed constant and the disc diffusivity q d  is 
chosen to be 

where z=rcosd  is the coordinate in the direction parallel to the rotation axis. In 
the present calculations the half-thickness of the disc, zo, was 0.2 times the disc 
radius. 

Little is known about the thickness of the ionized gas layer in real galaxies. A 
higher conductivity inside the disc will correspond to qo> 0. The representation (3) 
of the disc diffusivity is merely a first guess; we intend to try other functions in the 
future. 

The relative strength of the differential rotation against magnetic diffusion is 
measured by the Reynolds number, which we define as 

No a-effect has been included in the calculations reported in this paper. This is 
because we wanted to see how the free decay modes of the field are affected by 
galactic kinematics, without introducing the additional uncertainty of some specific 
model for the a-effect. Results with a flat distribution of a but with a spherically 
symmetric q are given in Brandenburg et al. (1990). 

3. NUMERICAL METHOD 

The basic equation governing the time development of the mean magnetic field is 
the induction equation 

( 5 )  
aB 
- = V x (U x B - qV x B), 
at 

where u = &I. 
Equation ( 5 )  poses an eigenvalue problem for the complex eigenvalue I, where 

g e l b  is the growth rate and YmI the eigenfrequency. We determine I using the 
so-called Bullard-Gellman formalism (see e.g. Roberts and Stix, 1972). The field is 
divided into a poloidal and a toroidal part according to 

D
ow

nl
oa

de
d 

by
 [

T
ul

an
e 

U
ni

ve
rs

ity
] 

at
 1

0:
11

 2
2 

Ju
ne

 2
01

6 



I24 K.  J .  DONNER AND A. BRANDENBURG 

Table 1 The results for the functions d, (r )  
for /=O, 2, and 4. The abbreviation ;=z,,/r 
is used 

-0.02 - 
-0.04 A 

0 0.5 1 0 0.5 1 0 0.5 1 

Figure 1 
DiNusivity distribution in a meridional plane when contributions up to the given order are included. 

Ahore: Radial dependence of the three first coeflicients in the diNusivity expansion (7). Below: 

B = V  x V x (iS)+V x(iT).  ( 6 )  

The defining scalars S and T are then expanded in terms of spherical harmonics. 
Using the orthogonality of the different ( I ,  m) components the diffusion equation 
reduces to an infinite set of ordinary differential equations for the functions S; and 
T;l. This is solved numerically by truncating the system to N ,  equations using N ,  
grid points in the radial direction. For further details on the numerical treatment 
of the resulting eigenvalue problem, see Roberts and Stix (1972) and Brandenburg 
et a/. (1989). 

In our scheme the diffusivity has to be expanded in terms of spherical 
harmonics. We have included the three first non-zero terms in the expansion of (3) 
in terms of Legendre polynomials: 

qd=~O[do(r)PO(co~O) +d2(r)P2(cos8)+d4(r)P4(cos O ) ] .  (7) 

Explicit expressions for the coefficients dl  obtained from (3) be setting z = r cos 8 
and expanding are given in Table 1. Contours of constant q for the resulting 
expansion (7) are plotted in Figure 1. 
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MAGNETIC FIELDS IN DISCS 125 

4. RESULTS 

The most interesting eigenmodes are the symmetric and antisymmetric ones with 
rn= 1, S1 and Al. The modes are all decaying. Figures 2-5 show how the magnetic 
field structure is affected by varying the relevant parameters. In Figure 3 an 
example of an A1 mode is shown. By definition the antisymmetric modes have the 
property that the field is vertical in the disc plane. They are therefore unlikely to 
be relevant for galaxies, where the field lines are generally parallel to the plane. 

The differential rotation influences the field in two ways. First, the shear 
generates a toroidal field from a poloidal one. Thus the field strength will be large 
where the shear is largest, i.e. around the radius ro.  Secondly, differential rotation 
will draw the frozen-in field into a spiral shape. Strong differential rotation will 
give rise to a more tightly wound spiral (compare Figures 2 and 4). To get a pitch 
angle in agreement with observations requires a magnetic Reynolds number of a 
few hundred. 

The effect of the diffusivity is to destroy the field. If the diffusivity is lower in the 
disc, the field will be strongest in the disc. On the other hand, if there is a 
quiescent, high-conductivity halo, the field expelled from the disc is concentrated 
in the halo. These qualitative expectations are confirmed by our calculations (see 
Figure 5).  

From the viewpoint of applications to real galaxies the most interesting 
parameter is the magnetic Reynolds number. We have seen that R ,  has to be of 
the order of a few hundred to give a similar spiral pitch angle as is observed. A 
very rough estimate of the turbulent magnetic diffusivity would be q =uzO, where a 
is the velocity dispersion in the gas. The magnetic Reynolds number is then 

with uo=200kms-', a=7kms-' ,  L=lOkpc and zo=lkpc,  we obtain R,=300. 
Thus reasonable galactic parameters lead to a Reynolds number in the interesting 
range. 

Let us finally note that the decay time of the most long-lived mode is about 0.1 
G, where G= L2/qh is the diffusion timescale. In terms of the galactic crossing time 
T,  this is 0.1 x R,T,, i.e. 10 T,  for R,= 100. Our modes are thus fairly long-lived on 
a dynamical time scale. 

Turning now to the question of preference for bisymmetric modes we may take 
as our typical case R ,  = 100, qo/qh = 0.75 and ro = 0.3 L. The most long-lived 
bisymmetric modes then have the decay rates - 11.5 (Sl)  and - 18.4 (Al), whereas 
the decay rates for the corresponding axisymmetric modes are -6.9 (AO) and 
- 15.3 ( S O ) .  We therefore should be looking for circumstances where the S1 mode 
decays more slowly than the A0 mode. 

In Tables 2 and 3 we give the decay rate and frequency for S1 modes as a 
function of Reynolds number R ,  and of disc scale ro.  The decay rate of A0 is 
unaffected by rotation. Clearly, varying the rotation curve does not lead to any 
preference for the bisymmetric modes. 
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126 K. J. DONNER AND A. BRANDENBURG 

0 . 0 0 ~ 1  0 25n 0.507~ 0 . 7 5 ~ 1  

Figure 2 Field configuration for the first S1 mode. The parameter values are qO/qh=0.75, R,=  100, 
r0=0.3L. Le/t upper row: projection of field vectors onto a meridional plane at different phases. Lower 
row: Contours of constant azimuthal field in a meridional plane for the same phases as in the upper 
row. Dotted lines denote negative values. Righr: Field vectors in the plane of the disc. The vertical field 
component is zero in the disc plane. 

I 

0 . 0 0 ~ 1  0.2571 0 . 5 0 ~ 1  0 . 7 5 ~ 1  

Figure 3 Field configuration for the first A1 mode. On the right are shown level contours of the 
vertical field component in the disc plane. The radial and azimuthal fields are zero in the plane. 
Otherwise the same as Figure 2. 

0 . 0 0 ~ 1  0.257~ 0.50n 0 . 7 5 ~ 1  

Figure 4 Same as Figure 2 but for R ,  = 10 

. .  . 

0 . 0 0 ~ 1  0 . 2 5 ~ 1  0 50n 0 7 5 ~ 1  
Figure 5 Same as Figure 2 but with the diffusivity in the disc larger than in the corona, q&= -0.75. 
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MAGNETIC FIELDS IN DISCS 127 

Table 2 Eigenvalues of the first SI 
mode for different Reynolds numbers. i 
is measured in units of qJL2. q0/qh=o.75 
and ro=0.3L. The decay rate of the first 
A0 mode is -7.2 

0 8.6 0 
10 8.7 4.0 
lo2 11.5 37.3 
103 30 327 

Table 3 Eigenvalues for the first S1 
mode for different values of ro. qo/qh= 
0.75, R,= 100. I is measured in units of 
vJL2 

‘OIL - 8 e I  -9m 1 

0.1 9.5 14 
0.3 11.5 37 
0.5 12.1 55 
0.7 11.7 68 
0.9 10.9 77 

Table 4 Eigenvalues for the first S1 and A0 modes for different 
values of the disc strength. The Reynolds number based on the 
diffusivity at the centre is constant=400. r0=0.3L. 1 is measured in 
units of qh/L2 

V O / V h  SI A0 9 e  l(S1)jSee A( AO) 

-8ti -9ml - a e I  -9ml 

0.75 46 I50 28 0 1.77 
0.8 54 151 33 0 1.51 
0.9 92 157 59 0 1.42 
0.95 169 160 109 0 1.40 

The effect of the disc diffusivity on the eigenvalues for A0 and S1 modes is 
shown in Table 4. The decay rates of both A0 and S1 are enhanced for larger qo, 
but the ratio W S  A(sl)/W~i,(A0) becomes smaller as qo/vh increases. However, the 
effect is not large enough to explain the observations. 

There are of course many further modifications of the turbulent viscosity that 
might favour bisymmetric fields. We are currently pursuing some of these. 

It should be noted that the results are not in agreement with what we have 
expected from the studies by Skaley (1985). We do not find any evidence for the 
possibility of an “qw-dynamo mechanism”. Therefore we have made also a direct 
comparison using for ‘1 and w the profiles of Skaley (v=r2[1+~P2(cos6)] and 
w =  10R,( 1 - r Z ) ) .  The results, documented in Table 5 ,  show that (i) a flatter 

D
ow

nl
oa

de
d 

by
 [

T
ul

an
e 

U
ni

ve
rs

ity
] 

at
 1

0:
11

 2
2 

Ju
ne

 2
01

6 



I28 K. J .  DONNER AND A. BRANDENBURG 

Table 5 The growth rates and eigenfrequencies 
for the Al-mode using for 4 and o the profiles 
of Skaley. i is measured in units of qJLz. The 
level of truncation N ,  and N ,  is included as well 

0 0 20.2 0 50 2 
0 10 29.9 33.0 50 2 
1 0 17.4 0 30 10 
I 10 29.94 59.7 30 10 
I 10 29.92 59.7 30 6 
1 10 30.0 59.7 20 6 
7 0 19.5 0 30 10 
2 10 24.8 33.5 30 12 
2 10 24.5 35.0 30 10 
2 10 24.7 40 .7  30 6 

distribution of q (larger values of E )  decreases the decay, but (ii) even a weak 
differential rotation (small values of R,) gives rise to an enhanced dissipation. The 
last property is explained by a general argument by Radler (1986), who gave an 
estimate for the increase of the negative growth rate with the magnetic Reynolds 
number: - A ' b  i . xRi3 .  This relation is well confirmed by the calculations of 
Radler et al. (1989), but it is not in agreement with the findings of Skaley. 

5. CONCLUSIONS 

The important result of this paper is that there is no evidence for a generation of 
non-axisymmetric magnetic fields by the combined effects of differential rotation 
and a non-radial distribution of magnetic diffusivity. The results are, of course, 
only preliminary, since we have not covered the full range of diffusivity distribu- 
tions that could occur. Furthermore only a single rotation profile has been studied 
so far. Nevertheless, clearly the mechanism envisaged in the present paper does not 
look very promising for explaining the bisymmetric magnetic field configurations 
observed in some galaxies. It seems therefore that Elsasser's antidynamo theorem 
may be valid also in the case of a general (non-spherical) distribution of the 
magnetic diffusivity. 

Typical galactic rotation curves do not seriously impair the chance of survival of 
non-axisymmetric fields. The field structures we have obtained are qualitatively 
similar to those observed. Although all our modes are decaying, the inclusion of 
an r-term could produce steady or growing modes without significantly altering 
the field structure (cf. Brandenburg, 1990). It should also be stressed that the decay 
times of bisymmetric fields are fairly large on a dynamical time scale. Thus, if they 
can be generated e.g. in tidal interactions or galaxy mergers, they might survive 
when all dynamical traces of the disturbance have disappeared. More detailed 
comparisons with observed galactic fields might therfore be worthwhile, but this 
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MAGNETIC FIELDS IN DISCS 129 

will require a more careful consideration of the turbulent gas motions in different 
types of galaxies. 
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