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The structures in magnetohydrodynamic (MHD) flow, flux tubes in particular, are investigated with 
respect to coherence in the direction of the magnetic field. A length scale, which is interpreted as the 
diameter of the tubes, is derived from the MHD equations. This scale implies that the tendency 
towards alignment of flux lines in tubes is a diffusion driven phenomenon. The dynamics of the 
tubes is also investigated; the major conclusion is that stronger tubes are expected to be straighter. 
These ideas are tested out on data from numerical simulations of turbulent MHD convection. It is 
also seen that alignment of flux lines increases with the strength of the tube. Possible reasons for this 
effect are discussed. 0 1995 American Institlate of Physics. 

I. INTRODUCTION 

In numerical simulations of magnetohydrodynamical 
(MHD) turbulence the magnetic field generated by dynamo 
action is typically concentrated in the form of magnetic flux 
tubes or (less typically) sheets.*.2 The formation of flux tubes 
and sheets has also been observed in simulations of ABC 
flow dynamos.3 These flux tubes are reminiscent of the vor- 
tex tubes that have been seen in large simulations of isotropic 
turbulence.“-6 Possibly relevant is that the equation for the 
evolution of the vorticity in hydrodynamic flow is structur- 
ally similar to the equation for the magnetic field in MHD 
flow: the equations express in both cases the material nature 
of the field lines and the amplification of the field by the 
strain. 

The tubes are characterized by three length scales - the 
width of the tube, its curvature and its torsion. One can de- 
fine the width of these tubes in various ways. The most com- 
mon is the diameter of tube-like spatial regions in which the 
field exceeds some threshold value. In hydrodynamics 
lengths ranging from the Kolmogorov7 to the Taylor length5 
have been proposed for these tube widths. Such estimates 
can be made in the following fashion: the equation for the 
vorticity, ti, in incompressible hydrodynamics is 

D,w= .Y . w-k vV2w, (1) 

where .Y is the strain rate tensor, v the kinematic viscosity, 
and D,= d’r + u. V is the total derivative. It is reasonable to 
assume that the scale, yo, of vortex structures in turbulent 
flows is such that the diffusion down the vorticity gradient 
balances the strain across the scale that creates the structure. 
The diffusion term can be estimated as wJIr$, If we esti- 
mate the strain by the average dissipation or Kolmogorov 
scale strain, which is proportional to v’&$ where 
e= 2 v(.Ypu3 RMSIL is the mean energy flux, L being the 
external scale, we get the Kolmogorov scale JK= ( v3/c) “4 

‘)Present address: Nordita, Blegdamsvej 17, DK-2 100 Copenhagen 0, Den- 
mark. 

as ro. If we estimate the strain as the external strain 
unMSIL, we get the Taylor microscale XX= fi~a~s/~a~s 
(Ref. 8) as rO, where the subscript “RMS” refers to the root 
mean square value. In terms of the Reynolds number, 
Re=uRMsLlv, these two scales may be written as 
/K=LRe-“i’ and AK= LRe-“’ respectively. 

The most thorough study of this question to date was 
done by Jimenez et ak9 who find the width of a fit to a 
Gaussian profile for a selection of vortices in flow with 
Re, = uRMshK lv (i.e. the Reynolds number based on the 
Taylor microscale) from 35 to 170. They bring evidence in- 
dicating that this selection is representative of the entire col- 
lection of vortices in the flow. Their conclusion is that the 
width scales with the Kolmogorov length. 

In MHD flows the smallest scale of magnetic flux con- 
centrations, and thus the diameter of the intense flux tubes, is 
often assumed to be the skin depth, which scales like 
S= ( ~L/K,,,)‘~*-LR,‘~~ with the magnetic Reynolds num- 
ber Ru = LrcRMS / 7, where 17 is the magnetic diffusivity. This 
length scale is motivated from results obtained in the context 
of two-dimensional magnetic field advection in the presence 
of laminar flowsi and low Rayleigh number 
magneto-convection.” For the case v/v> 1, the magnetic 
dissipation scale has been proposed’2+‘3 to be 
/M= ( 03jE)“4=LR,“‘4. The question is whether in turbu- 
lent flows the size of the smallest magnetic structures is gov- 
erned by 8, /M, or by yet another length scale. 

In the following we propose a new relevant length scale 
which may be motivated by the following argument. In the 
incompressible case the magnetic field, B, is described by 
the equation 

D,B= :i;+B+ #B, (2) 

where :Gij=Ui,j is the velocity gradient matrix. [Note that, in 
contrast to the B-field, the w-field is only governed by the 
symmetrical part of .5, i.e. by the strain Y= $( St .Yr), 
since the antisymmetric part can be written as - $ Eijkok 
which gives &oX#=O.] We can make estimates similar to 
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those sketched out above for the direction-coherence length 
scale in the B-field. For the purposes of such an estimate we 
assume that Kolmogorov scaling ideas still hold for the strain 
field, which ignores the possible effect of the Lorentz force. 
If we estimate the strain by the external strain we get the skin 
depth. In this sense the skin depth is the parallel estimate to 
the Taylor scale in the hydrodynamic case. If we estimate the 
strain as the reciprocal of the Kolmogorov estimate of the 
inertial eddy turnover rate at this length scale (assuming that 
the scale is in the inertial range) (EZ-‘)“~ we get the mag- 
netic dissipation scale.13 If we estimate the strain as the- Kol- 
mogorov scale strain we get a length scale 

ro = P,‘“Lp”K ) 

where PM= v/v is the magnetic Prandtl number. This esti- 
mate uses a strain that is the largest of those mentioned, and 
thus perhaps the most valid for the scale of the strongest 
structures. If the scale is in the dissipative range (i.e., if 
PM> 1) it also seems more natural than an inertial or exter- 
nal estimate. No careful study like that of Jimenez et al. has 
been done for MHD flows. 

In the present paper we address the issue of flux tube 
diameter using the definition of tube width used and a for- 
malism recently developed by Constantin et aZ.14 This 
method directly uses the equations of motion (in their paper, 
the Navier-Stokes equation for the dynamics of vorticity in 
hydrodynamic flow) to produce estimates for the size of vor- 
tex tubes as defined by the length scale of the alignment of 
vorticity vectors. This alternative definition of tube size is 
motivated by observation in numerical simulations of the 
high degree of vorticity alignment in tubes. We adapt this 
view of tubes throughout this paper. The tube size was char- 
acterized via well-defined local quantities (essentially deriva- 
tives of the field direction). They found that the tube size is 
proportional to the Kolmogorov scale (or, to be more precise, 
a local Kolmogorov length). This result both lends rigor to 
the usual estimate and shows that it holds for this very dif- 
ferent definition of tube width as well. It also implies that 
alignment is a viscous phenomenon. The same view is taken 
here. We use the same formalism to derive a length scale for 
the typical flux tube size, again defined as the scale of flux 
line alignment in tubes, which turns out to be equal to the 
length scale given in (3). No assumptions about the impor- 
tance of the Lorentz force are necessary. This length scale as 
the width of flux tubes has not, to our knowledge, been pro- 
posed before. 

We next address the curvature, through the dynamics of 
flux tubes, again following Constantin et ~1.‘~ We write 
down an equation for the dynamics of the curvature of a flux 
tube. This suggests that in addition to the mechanism tending 
to straighten very strong tubes, parallel to that shown by 
Constantin et al., in MHD an additional dominant mecha- 
nism exists. This is sweeping of the weaker flux tubes around 
vortex tubes, which could increase the tube curvature and 
torsion. For completeness we compare to the equations for 
vortex tubes in MHD flow. 

We examine these results using simulations of turbulent 
MHD convection. The enhanced alignment tendency in 
stronger flux tubes is confirmed. The scaling for the flux tube 

widths is naturallv harder to confirm given the limited range 
accessible, but the data are encouraging. We also check nu- 
merically some bounds used in our derivation. The straight- 
ness of strong tubes is confirmed. 

II. FLUX TUBE SCALING 

We first show that in regions of strong magnetic field the 
magnetic field lines tend to align, due to the effect of the 
magnetic diffusivity. The scale of this alignment will then 
provide an estimate for the size of magnetic flux tubes. 

We define a length scale which characterizes the size of 
flux tubes by considering the spatial derivatives of the direc- 
tion of the field. We define a unit vector as c=BIB, where 
B = ] B] , and examine the scale of significant change in the 
direction of 6, i.e. 104 - ’ . In order to be able to estimate this 
length from the equation of motion, we will average in 
physical space over a small ball that moves with the fluid, 
and over an appropriate interval of time. 

We thus define a quantity 

dtlW’(xo+uot+y,t)l 

the average being over a ball B, of some radius r with mean 
velocity uc , 

3 
U”=4 Islz&. I 4xo+Y,tojdY> (5) 

and over some short time t, _ The choice of r and t, will be 
made later. 

A first estimate can be made immediately using 
Cauchy-Schwartz: 

(6) 

To estimate the first of the factors in this upper bound we use 
the method used in Constantin et al.14 and the inequalities 
therein. This factor is estimated by comparing terms in the 
MHD equation of motion for B, t 

D,B==(P- 7#‘a2)B+ #B, (7) 
where p is the diagonal component in the field direction of 
the strain tensor Y, /?= g s”. 5. We perform the averages 
over the ball by use of a cutoff function 
(p( x, t) = 40[ (x- x, - u~I)/Y] where the function 4. is such 
that +o(y)= 1 for Iy]< l/2, (ho(y) =0 for ]yl> 1, and 
+o( y) is monotonic and smooth enough in 112~ I y[ d 1 to 
have smooth derivatives. 

Multiplying (7) by 4 and integrating we have an equa- 
tion for the desired average 

qj dxB]Va2$= 1 dx/3B#~$I dxBc$+ 1 dx 

X &+uV-$~~ 
1 I 

4 B. (8) 

We n0.w use 

Phys. Plasmas, Vol. 2, No. 4, April 1995 Brandenburg, Procaccia, and Segel 1149 
Downloaded 28 May 2004 to 130.225.213.130. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



; +u.v- ?p q&= I 
to write 

@iV4’i’)r.,,= ++WW-41, 

where 

T,=& 
fo+fr 

s I r t, to 
dt dxPB& > 

Tz=&l,::‘“‘dt[ - z/ dxBgi,)r, 

T3=$-I,:‘+“dll dx(F 49o)B, 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

We now denote averaging over the moving ball of some f as 
07r.t ’ and use the fact that (IVC,~~[)~,~S C,lr and 
(V*~O)~.~C C2fr2 5 C, and C2 constants of order unity. This 
allows us to give the simpler estimate 

(BIV5(2),.,rG ++II+III+IV) (15) 

where 

I=(IPI%t,t (16) 

co 
II== 13t s I Iyl<r 

&W,to)v (17) 

III=: (b--dB),,t,, (18) 

IV= F Wr.r/ (19) 

We now use the inequality 

p2s plj2, c-33 

,G being just one of the components of the strain tensor. This 
bound may not be sharp since the geometric factor involved 
may depend on the Reynolds number, through alignment: if 
with increasing Reynolds number the vorticity has an in- 
creasing tendency to align with the intermediate strain eigen- 
value, as has been suggested,5 /3l]Vuf will decrease with 
Re. 

We now define 

A =( ~Vu~“>~~~~(B”)~~;, ; (21) 

A will serve as a bound for all four terms. Using (20) we 
have by Cauchy-Schwartz 

IGA. (22) 
Now using the Poincare inequality 

dx[u- uo12Sr2 
s /x[sr 

dxl Vu12 (23) 

we have in addition, again by Cauchy-Schwartz 

IIlcC,A. (24) 

This bound does not include a geometric factor, since it in- 
cludes an integral over all directions. The Poincare inequality 
should be quite sharp here since at the scale r, which is small 
as we will see, we expect the field to be quite smooth. There- 
fore this term will dominate I if the latter indeed decreases 
with Reynolds number. 

The terms II and IV can be bounded by A by making a 
choice of the ball size r and the averaging time t, , The time 
t, is fixed by demanding that IIS CaA . This translates to the 
condition 

3 
tra g 

Siy,,rdy[B(y,to+ tr) -Bhfu)l 
G+d2)t~p2):!~r * (2% 

This is an implicit equation giving a lower bound rro for t, 
unless the RHS is proportional to t, , i.e. when B has a con- 
stant growth rate. However in this latter case the growth rate 
is bounded by /3 [see Eq. (7)] and we can bound II by A for 
any t,. 

We obtain the ball size r by demanding that IV is 
bounded by C2A. In fact we demand the more stringent con- 
dition that 

IV< c2 J$ (B2j$~ C~A WI 

which means we must have 

lb2 

r”C:‘2r~~C:n(Iv~12~~‘1 . 
We can use r. to form a time scale: 

(27) 

cm 

This is just the strain time scale (by the first definition) or 
magnetic field diffusion time over the distance ro (by the 
second definition), which are the same at this scale. So since 
the scale of the structures will turn out to be proportional to 
ro , this scale can be seen as being determined by the require- 
ment that the magnetic field dissipates away just at the rate 
that the strain builds it up. 

Finally we note that if the flow is compressible a term 
- (V.u)B is added to the equation for B. This would add to 
(1.5) for (~3lV1;1~> a term 

V= (tVd%,tp- (29) 

This is easily bounded by A since (B) S(B*) 1’2 and 
(~V~U~}~(~VU~>~(~VUI”)“~. So our derivation holds for the 
compressible case too. 

Summing up the results obtained so far we conclude that 
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(30) 

where C3=l+Co+C1+C2. 
This certainly is a finite bound: we can easily give a (far 

from sharp) bound in terms of E, the mean energy flux of 
kinetic energy per unit time and mass, 

e=1; I L IxlcL 
dxjVu)’ 

and the total magnetic energy 

d&j’. (32) 

We can now estimate h, . We assume that 

1. 
i i z _ (B2)::rc c4 

r,t, 

(3 1) 

(33) 

since we are interested in areas of high B where ( l/B ) does 
not blow up, and we can bound (B2)r,r, in terms of the mag- 
netic energy which is always bounded. Now using the esti- 
mates (30) and (33) in (6) we find 

A,& c,cqr0 I (34) 
The length scale y. is easily related to the usual Kolmogorov 
length scale 

I 7,3\ 1’4 .““-; . \-I 
This scale differs from the scale found here in that it includes 
v? instead of 7’ and in that it includes the kinetic dissipation 
averaged over the whole system instead of just over the ball 
B,. This scale can vary from place to place in the flow, 
dependent on the size of the dissipation averaged over the 
ball and on its radius rO. In general we would assume that 
the local averaging does not make too much of a difference. 
Because the dependence of the length scales is on EI’~, a very 
large deviation from the average dissipation in the ball is 
necessary for the length scale to be significantly different. 

At any rate, denoting the locally averaged Kolmogorov 
scale as g&x), h, can be estimated up to a constant of order 
one as 

h,-d=~(X)P;“2,- (36) 
if we assume that our bound is sharp as far as scaling is 
concerned (this issue is considered in Sec. IV). If we con- 
sider the average size of tubes, what we propose here is that 
the characteristic size for flux structures in MHD turbulent 
flow is a new length scale, equal up to a numerical constant 
to LRe-3’4Pz4. It thus differs from other length scales pro- 
posed, such as the dissipation length c@~-- LR,“14 or the skin 
depth S- LR,‘“, in varying with Prandtl number for con- 
stant RM . Furthermore, we have seen an intuitive description 
of this scale-just as the Kolmogorov length (the scale of 
vortex tubes in Navier-Stokes flow) is the scale where the 
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average strain time scale (at this scale also the eddy turnover 
time) is equal to the viscous diffusion time over that scab- 

here the new scale is that where the eddy turnover time is 
equal to the magnetic diffusion time. 

III. CURVATURE DYNAMICS 

One can write down the equations for the evolution of 
the curvature of a flux tube in a strain field, or more precisely 
of the flux lines making it up, in a straightforward manner 
from the MHD equations. We look only at the nondiffusive 
dynamics and in this section take v=O, assuming that the 
role of the viscosity lies primarily not in the dymamics of the 
geometry of the tubes but in allowing their coherence, as 
described in Sec. II. In fact these equations hold for any 
material line (as a flux line is in MHD when diffusion is 
neglected) in a strain field. Such an equation was derived by 
Drummond and Miinch” for material lines and in d some- 
what different form in Constantin et a1.l4 for vorticity lines. 
We will follow the second paper’s method and form; the 
differences between them are discussed in Ref. 14. 

The flux lines are defined as having at every point the 
direction t. From the diffusionless equation for the field 

D,B= .‘O.B, (37) 
and (7) we find that 

DJ-= ( .rf?- ,OI).& WQ 

Using the identity Yij=$- f EijkWk we can ahO write (4) 
as 

D,&=(y-gI).[+ &xc. (39) 

The vorticity rotates the magnetic field vector as it convects 
the magnetic field around it. 

We now choose to work in the Frenet local coordinates 
for a vorticity field. In these, one coordinate is that in the 
direction of the field, with a unit vector we have defined as 
6 another by the direction of curvature of these unit vectors, 
with unit vector n, and completed by the binormal b. These 
satisfy 

Wf)=[-” lj; %)(%i. (40) 

where p=l(gV)d- ’ is the local radius of curvature and 
T= b. (5.V)n the local torsion of the field. In this frame the 
stretching vector of the flux line, G ?Y has three components, 
one being the stretching factor p and the other two 
~n=~~$‘.n and jpb=&. .!5’.b. Now using the useful 
formula14 for the operator commutator 

[D,,(GV)l=-PC&V) (41) 
we find after a little algebra the equation for the flux line 
radius of curvature 

D,p=[P--p(,~V)~~+pT~~]p. (42) 
Again using the decomposition of .Y into strain and vorticity 
this can be written as 
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~,P=rp-p~~v)~.~~/,- + wb)+pT(.‘fb+ ; w,)]p, 
(43) 

where w, = w. n and ob = 0. b. This equation shows the ef- 
fect of a velocity field on the curvature in terms of the strain 
and vorticity and the geometry of the magnetic field only. 
The stretching /3 pulls on the flux line at both ends and thus 
straightens it. The “force” on the tube in the direction of the 
curvature is given by the strain .i/, and the convection of the 
vorticity component wb. If this varies along the flux line it 
will bend it. If the line has torsion or a helical structure, lying 
locally on a cylinder, the direction b is on the cylinder nor- 
mal to the line. The “force” along the helix cylinder is given 
by the strain .‘Yh and the convection of the vorticity compo- 
nent w, . A positive force extends the helix along the cylin- 
der and thus reduces the curvature. 

Note that the first term here is just the same as the right 
hand side in the equation for B. Since this is the homoge- 
neous (linear in curvature) term in our equation, we might 
expect that at least initially the same strain that creates the 
strong flux tubes would tend to straighten them out. The 
strong magnetic fields were created by a strong stretching 
rate p coherent over some time. We would thus also expect 
that since in a rapidly varying field one would not expect that 
other quantities would be coherent over the creation time in 
the same regions, the term with /? would dominate. 

However things are not that simple. The equation Drum- 
mond and Munch derive, when put in our terms, is 

D,p=(2P-n.:/.n)p-p2C ~~jk5i5jnk (44) 

where 9’ is the third rank tensor 3’i;jk= d”UildXjdXk . A 
little manipulation shows that these two equations are in fact 
the same, due to the identity 

C ~;jxiii,ri,‘(i’Vj:6,,-~n.:~.n+ f p-T:bb, 

(45) IV. NUMERICAL SIMULATIONS 

Drummond and Munch, too, assume that the homogenous 
term will dominate the early evolution, and that the term 
including the strong /3 will dominate. However both these 
concepts become ill-defined given the identities just men- 
tioned. 

In fact the concept of a homogeneous term is a statistical 
matter. The separation of such a term from the rest of the 
equation is valid only when it is weakly correlated with the 
other terms through the process under discussion. In a real 
turbulent flow the local structure of the flow may well intro- 
duce correlations that will make relations like (45) signifi- 
cant. If our expectation, based on our equation, is correct, the 
tube will straighten at the same rate as its magnetic field 
grows. If the situation is closer to that suggested by Drum- 
mond and Munch, the tube straightens out too; since the 
diagonal strain component in the direction of the flux tube 
must be larger than any other diagonal strain component 
(which did not create a flux tube) such as n..‘/.n, the rate at 
which the tube straightens is faster than that at which the 

field grows. At any rate we would expect that the strong flux 
tubes be quite straight. The difference between the equations 
is discussed more fully in Ref. 14. 

All this should hold only during the time in which the 
tube is created. When the growth rate strain /? starts to fade, 
other terms can become important or even dominant. One 
term in particular can be seen in action in the simulations’: 
strong vortex tubes can be seen to wrap flux tubes or &a- 
ments around them, thus increasing their curvature. However 
these processes would tend to act more strongly on weak and 
small structures, and act on them in later stages of their evo- 
lution, where their strength has begun to dissipate. Therefore, 
we still would expect to see that the strongest flux tubes are 
relatively straight. We cannot rule out, however, nonlinear 
feedback processes in which tubes (of both Bux and vortex 
lines) interact and amplify each other while wrapping one 
about the other. 

For completeness we bring the equations governing cur- 
vature of vortex lines in MHD, for comparison to flux tubes 
in MHD and to Navier-Stokes vortex tubes. In MHD an 
added term which we call F is added to the equation for the 
vorticity: 

D,w=Y.o+(B~V)J+(J.V)BW’.w+F. (461 
The equation for the curvature of the vortex filaments is now 

D@=[ a-p(~‘-+,+ 2) +,+,+ ;)]p, (47) 

parallel to the equation for flux curvature above, where 5 is 
the vorticity direction vector (analogous to 0, ff is the vor- 
ticity stretching rate (analogous to /3), the strain rate along 
the vortex line a= &e-;/e 5, and where F, and F, are the 
components of P in the normal and bi-normal directions re- 
spectively. The new terms express the influence of the mag- 
netic field on the vortex lines, including the nonlinear pro- 
cesses mentioned. 

Numerical simulations of three-dimensional MHD tur- 
bulence allow us to test some of the predictions made above 
regarding the size and dynamics of magnetic flux 
structures.‘6 Such simulations can furthermore be used to 
check our analysis by determining the sharpness of various 
bounds used above. We use data of MHD turbulence that had 
originally been produced to gain some understanding of the 
solar magnetic field. These simulations contain therefore ad- 
ditional physics such as a rotating frame (Coriolis force), 
stratification (with density ratio I:20 to 1:80), and convective 
overshoot into a lower stably stratified layer. We cannot rule 
out the possibility that the particular physics involved will 
affect our conclusion, but nothing in the analysis given here 
seems to suggest that possibility. We therefore only refer to 
the original paper! for more details. 

The analysis of flux tubes in Sec. II only applies to those 
regions in space where the magnetic field is strong. We there- 
fore adopt averages, (. . .)B , which are performed over those 
points in space where the magnetic field exceeds a certain 
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TABLE I. The coefficients in Eqs. (49)-(51) for various runs at different 
Reynolds number and numerical resolution. (Further properties of these runs 
are given in Table II.) 

Case 0 A B C D 

Mesh 126’X 105 63’x63 95*X63 1262X 105 126*X 105 
Re 140 310 540 1100 1200 
i49) 0.835 0.858 0.877 0.837 0.832 
(50) 0.054 0.034 0.027 0.043 0.050 
j51) 1.06 1.05 1.08 1.10 1.11 

threshold (typically 3 times the RMS value of B). In accor- 
dance with (4), we define a statistical measure of A, as 

c=mLb (48) 
We have a basic problem in that while our theoretical con- 
clusions hold for the highest field regions, these regions have 
rather few points in them, leading to poor statistics. The 
threshold chosen is a compromise between these demands. 

We first use the numerics to test out our argument by 
examining the sharpness of the bounds used. The data show 
that the bound in (6) is consistently nearly saturated, i.e. 

{]V&-(0.8...0.9)(B~V~~2;2(B-‘)~2. (49) 
Another inequality was used in (20), and it turns out that this 
is not a sharp bound, but that typically 

(p~)~~(0.03...0.05)(~vllJ2)~. WV 
This bound appears as one of a series bounding all the terms 
of the equation for B uniformly; since it appears additively 
the lack of sharpness is not important. The data indicate that 
the constant in (33) is consistently close to unity, i.e. 

(B-~)~(B~)~~% i.o...i.i. (51) 
In Table I we give the coefficients in (49)-(51). These coef- 
ficients do not seem to depend significantly on Re or on the 
numerical resolution used. 

An important question concerns the scaling of the thick- 
ness of magnetic structures, h,, with the kinetic and mag- 
netic Reynolds numbers. We are especially interested in 
whether X, scales with the newly introduced length scale 
ro, or rather with the more traditional magnetic skin depth 
scale, S, or the magnetic dissipation scale FM. Unfortu- 
nately, this is not easy to check, because the scaling of these 
length scales with Re and RM is not very different. Suppos- 
ing that /M--LRe-“4 is valid for our low Reynolds number 
simulations too, we expect Xc-ro- LRe-3’4P&1’2, which 
differs from the skin depth scaling, S-LRe-‘“Pi’“, by a 
factor Ren4. For convection, the range of different Re acces- 
sible is lim ited between about 200 (for the flow to be suffi- 
ciently turbulent) and 1000 (compatible with the highest 
resolution presently available). In addition, our remarks in 
the Introduction indicate that it is possible that there is a 
crossover from our length scale to the magnetic dissipation 
length at PM= 1, just around where most of our results are 
centered. Given all these lim itations we must consider our 
results as preliminary. 

In Fig. 1 we plot loglohBP$2 versus logtoRe. Although 
the scatter is considerable, the slope in this plot appears to be 
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FIG. 1. Scaling of the sizes of flux tubes [(a) and (b)] and vortex tubes (cj 
versus Reynolds number in turbulent MHD convection. The asterisks in the 
first two panels indicates Run A for which P,=4. All other runs are de- 
noted by a plus sign (PM< 1). 

closer to - 3/4 rather than - l/2, suggesting that the scaling 
of X, may indeed be governed by r. rather than by the skin 
depth S. From Fig. 1 we see that X, also agrees reasonably 
with e”M  = LRG314. The case with PM=4 (Run A) does in- 
deed not satisfy this relation. 

We also pIot the thickness of the vortex tubes, using the 
definition (4) for the vorticity field instead of the magnetic 
field. We do not have a bound for this width, h,, , in the 
MHD case. Constantin et al., as we said above, derive a 
bound in the pure Navier-Stokes case which scales as 
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TABLE II. Summary of data from numerical simulations. 

Case 0 A B C D 

Mesh 126’~ 105 63’X63 952X63 126*X 105 126*X 105 
Re 140 310 540 1100 1200 
RM 140 1240 270 1100 600 
PM I.0 4.0 0.5 1.0 0.5 
Re.4 35 63 89 121 123 
6x 0.016 0.032 0.032 0.016 0.016 
hK 0.252 0.199 0.165 0.101 0.105 
Ahi 0.055 0.076 0.065 0.029 0.027 
6 0.085 0.028 0.061 0.030 0.04 I 
YK(X)Pi’12 0.020 0.006 0.013 0.006 0.006 
r0 0.025 0.007 0.013 0.005 0.007 
A‘. 0.063 0.048 0.066 0.028 0.024 
P 0.302 0.272 0.292 0.154 0.104 
IIT 0.069 0.029 0.049 0.023 0.022 

LRem314. If we would assume that the influence of the mag- 
netic field and current on the vortex tubes is small-the re- 
gions in which each are strong tend to be quite different-we 
would take this scale as a first estimate for the tube widths. 
We plot the tube width vs Re in Fig. l(c). These results point 
toward a dependence on the Taylor scale that scales as 
LRe- I’*. This could be due to the effects of stratification and 
rotation, but it m ight also suggest that the assumption that 
the magnetic field is unimportant for the size of vortex tubes 
can not be justified in the present case. 

In Table II we also give the curvature radius p and the 
torsion scale l/T.17 In the table, SX is the mesh size, and 
AM= ~%MSIJRMS is the magnetic Taylor m icroscale. The 
quantity /K(X) has here been estimated as 
( v~/(IVU(~)~)“~. Th e curvature radius is typically 2-4 times 
larger than A,. Note, however, that in all cases X, is com- 
parable to the mesh size SX, and one should therefore con- 
sider them with care. On the other hand, we should empha- 
size that, although the value of A,. is generally much closer to 
S than to rO, it is the dependence on the Reynolds number 
that is important to us here. In other words, the scale of flux 
structures is expected to be y. times some coefficient. Our 
data suggest A,== 3ro. Further, notice that the torsion scale is 
typically shorter than the curvature radius. This is perhaps 
somewhat surprising, but one should mention the possibility 
that our torsion scale captures not only the global structure of 
tubes, but also the intrinsic torsion within a tube. Thus, even 
if a tube was straight, it m ight still have intrinsic torsion, due 
to winding of flux lines within the tube, which would be 
measured by our l/T scale. 

In Fig. 2 we show the dependence of the tube thickness 
on the threshold value. The results show clearly that in re- 
gions of strong magnetic field the tubes are “thicker,” in the 
sense of having a much stronger tendency towards align- 
ment. For comparison, we also show the corresponding 
thickness of vortex tubes. Clearly, the tubes are thicker in 
regions of strong vorticity. This striking phenomenon has 
several possible explanations. The first is suggested by our 
own estimate (27)~if the dissipation goes down with field 
strength the alignment scale should go up. This m ight be 
explained by regions having weak fields due to the action of 
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FIG. 2. Scaling of the sizes of flux tubes (solid lines) and vortex tubes 
(dotted lines! versus the threshold values of B and w. respectively. for the 
different runs of turbulent MHD convection. 

strong dissipation, However from Fig. 3 we can see that this 
is far from explaining the results-any effect is greatly at- 
tenuated by the weak power (l/4) of the dissipation in the 
length scale estimate, lK(x) = ( v*/( 1 Vu)aI *> L’4. Another ex- 
planation is offered by the analysis of the effects of viscosity 
on vortex lines presented in Constantin et al. (In the MHD 
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FIG. 3. Scaling of the dissipation lengths versus the threshold value of the 
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runs of turbulent MHD convection. 

case the magnetic diffusivity acting on the magnetic field 
would play the role of the viscosity on vorticity.) They show 
that the viscosity has the effect of aligning weaker vectors 
with stronger vectors, causing alignment in tubes with very 
strong cores. A third mechanism is strain with direction co- 
herent in space and time amplifying a given field component, 
thus causing strong fields in a given direction. This would 
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FIG. 4. Scaling of the curvature radii of flux tubes (solid lines) and vortex 
tubes (dotted lines) versus the tbkeshold values of B and w, respectively, for 
the different runs of turbulent MHD convection. 

only work if the created tube stays straight through its cre- 
ation. The final explanation could well stem from a combi- 
nation of these and other, as yet unknown, factors. 

The curvature radius scales with the threshold value in a 
similar manner as the tube thickness: see Fig. 4. This is in 
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Run D. Note the occurrence of both curved and straight B-tubes. 

complete agreement with our analysis of tube dynamics in 
Sec. III. 

In order to gain further information about the importance 
of the second and third strain terms in (42) we determine 
the correlation c=(P~),l((p~),(~)~)‘“, where 
y= -p(<.V).Yn+pT,Yb. We find values around r0.05, 
indicating that the y terms are indeed of little importance, 
and that the curvature radius p grows at the same rate p at 
which flux tubes are stretched. Furthermore, we find that the 
w-terms in (43) are approximately as important as the 
.Y’-terms. This indicates that the B-vectors do indeed experi- 
ence considerable bending by the vortex field. An analogous 
mechanism for the w-tubes does not exist, which is probably 
the reason why o-tubes are typically straight, whereas 
B-tubes are not. 

Finally, we show in Fig. 5 an example of a flux tube 
from Run D. Note the alignment of the B-vectors with the 
general orientation of the tube. 

V. CONCLUSIONS 

In this paper we have investigated two length scales 
characterizing flux tubes in MHD flow. We estimate the di- 

ameter of the tubes and derive a length scale at which the 
strain builds up the structures at the same rate that the diffu- 
sion breaks them down. While scaling is hard to verify with 
the range of scales accessible by numerical simulations, the 
numerical data show some support for this claim. 

Our estimate for the tube widths is meant to describe the 
average size of these tubes, in particular with respect to their 
scaling with relevant dimensionless numbers, PM and R, . 
However it turns out that it is not refined enough to describe 
the differences between different tubes in the same simula- 
tion. Simulations show a strong increase towards alignment 
for stronger flux tubes. A possible explanation is given by a 
recent analysis of dynamic alignment of field lines by diffu- 
sive mechanisms, which predicts just such an effect. 

In analyzing the tube curvature we see that two domi- 
nant processes are the straightening of tubes by the stretching 
strain creating them, and convection by strong vortex tubes. 
The numerics show that both are important. Since the first is 
particularly strong for long, coherent stretching strains that 
also create strong tubes, we expect that strong tubes will be 
straighter. 
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