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Abstract-MHD simulations of compressible convection in a layer heated from below are discussed 
and the results analysed in various ways. The ultimate aim of these simulations is to understand the 
generation and evolution of the magnetic field in the sun. The formation of flux tubes is addressed, 
and it is concluded that random field line stretching plays the dominant role, which is in contrast to 
vortex tubes where both shear instabilities and vortex stretching contribute almost equally to the 
generation of vorticity. Magnetic flux tubes occur preferentially near stagnation points, but there 
remains a significant flow component along the tube. Various scaling properties of the magnetic field 
generated in such simulations are investigated. Multifractal dimensions, cancellation exponents, and 
generalized power spectra are computed. While the spectra show a tendency for power law scaling, 
no such behavior is found for the cancellation exponent. Finally, impli~tions for the generation of 
large-scale fields in the solar dynamo are discussed. 

1, INTRODUCTION 

In astrophysics many examples of spontaneous formation of structures are known. 
Nonlinear hydrodynamic effects are often the cause of such phenomena of self-organiza- 
tion. The spontaneous generation of magnetic fields by a dynamo process can give rise to 
the formation of large-scale magnetic fields that lead to a systematic orientation of sunspot 
pairs and to their variation with an eleven-year period. This process has often been 
described in terms of mean-field dynamo theory [I]. meanwhile, three-dimensional 
simulations of the full MHD equations have been carried out that show the spontaneous 
formation of magnetic fields from a weak seed magnetic field [2-S]. 

Some kind of dynamo mechanism is also believed to operate in stars, planets, galaxies 
and accretion disks. Although the physical processes are different in the various cases, they 
all have in common that the magnetic energy results from fluid motions. Those motions are 
expected to be turbulent, because the Reynolds number is very large. Estimates for the 
solar convection zone lead to Re = 0(1016) [9], and comequently a wide range of spatial 
and temporal scales is involved in the problem. Direct simulations with realistic values for 
the viscosity are therefore impossible, although we hope that some essential physics can 
already be captured in simulations with much lower Reynolds number. 

Above a certain critical magnetic Reynolds number, &,, = ~~~/~, there is spontaneous 
dynamo action: the magnetic field begins to grow exponentially on a dynamical time scale, 
z = L/U,, until saturation sets in (see Fig. 1 in ref. [S]). Here, L is an outer length scale 
(comparable to the density scale height of the fluid), U, the turbulent rms-velocity, and q 
the magnetic diffusivity. For the sun we expect R,,, = S(lO*) [9]. This is well above the 
threshold for dynamo action, which is of the order of one hundred. The generated 
magnetic field appears as coherent flux tubes, similar to the vorticity which is also 
concentrated into tubes [lo-121. In the simulations presented in refs [S, 131, as much as 
25% of the magnetic field is inside flux tubes, whose strengths exceed a quarter of the 

2023 



2024 A. BRANDENBLIRG 

maximum field strength, but which occupy only 5% of the volume [13]. In other words, the 
magnetic field is spatially intermittent. 

Most of the magnetic flux is generated in the surroundings of strong convective 
downdrafts that tend to push the flux tubes downwards to the bottom of the convection 
zone. This has been shown using a selective analysis of the work done against the Lorentz 
force for regions with upward and downward velocities. Thus, while dynamo action occurs 
throughout the convection zone, there is a strong tendency for the magnetic field to 
accumulate in the interface between the convection zone and the radiative interior. It is 
believed that in the sun flux tubes emerge from such an interface which then produce 
bipolar regions and sunspot pairs when they reach the surface. In the dynamo simulations, 
however, only a small portion of the magnetic field comes to the surface. In spite of the 
effect of magnetic buoyancy, the turbulent ‘pumping’ mechanism mentioned above is able 
to keep the field down long enough to be regenerated by dynamo action [8]. 

A statistical analysis of the hydromagnetic flow reveals useful information about the 
correlations between velocity, vorticity and magnetic field vectors. The probability density 
functions of the angles between vectors of the magnetic field, velocity, and vorticity show a 
tendency for the magnetic field vectors to be aligned with the vorticity mainly in the lower 
overshoot layer, but aligned with the velocity in the bulk of the convection zone. Details of 
this analysis can be found in ref. [13]. In the following section we investigate properties of 
flux tubes and begin with the question of how such flux tubes are generated. 

The analysis presented in this paper is based on a particular snapshot of a simulation 
with Rayleigh number Ra = 10 6, Prandtl number Pr = v/2 = 0.2, and magnetic Prandtl 
number PrM = v/q = 4 [8,13], where Y is the kinematic viscosity and 2 the average thermal 
conductivity. For identification with previous investigations using the same data [8,13,14], 
we mention that the time of this snapshot is t = 779 time units since the beginning of the 
simulation. The unit of time is [t] = (d/g)“” (related to free-fall times), where d is the 
thickness of the unstable layer and g is gravity. One turnover time is about 15 time units. 
The resolution is 633 mesh points and the widths of the domain in the X- and y-directions 
are both 2d. We begin by investigating the formation and shape of flux tubes (Section 2), 
turn then to different descriptions of the scale dependence of the magnetic field (Section 
4), and discuss finally some implications for solar dynamos (Section 5). 

2. FLUX TUBES 

2.1. Alignment 

In order to investigate the properties and generation of magnetic flux tubes in more 
detail, it is useful to investigate the correlations of the magnetic field with the eigenvectors 
of the rate of strain matrix, sii = ~(Ui,j + Uj,i). In simulations of hydrodynamical turbulence 
[12, 15, 161 corresponding investigations have revealed an enhanced alignment of the 
vorticity, w, and the intermediate eigenvector e2 of the strain matrix. This is the 
eigenvector corresponding to the intermediate eigenvalue & which, on average, turns out 
to be positive. Furthermore, the vorticity tends to be perpendicular to the directions of 
compression and stretching, corresponding to the directions of the eigenvectors e, and e3 
with the smallest (most negative) and largest eigenvalues )cl and &, respectively. 

Vortex tubes are believed to be generated by an instability associated with shearing 
motions [17]. Such a shearing motion can be decomposed into rotational and straining 
motions, where the eigenvectors el and e3 determine the major axes of the straining 
motion; see Fig. 1. The vortex tubes must then be locally perpendicular to the straining 
motion, i.e. w has to be perpendicular to both el and e3 and, since the three eigenvectors 
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shear flow straining motion rotational motion 

Fig. 1. Sketch illustrating the formation of a tube from a shear flow. The shear flow is decomposed into straining 
and rotational motions. 

are orthogonal, w must be aligned with e2 [l&20]. Because of the similarity between 
vortex tubes and magnetic flux tubes, it is tempting to apply the same ideas to the 
generation of magnetic flux tubes as well. 

In the present case of compressible flows, the relation .& = -(a, + &), which is true for 
incompressible flows, is only approximately satisfied. In incompressible flows the various 
alignment properties apply especially to those points where & > 0. However, the more 
fund~ental criterion is A1 + A, < 0, and it is this one which remains relevant even in the 
compressible case. In Fig. 2 we present the probability functions for the cosines of the 
angles between the three eigenvectors and w and the magnetic field B. 
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Fig. 2. Selective analysis of the correlations between the three eigenvectors of the rate of strain tensor and 
vorticity (solid lines) and magnetic field (dotted line). Only those points where /w/ > 2 = 0.27cu,, = 2.7~0,~ (solid 
lines for correlation with w) and IBI > 0.04 = 0.28B,,, = 2.2B,, (clotted tines for correlation with B) are 

considered here. The upper row is for those points where A1 + A, < 0, and the lower one for II + A3 > 0. 
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The most pronounced alignment is clearly between o and e2. This is especially the case 
in the dynamo run where the probability density ,p(cos@) attains values around 17; see 
Fig. 2. (As usual, p is normalized such that (p dcos $ = 1.) 

Some of the alignment properties of o apply also to B, but the trends are less clear than 
for w, and the preference for B and e2 to be aligned is weak; see ref. [13]. Furthermore, 
there is a preferred angle of about 40” between B and e3, i.e. the eigenvector correspond- 
ing to the direction of stretching (see the sketch in Fig. 1). This is in contrast to vortex 
tubes, which are preferentially perpendicular to both el and e3, as it is to be expected for a 
classical vortex tube. The fact that B can also be oriented in the direction between e2 and 
e3 indicates that the magnetic field occurs typically in the form of ribbon-like structures. 
This is probably a consequence of the stretching term Bjajui on the right-hand side of the 
induction equation 

(1) 

where D/Dt = 8, + Ujaj is the total derivative, commas denote partial derivatives, and 
summation over double indices is understood. This stretching term seems to play a more 
important role for the dynamics of B than the corresponding stretching term ojajui in the 
equation for o. This is also seen in the following section where we consider the production 
rates of the magnetic field in the three principal directions. 

Dynamos work partly by the action of stretching of magnetic field lines. This must have 
some influence on the dynamics of B. Thus, although B and o behave similarly in many 
respects, it is plausible that it has an enhanced tendency to be tilted into the direction of 
stretching, or some direction between e2 and e3. 

2.2. Generation of flux tubes 

There are essentially two different ways for the magnetic field to be amplified and flux 
tubes to be generated: one is by random stretching of magnetic field lines and the other 
one by shear instability of strained magnetic field sheets. In the corresponding context of 
vorticity production, Vincent and Meneguzzi [17] proposed a simple criterion to distinguish 
between the two. The equation for the evolution of the average magnetic energy can be 
obtained by multiplying (1) by Bi and averaging 

$(B2/2) = (SijBiBj) - (B2V.o) - (r(V X B)2). (2) 

We then define the production rate of magnetic energy as A@) = (siBiBj)/(B2). The same 
can be done for the production rate of enstrophy, 3c (@. It is useful to compute separately 
the contributions in the three principal strain directions [17], i.e. 

AI”’ = (~i(B * ei)2)/( B2), A?’ = (Ai(~‘ei)2)/(02). (3) 

The results are given in Table 1. For the magnetic energy, the production rate in the 

Table 1. Production rates of magnetic energy and enstrophy 

1 2 3 

-0.092 0.0’34 0.135 
-0.077 0.084 0.136 

dB)/cums @/co mls 
-0.124 0.046 0.182 
-0.104 0.114 0.184 
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Fig .3. 
the dir 

Flux tube (from red to yellow as field increases) together with the eigenvector el (blue), correspondi] 
.ection of compression, in a ball with a radius of 4 mesh points around the point of maximum magnetic 

strength. 

ng to 
field 

Fig. 4. Flux tube (from red to yellow as field increases) together with rhe intermediate eigenvector e2 (blue) in a 
ball with a radius of 4 mesh points around the point of maximum magnetic field strength. 
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Fig 
the 

.5. Flux tube (from red to yellow as field increases) together with the eigenvector es (blue), correspondi 
direction of stretching, in a ball with a radius of 4 mesh points around the point of maximum magnetic 

strength. 

ng to 
field 

Fig. 6. Flux tube (from red to yellow as field increases) together with the actual velocity field (blue) in the plane 
perpendicui~ to the tube. Note that u tends to be aligned with the tube. 
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Fig. 7. F qux tube (from red to yellow as field increases) together with the velocity field (blue) projected 
plane perpendicular to the tube. 

into the 

Fig. 8. Flux tube (from red to yellow as field increases) together with the rotational motion (blue) in the plane 
perpendicular to the tube. 
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Fig. 9. Flux tube (from red to yellow as field increases) together with the vorticity (blue-green) in a ball with a 
radius of 4 mesh points around the point of maximum magnetic field strength. 
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Fig. 16. The three components of B in a two-dimensional slice through the box (z = l/3). Orange denotes positive 
values and blue negative. This slice is used in the following two figures for the computation of the cancellation 

exponent and generalized magnetic power spectra. 

Fig. 20. A numerically generated butterfly diagram of the &field with artificially superimposed noise with a k-r 
spectrum. Orange denotes positive values and blue negative. 
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stretching direction is 4.0 times larger than in the intermediate strain direction. This ratio is 
much larger than the corresponding ratio of about 1.6 for the enstrophy production. This 
ratio of the values for the enstrophy production is similar to the ratio obtained by Vincent 
and Meneguzzi [17]. This shows quite clearly that the effect of random stretching of 
magnetic field lines is rather important in the present dynamo simulations. The magnitude 
of the production rates of both magnetic energy and enstrophy are comparable to the 
largest Lyapunov exponent of about 0.08, that was found for the same simulation [21]. The 
largest production rates, normalized by the rms-value of the strain (i.e. by arms), are 
around 0.2. This is consistent with results from homogeneous turbulence [16]. 

2.3. Location of flux tubes 

It is a crucial question to what extent magnetic flux tubes are preferentially generated in 
stagnation points of the flow, and what the relative importance of straining and rotational 
motion is. For this purpose we consider the strongest tube in this particular snapshot. We 
begin by visualizing this tube together with the three eigenvectors. Figures 3-5 confirm that 
the tube is approximately perpendicular to e, and aligned with e2, but there seems to be an 
intermediate angle between B and e3. Note also that the tube is curved, and that the 
alignment properties quoted above apply only to the region away from the direction of 
curvature (upper part in the figures). In the direction of curvature the orientation of the 
three eigenvectors appears to be more random. 

In practice it is difficult to see a well-defined straining motion, as suggested by the 
eigenvector analysis. In Fig. 6 we display the flux tube together with the velocity field in a 
plane perpendicular to the tube. Note that there is a significant flow component in the 
direction of the flux tube, which is also confirmed statistically [13]. A local alignment of u 
and B is expected in MHD turbulence due to the presence of interacting AifvCn waves, and 
is referred to as the AlfvCn effect [22]. 

Only if the flow component in the direction of the tube is removed, and the average 
motion in that plane subtracted, does one see a flow reminiscent of a straining motion (see 
Fig. 7). Of course, the flow consists not only of a straining motion, but also of a rotational 
motion. In general, we can split the velocity gradient matrix into symmetric and anti- 
symmetric parts, i.e. Ui,j = sii f Q,, where Sz, = -ieijkmk. Close to the tube, the rotational 
motion may be expanded in the form “ij’i, where r is the radius vector with respect to a 
reference point on the tube. This rotational component, u,~ = io x r, is isolated in Fig. 8. 

The rotational flow is clearly seen at some distance away from the tube. The vorticity 
corresponding to this motion is directed in the direction of B. This is confirmed by Fig. 9, 
where the vorticity field is displayed in a ball around the tube. Note, however, that in the 
immediate surrounding of the tube the vorticity has changed direction and is there oriented 
antiparallel to the magnetic flux tube. 

The presence of a rotational motion around the magnetic flux tubes can be important for 
stabilizing the tube. This will be discussed in more detail in the following section. 

2.4. Stability of j7zm tubes 

Soward [23] investigated the stability of a magnetic flux tube in a straining flow with 
rotation and found a condition 5 > 0 for stability, where 

c = AlA + (to * e2)*. 

In other words, the tube can be stable if the rotational motion dominates over the straining 
motion. (Note that A,& < 0.) The same conclusion was reached also by Moffatt et al. [24]. 
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A similar analysis has been performed by Klapjper and Tabor [25], who quantify the 
relative importance of straining and rotational motions by the quantity 

0; = (A, - Q2 - (tw - e2)‘. (5) 
If as is positive the magnetic field can grow exponentially. The two quantities are related 
via ai = (A, + &J2 - 41;. 

Locally, the stability of the magnetic field is gove.med by the eigenvalues of the operator 
on the right-hand side of (1). Neglecting diffusion and the V *u term, we can get some 
preliminary information by considering the eigenvalues of the velocity gradient matrix Ui,j. 
In the frame spanned by the principal strain axes, WI= can write 

i 

Al -&o - e3 &o-e2 

1 i 

4 0 +-e2 
Ui,j = +*e3 n, -&J- el zz 0 4 0 7 (6) 

-$o * e2 &o-e, s -&o-e2 0 A3 1 

where the approximation (second term) is only valid in those places where there is good 
alignment between w and e2. One of the three eigenvalues of ui,j is s1 = h, but this 
corresponds to growth or decay in the direction of the tube (provided B is also aligned 
with e2). If 151 << ]A1 +A,], we can write the other two eigenvalues as s2 = 3L1 + A, and 
s3 = [/(A, + s). Thus, if a magnetic flux tube is aligned with e2, and if A1 + &, < 0, then the 
tube would be confined if f > 0 [23]. 

In order to check the possibility of tubes being located in stagnation points and stabilized 
by a sufficiently strong rotational component, we present in Fig. 10 the statistics of various 
quantities for discrete windows of IBI . This allows us to distinguish between regions of 
strong magnetic field (usually associated with flux tubes) and weak field (corresponding to 
the background). If flux tubes are indeed located in the surroundings of stagnation points, 
we would expect that the flow component perpendicular to the magnetic field, uI = 
u - (u - B)/]BI, is small in those places. In Fig. 10 we compare the IBI-dependencies of 
(u?Y’~ and lullmax with those of (u2)@ and It&,,. As IBI increases, (ut)‘p decreases, which 
is compatible with the idea of a stagnation point. This is even better seen in the 
dependence of Iullmax, which approaches almost zero for the maximum magnetic field. On 
the other hand, there remains a significant flow component in the direction of the magnetic 
field, as seen in the dependencies of (u2)@ and lu],,. This may be associated with the 
AlfvCn effect mentioned in Section 2.3. 

In Fig. 10 we have also plotted the (BI-dependence of the average of the stability 
parameter 5. For most values of ]BI, 5 is on average negative indicating that magnetic flux 

0.00 0.05 0.10 0.15 0.00 0.05 0.10 0.15 0.00 0.05 0.10 0.15 
B B B 

Fig. 10. Statistical analysis of the rms and maximum values of 1111 (dotted) and lull (first and second panel) and 
the average value of f (third panel) for discrete windows of (B 1. 
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field structures are generally unstable. This is not surprising, because from video anima- 
tions of the field we know that flux tubes come and go, with a typical life time of only a 
few turnover times. Nevertheless, for a narrow range of intermediate ]B] values the average 
value of c does become positive. Thus, it seems that once the magnetic field has reached a 
certain threshold value of ]B] = 0.7]BI,, = 6( B2) lb, the tubes can become locally stable. 
However, when the field becomes even stronger, the tube will become unstable again. 

After having discussed the formation of individual flux tubes, we now turn to the ques- 
tion of their geometrical structure and consider in the following their fractal dimension. 

3. FRACTAL DIMENSION OF FLUX TUBES 

The fractal dimension of level sets of temperature, concentration of chemicals, and of 
the magnitude of the vorticity has attracted attention since Mandelbrot [26] associated 
intermittency in fluid turbulence with fractal properties of the dissipation field. Constantin 
and Procaccia [27] established the estimate D = 2.7 for the fractal dimension of level sets 
of vorticity, based on the Navier-Stokes equations. This result is consistent with data of 
three-dimensional simulations of Navier-Stokes turbulence [28]. Similar estimates have also 
been obtained for level sets of the magnetic field in a dynamo simulation [14]. However, in 
those cases where MI-ID turbulence is dominated by interacting AlfvCn waves (the AlfvCn 
effect), Biskamp [29] derived D = 2.75 for level sets of the modulus of the current, ) JI. He 
confirmed this using high resolution simulations of two-dimensional MHD turbulence. 

Here we reconsider estimates of the fractal dimension of ]BI and IJ] in a MHD dynamo 
simulation. It is important whether or not the lower overshoot layer is included in the 
analysis. In ref. [14] the lower overshoot layer has been removed and the remaining field in 
the convection zone (with aspect ratio 2:2:1) has been replicated in order to fill a cube with 
equal side walls (2:2:2). This resulted in rather bad scaling in the sense that the local 
dimension D(r) at length scale I did not show any plateau. Below we present the results 
including the data in the lower, stably stratified region. The scaling for both the magnetic 
field and the electric current is now much better. There is a clear transition from 
two-dimensional behavior at small scales (r = 1 mesh size) to fractal behavior at larger 
scales (r = 10 - 30 mesh sizes). In the intermediate range the fractal dimensions of the two 
fields are compatible with D = 2.7. However, the accuracy is insufficient to distinguish 
between the values 2.70 and 2.75. It should be noted, however, that in the dynamo 
simulations the flow does not seem to be governed by the AlfvCn effect, and therefore 
D = 2.7 would be expected for Kolmogorov turbulence. 

B-field 

1 10 
T 

J-field 

.“’ 

Fig. 11. The scaling of the fractal dimension D(r) for level sets of IBI and IJI (solid lines). Dotted and dashed 
lines refer respectively to smaller and larger window widths of the values of IBI and IJI that have been included in 

the level set. 
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The fractal dimension of level sets of ]B] and ]J] have been determined using the 
Grassberger-Procaccia algorithm [30]. In fact, mere is a whole spectrum of different 
dimensions [31], including, for example, the Hausdorff dimension D,,, the information 
dimension Dr , and the correlation dimension D2 (which is the dimension considered 
above). The values of these different dimensions are only different if the set contains 
singularities [32]. Level sets do not contain singularities (the density of points is limited by 
the mesh), and therefore level sets do not show multifractal behaviour. A different 
situation arises if we consider instead the continuous field of the vorticity or the magnetic 
field. In the following section we first explain the basic tools for doing this and then 
illustrate the difference between the two rather different fractal aspects of the field. 

4. SCALE DEPENDENCE OF THE MAGNETIC FIELD 

4.1. Generalized dimensions 

The generalized dimensions, Dq, of the ]B]-field are important, because they provide a 
description of the magnetic field structure, and can thus be used to compare the results of 
different simulations [33]. Furthermore, the local value of D,(r) for q + 03 gives informa- 
tion about the sharpness of the strongest ‘near-singularities’ of the ]B]-field [32]. Such 
near-singularities behave approximately like Ir - r,,]om-3, although the peak itself must 
always be smooth. This kind of profile has also been confirmed by looking at the cross- 
sections of the magnetic field in actual simulations [14]. A full picture of the near-singular 
structures can only be obtained when all D,s are known. We return to this in the following 
subsection. 

In order to estimate the ‘local’ generalized dimensions, DJr), one divides the space into 
N(r) boxes of size r and subvolume V;:(r) with i = 1, . . . , N(r), and computes the scaling 
of the generalized correlation integral, C,(r) = ci,v)i(r)q, where the weight or normalized 
magnetic field strength in each box is 

I IBI d3x 

pi(r) = vi(r) -- 

I 
(BI d3x 

” 
The ‘local’ generalized dimension is then given by 

D,(r) = 1-2 dln C (r) 

q-1 dln r 

(7) 

(8) 

(for further details on the computation see ref. [14]). 
The same analysis has also been carried out Ear the magnitude of the vorticity in 

hydrodynamical simulations of forced turbulence. For example, the data of Vincent and 
Meneguzzi [12] give D, = 1 at small scales close to r = ld [14], where Z, is the dissipative 
Kolmogorov cutoff scale. This implies that the strongest near-singularities in this field 
behave like jr - rolm2. For the magnetic field the situation is qualitatively similar, although 
the near-singularities are less strong, which may be related to insufficient numerical 
resolution. In the MHD simulation, the Reynolds number based on the Taylor microscale, 
A = ((~~)/(d))~~ is Ren = 30 (w = V x u is vorticity). In this run the Rayleigh number has 
been pushed to the limit, and the smallest structures are therefore only poorly resolved. 
This may be the reason for the relatively weak appearance of near-singularities compared 
to the hydrodynamical case. Indeed, for small values of r, Dq(r) does not show a tendency 
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for approaching the embedding dimension d = 3 at the scale of the mesh (see also Section 
4.3 and Fig, 14). A local dimension close to d is always to be expected at the smallest 
scales where the field ought to become smooth. 

In the intermediate (inertial?) range there is no good scaling of Di, but there is a 
crossover to D1 + 3 at large scales. This is the case even for the 2403 simulation of Vincent 
and Meneguzzi [12] where Re, = 160. This shows that truly multi~a~al behavior is only to 
be expected for much larger Reynolds numbers. Indeed, Meneveau and Sreenivasan [34] 
find good scaling in the inertial range for the flow in the atmospheric surface layer 
(RA = 1500). Using Taylor’s hypothesis, they estimated the local dissipation from a time 
series (d = 1) and found Dr = 0.7, corresponding to 2.‘7 for the three-dimensional case. 
This is also the value that is theoretically expected for the level sets of vortex tubes (271, 
suggesting that Di of the field and D of level sets are indeed connected to each other. 
Nevertheless, it is important to distinguish between the fractal dimension of level sets in 
the inertial range and the dimensions D, at small scales. Whilst the latter measures the 
local sharpness of cross-sections through a vortex tube, the former measures the degree of 
wrinkling of the tube at large scales. These two quite different aspects are illustrated in the 
foIlowing sketch (Fig, 12). 

The wrinkling of vortex tubes may reflect the presence of concentrations of curvature 
and torsion which, in turn, could be the result of solitons propagating along those tubes 
[35-371. In the following we focus attention on various statistical properties of flux tubes. 

4.2. The f(c~} spectrum 

The multifractal aspects of turbulence may be characterised by the f(a) spectrum. Its 
role in MHD turbulence has been explained in the review of Biskamp [38]. Qualitatively, 
f(a) is the dimension of the set of points, where the field scales locally like ]r - r0jam3, i.e. 
where the pointwise dimension is equal to D 1321. The f’(@} spectrum is usually computed 
from the generalized dimensions via a Legendre transfomt; 

l%(q) = d”, 
dq 

f(4 = 44q) - r(q)7 

where z(q) = (q - l)D,. This method has been applied to simulations of MHD turbu- 
lence [14]. 

Fig. 12. Sketch illustrating the two aspects of tubes: (i) the degree of wrinkling of the entire tube geometry, and 
(ii) the sharpness of their cross-sections. 



2038 A. BRANDENBURG 

It should be noted, however, that we only have truly multifractal behavior if there is 
good scaling of C,. On the other hand, if one assumes scaling behavior, f(a) can be 
readily determined directly from the statistics of the p,(r) - rni via the histogram N(a) of 
the pointwise dimensions, 

pi = In pi( r)/ln r . (10) 

This method is due to Chhabra and Jensen [39], and has recently been adopted by 
Lawrence et al. [40] for the analysis of solar magnetograms. The histogram N( a; I) should 
scale like 

N(a; r) = c#(r)F-), (11) 

and so we can determine f(a) = -In (N/$)/m r, where $(r) is a slowly varying func- 
tion [40]. 

In Fig. 13 we compare the resulting f(a) spectra using the two different methods. In 
practice, the direct method appears to be slightly less convincing than the method via the 
generalized dimensions in that certain criteria such as max (f) = D,, = 3 and a - f(cu) 2 0 
are not satisfied to sufficient accuracy. If f(a) is determined directly, the dependence of D, 
on q can still be evaluated from f(c) via the inverse Legendre transform 

q = dfb, z = qcY - f(a). (12) 

The result is shown in Fig. 13(c). 
The left-hand branch of the f(a) spectrum corresponds to positive values of q and gives 

the fractal dimension of the set of points on which the field behaves locally like ]r - r01ne3. 
For example, the strongest near-singularities in the field have (Y = 2.5 with f(m) = 1. This 
means that those near-singularities lie on a one-dimensional set, corresponding to tube-like 
structures. 
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Fig. 13. The dependence of D, on q (a), and the corresponding f(a) spectrum (b), using the method via the 
generalized dimensions. In (c) and (d) the resulting plots are given by using the histogram method. 
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In this section we used the standard definition of a measure, as opposed to so-called 
signed measures. Signed measures have recently attracted some attention because of their 
physical significance in the dynamo problem. This will be considered in the next section. 

4.3. Signed measures and the cancellation exponent 

There has been recent interest in ‘signed’ measures [33, 40, 411. Signed measures are 
obtained by averaging either B (instead of IBI or B2), or one of the field components, over 
squares or boxes of size r. Thus, the signed measure of the magnetic field corresponds to 
the magnetic flux at scale Y. For astrophysical dynamos it is essential to generate magnetic 
flux at large scales. This may be part of the reason why signed measures are considered to 
be important. In ref. [40] the signed measure pi is normalized such that ciyi = 1, where 

(13) c/i BdV 
i VI(r) 

and B stands for one of the three components of the magnetic field. In Fig. 14 we compare 
the result for unsigned and signed measures for the B, component of the magnetic field. It 
turns out that the dimension for the unsigned measures is typically smaller than for signed 
ones. 

Strictly speaking, a signed ‘measure’ is actually not a measure, because the measure 
p(A1 + A2) of the field in two areas, A, and A2, is not equal to the sum of the measures 
,u(A,) + p(A,), as it has to be the case for ordinary measures. However, if we divide the 
space into areas A+ and A-, where B, is either positive or negative, we have 
p(A+ + A-) = p(A+) - ,u(A-). This suggests that, if we are to consider multifractal 
properties of the signed flux, we should compute the scaling separately in regions of 
positive and negative B,. In practice this is done by computing, as usual, the generalized 
dimensions using (13) and (S), but setting the field with either negative or positive sign to 
zero. The result is shown in Fig. 15. The curves for ,u(A+) and p(A-) look roughly similar. 
Furthermore, the shape of the curves for q = 1 is similar as for the usual unsigned measure 
(Fig. 14), but the local codimension, d - D,(r), is now about twice as big as for the 
unsigned measure. 

B, (unsigned) 

3.2- 

B, (signed) 

3.2 r---yg-j 

1 10 1 10 
T T 

Fig. 14. The scaling behavior of DJr) using unsigned and signed measures of the B, component of the 
magnetic field. 
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B,> 0 B, < 0 

1 10 1 10 
T T 

Fig. 1.5. The scaling behavior of Dp(r) using the measures p(A+) and y(A-) of the B, component of the 
magnetic field. 

The normalization used in equation (13) is r-dependent. This is avoided in the definition 
used in refs [33,41]; 

(14) 

but now x(r) = z,mj(r) # 1. The scaling of the cancellation exponent K $411 may be 
determined via 

K(r) = - dlnX(r)w. 
dlnr (15) 

In order to generalize X(r) in a convenient way we define 

aA, = (l@)r14)“qy (16) 

where (. . .)r d eno es an average over a box of scale r, and (. . .) is an average over the t 
entire computational volume. The total magnetic energy is proportional to (B’) = a;(O). 
It is important to note that (B2) can be significantly underestimated if the magnetic field 
continues to be intermittent and nonsmooth down to the smallest scales resolved. This is a 
particular problem when data of observations are analysed. The r-dependence of a,(r) can 
then in principle be used to extrapolate to the limit of perfect resolution, r + 0. 

The scalings of CA1 and x are identical, i.e. d ln;t/dln r = dln G&/d In r. It is straight- 
forward to define generalized cancellation exponents 

Kq(r) = - 
dln93q(r) 

dlnr -’ 
(17) 

The exponent K~ can be used to characterize the dependence of (B2) on the Reynolds 
number. Assuming that the magnetic field is concentrated on the scale of the skin depth, 
r-R 1’2 Bertozzi et a 1. [42] were able to relate the scaling exponent rz- in the relation 
(B2) -“A:, to K= ~~ and D2. Following the definition (17), we see immediately that 
rz = K~. In the following, however, we point out that the assumption of power-law scaling is 
not in general valid. 

In order to facilitate comparison with magnetic power spectra (see the following section) 
we use here, as well as in the following section, a two-dimensional slice through the box 
(z = l/3), for which the B-field is shown in Fig. 16. 
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In Fig. 17 we plot K~(T) for different values of q , Note that q(r) does not show 
power-law behavior. This is at first surprising because the power spectrum for the magnetic 
energy does show a small intermediate (inertial?) range with a power law compatible with a 
k-r spectrum. Vainshtein et al. [43] pointed out that the cancellation exponent of the 
vorticity, o = V x u, is related to the structure function c1 of velocity increments which, in 
turn, is related to the power spectrum of u, i.e. to the kinetic energy. Thus, the 
cancellation exponent of B should rather be compared with the structure function or the 
power spectrum of the magnetic vector potential A, since B = V x A. Alternatively, we 
may compare the power spectrum of B with the cancellation exponent of J = V X B/h. 
This is done in the second panel of Fig. 17. Note that for q s 1 there is indeed a tendency 
for K~ to level off at large scales, indicating that power-law scaling is possible. 

In conclusion, the numerical results for the cancellation exponent of the magnetic field 
show no good scaling, even though the power spectra do show some weak evidence of an 
inertial range (see next section). It is possible that .the lack of scaling is due to the 
relatively short range of length scales that is available in current three-dimensional 
simulations. For practical purposes it is therefore useful to know that in spectral-space 
scaling may be found at relatively low Reynolds numbers, while in real space there is no 
scaling for those Reynolds numbers. In the following section we elaborate on scaling 
properties in spectral space and on the possible connection with scaling in real space. 

4.4. Generalized power spectra 

Instead of partitioning the domain into boxes, as we did in the previous sections, we may 
alternatively use a spectral decomposition. Because of the inhomogeneity in the vertical 
direction we have restricted ourselves to two-dimensional spectra in a horizontal plane 
in the upper third of the box (z = l/3), i.e. we use i?(k) = (B(x, y, zo, to)exp[i(kXx + 
k,y)] dx dy , and compute generalized power spectra 

M,(k) = I*j&k)\“k d&, (18) 
0 

where the k d& integration is over shells of constant k = lkl, and k and & are cylindrical 
polar coordinates in k-space. Note that M,(k) is the usual spectral magnetic energy. In the 
inertial range we expect power-law behavior and, since for q = 0 the integrand is 
proportional to k, i.e. M,(k) - k’, it is sensible to write 

M,(k) . - kl-V, (19) 

B-field 

0.0 0.5 1.0 1.5 
log,,r [mesh size] 

J-field 

0 0 0.5 1.0 1.5 
log,,r [mesh size] 

Fig. 17. The dependence of Q(T) on r for different values of q using the signed measure of B (left) and J (right). 
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In Fig. 18 we show the local slope, dln M,(k)/d In k, as a function of wave number k. We 
also display the dependence of the scaling exponem IZ~ on q. Because of the relatively 
small resolution an inertial range can hardly be expected. Nevertheless, for intermediate 
wave numbers the local slope tends to show a small plateau with n2 = 1, corresponding to 
M2( k) - k-l. Note that deviations from the n4 = 1 scaling are relatively weak, i.e. there 
is no strong ‘multispectral’ behavior. For comparison, Kolmogorov scaling with a k-5i3 
spectrum corresponds to n2 = 4/3. 

In order to investigate the correspondence between power spectra and the cancellation 
exponent further, we now compute KJT) for artificially generated data with random phases 
and a given power spectrum, k”. For this experiment we use a two-dimensional mesh with 
256 x 256 points. It turns out that, again, there is no power-law behavior, i.e. KJT) does 
not show a plateau. Instead, we find that to a good approximation 

q(r) = urb, (20) 

where a and b are functions of v which are shown in Fig. 19. For the artificially generated 
data this dependence is independent of q. Note that for v = - 1, loglo a = -0.6 and 
b = 0.5, which is in rough agreement with the case depicted in Fig. 17. Furthermore, for 
different q the value of ~~ is almost the same, i.e. there is no ‘multiscaling’ in the 
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Fig. 18. Left The local slope of the generalized power spectrum. The solid line is for 4 = 2, dotted lines for 
-10 s q s 0, and dashed lines for 0 < q c 10. (Note that the lar,gest wave number is n/Ax E= 100.) Right: The 
scaling exponent a4 (solid line) taken as the average local slope around loglo k, = 1.4. The dotted and dashed 
lines indicate the local slopes for k < k, and k > k,, respectively, and may be used to estimate the quality 

of scaling. 

2 - +.w.....+~ . +.. % b 
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Fig. 19. Lefr: The local value of logrc xq(r) for artificially generated data with a kY power spectrum for Y = -1. 
Right: The fit parameters a and b as a function of Y. 
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artificially generated data. Only white noise, i.e. Y = 0, leads to a constant slope with 
Kq = 1. 

It is important to note that the k-’ spectrum for the magnetic energy that is seen in the 
simulations, and which has been predicted especially in the context of dynamo action with 
an inverse cascade [22], is of deep importance for the solar dynamo. Qualitatively, the 
steepness of the spectrum determines the importance of large scale fields relative to small 
scale fields. This is illustrated in the following section. 

5. IMPLICATIONS CONCERNING THE SOLAR DYNAMO 

The purpose of this section is to discuss the role and importance of small-scale magnetic 
fields in the solar dynamo. On the other hand, the solar magnetic field shows rather 
regular behavior, including the 11-year cycle, the equatorial migration of the magnetic field 
belts, and the systematic orientation of these field belts that reverses after 11 years, On the 
other hand, this process is believed to originate from the turbulence motions, that are 
intrinsically irregular. This appears paradoxical. Put into a more general context one might 
ask the question as to how strong the irregular small-scale magnetic field can be without 
losing the appearance of an underlying structure of a large-scale magnetic field. 

In order to address this question, we now make an experiment using a large-scale 
magnetic field pattern (in space and time) and add statistical noise with a k-’ power 
spectrum, that was found to be consistent with the simulations (previous section). The 
large-scale magnetic field pattern is derived from a mean-field model of the solar dynamo. 
A few words concerning this model are here in order. It is commonly believed that the 
large-scale magnetic field seen in the sun is related to the inverse cascade of the magnetic 
helicity that leads to a gradual increase or maintenance of the magnetic energy at large 
scales [22]. Qualitatively the same process is realised in so-called a-effect dynamos [l, 441 
where, however, only the large-scale magnetic field is solved for explicitly, and the effects 
of the small-scale fields have been subsumed into the a-effect and the turbulent magnetic 
diffusion. Recently progress has been made by applying consistently derived expressions for 
the full & and rl tensors to a model of the solar overshoot layer [45]. We now use this 
model to address the question of an upper limit on the strength of magnetic fluctuations, 
B’, that are still compatible with the appearance of a large scale magnetic field, (B) . 

We use a butterfly diagram of the B,-field from this model and add noise with a k-l 
power spectrum. The noise has an exponential distribution function and is generated on a 
(0, @, t)-mesh, where 8 is colatitude, 4 longitude, and I’ time, with a resolution of 2.3” x 
2.3” X 0.5 yr. The energy of the noise, (B”), has been scaled relative to the energy of the 
mean field, (B)2, such that 

(B’2)/(~)2 = 100. (21) 

The resulting field B = (B) + B’ is then averaged over @, and a running mean over 4 years 
is adopted to smooth the data. Thus, we treat our numerically generated data very much 
like observers would do. The result is shown in Fig. 20. 

Note that the basic features of an equatorward migration at low latitudes and a poleward 
migration at high latitudes can still be distinguished from the superimposed noise. We thus 
argue that a noise level of 1OO:l relative to the regular mean field component is still 
compatible with the observations. In reality, the noise level might be rather lower than 
that, because it is also observed that strong, individual bipolar regions (that are not subject 
to averaging) are always systematically oriented. The usual interpretation is that such fields 
originate from deeper layers (probably the overshoot layer) where the magnetic fluctu- 
ations are weak and the field strong. 
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Numerical simulations of three-dimension& MHD convection may be used to improve 
our underwing of the solar dynamo. At the same time, such simulations exhibit an 
enormous amount of interesting turbulence physics. Due to the presence of rotation, 
stratification, and overshoot layers, a variety of aspects can be addressed. In the present 
paper we have focussed on different ways to characterize the geometry of magnetic flux 
tubes in such a dynamo simulation, and to describe sue-dependent properties of the 
magnetic field, In addition to the recently developed concept of signed measures, 
generalized power spectra of the magnetic field may be used to characterize such aspects. 
Investigating the development of the magnetic power spectrum is indeed a convenient way 
to detect an inverse magnetic cascade, which is a key issue in understanding the 
development of the large-scale magnetic field of the sun. Unfortunately, current MHD 
simulations are as yet not realistic enough to attain sufficiently large an inertial range and 
to establish power-law behavior. However, it seems that the magnetic ‘noise’, associated 
with MHD turbulence and a magnetic power spectrum of k-’ for even steeper) is still 
compatible with the appearance of a large-scale magnetic field as is seen on the sun. 
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