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We use three-dimensional simulations to study compressible convection in a rotat- 
ing frame with magnetic fields and overshoot into surrounding stable layers. The, 
initially weak, magnetic field is amplified and maintained by dynamo action and 
becomes organized into flux tubes that are wrapped around vortex tubes. We also 
observe vortex buoyancy which causes upward flows in the cores of extended down- 
draughts. An analysis of the angles between various vector fields shows that there 
is a tendency for the magnetic field to be parallel or antiparallel to the vorticity 
vector, especially when the magnetic field is strong. The magnetic energy spec- 
trum has a short inertial range with a slope compatible with k+lI3 during the early 
growth phase of the dynamo. During the saturated state the slope is compatible 
with k - ' .  A simple analysis based on various characteristic timescales and energy 
transfer rates highlights important qualitative ideas regarding the energy budget of 
hydromagnetic dynamos. 

1. Introduction 
The dynamo action of magnetohydrodynamic turbulence is of major importance in 

virtually all astrophysical bodies. In stars, accretion discs and galaxies the turbulence 
is compressible and affected by rotation and stratification. Here we focus on solar-type 
stars, where low Prandtl number turbulence is driven by convection which penetrates 
into the lower radiative interior. 

Previous investigations of convective dynamos have concentrated on the magnetic 
field evolution either on large scales using spherical geometry (e.g. Gilman 1983; 
Glatzmaier 1985; Valdettaro & Meneguzzi 1991), or on small scales using Carte- 
sian geometry (Meneguzzi & Pouquet 1989). In a recent paper (Nordlund et al. 
1992, hereafter referred to as Paper I) we included, for the first time, the com- 
bined effects of compressibility, rotation, stratification, overshoot, and low Prandtl 
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FIGURE 1. A Cartesian box in the convection zone at a southern latitude, with z parallel to g and 
the rotation axis in the (x, 2)-plane. The structure of the box and the interfaces at zj ... 24 are shown 
on the right-hand side. CZ denotes convection zone. 

number in a Cartesian geometry. These simulations provide new insights into convec- 
tive magnetohydrodynamic turbulence, which laboratory experiments could not pro- 
vide. 

The goal of this paper is to present new results obtained in such high-resolution 
numerical experiments and to investigate the magnetic structures associated with 
the dynamo process and their correlation with other fluid properties. The mag- 
netic structures in many respects resemble the vorticity tubes found in hydrody- 
namical turbulence, of which a detailed investigation has recently been carried 
out by Vincent & Meneguzzi (1991, 1994). A corresponding investigation for the 
magnetic counterpart does not exist. Our simulations therefore provide a unique 
opportunity to carry out such studies and to test ideas such as the similarity 
between the dynamics of vorticity and magnetic fields, as proposed by Batche- 
lor (1950). 

The paper is organized as follows. After describing the simulation characteristics 
(e.g. equations of the flow, initial and boundary conditions, numerical method, etc.) 
we present some results about swirling convective downdraughts ($3 j which drive 
the dynamo that amplifies a seed magnetic field. Three different aspects of the 
simulation data are then presented: the magnetic field structures ($4), the statistics 
($5)  and the spectra ($6) of different physical quantities. A final discussion concludes 
the paper. 

2. The simulation 
2.1. Equations 

We employ Cartesian coordinates, where the x-direction points along the meridian 
from south to north, the y-direction points in the azimuthal direction of rotation, 
and z points downward in the direction of gravity g, wjth g = g2 (figure 1). The 
rotation vector R is inclined to g at an angle 8, i.e. 6 * D = cos 0. Throughout this 
work we take 8 = 71/3 which means that the latitude of the domain is 30" south of 
the equator. The computational domain (figure 1) has an unstable layer of depth 
d between heights z2 < z < zj, with stable overshoot layers z1 < z < z2 above the 
convective layer and 23 < z < z4 below the convective layer (as in Hurlburt, Toomre 
& Massaguer 1986). The horizontal extent is 2d in each direction (except in Run B, 
where it is 3 4 .  
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We solve the equations for conservation of mass, momentum, energy, and the 
induction equation for constant magnetic diffusivity y : 

D lnp 
D t  

= - v * u ,  

(2.2) 
Du 1 1 
-- - - ( y  - l)(eVlnp + Ve) + g - 2S2 x u + - J x B + -V * z, 
D t  P P 

__ = - ( y  - D e  
D t  

- = V x (U x B )  + rV2B, (2.4) 
8B 
at 

respectively, where D /D t = d/& + u V is the total derivative, 2" the radiative con- 
ductivity divided by en, J = V x B / p o  the electric current, p~ the vacuum permeability, 
and the stress tensor z = 2vpS, where 

Szj = $ j U ,  + a,.] - ; & j d k U k ) .  (2.5) 

We take the kinematic viscosity v as constant throughout the convection zone. A 
constant pv with a strong density stratification would have made the upper layers 
significantly more dissipative than the lower layers, which is unrealistic because the 
dissipation should be as small as possible for a given resolution. (For a monatomic 
gas such as ionized hydrogen or helium the bulk viscosity is zero.) 

We assume a perfect gas law 

p = ( y -  1 )Pe, (2-6) 

with constant specific heats, cp and cu, and with y = cp/cu = 5 / 3 .  In all the runs 
where z1 < 0, we adopt a cooling function Q of the form 

Q = -o~f(z)(e - e t o p ) ,  (2.7) 

where DO is the cooling rate and f ( z )  is a profile function that vanishes everywhere 
except close to the surface (z1 < z < z2) where f ( z )  = 1. 

2.2. Initial and boundary conditions 
On the upper and lower boundaries of our computational domain we impose con- 
ditions which are mathematically convenient, yet physically plausible. By including 
overshoot layers the hope is that the actual conditions imposed at the top and bottom 
have little influence on the flow in the convection zone (CZ). 

At the top we impose a constant temperature and at the bottom a constant energy 
flux; that is 

e = etop at z = z l ,  (2.8) 

de/dz = (de/dz)b,, at z = 2 4 .  (2.9) 
We assume the upper and lower boundaries to be impenetrable stress-free perfect 
conductors which implies 

at z = z1,zq. 
a,u, = a,u, = u, = 0 

dzB, = d,BL = B, = 0 (2.10) 

In addition we require all quantities to be periodic in the two horizontal directions. 
With the above boundary conditions, a manipulation of the induction and continuity 
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equations reveals that each component of the magnetic flux vector and the total mass 
in the domain are conserved. 

In the initial state we set u = B = a / &  = 0 in (2.4)-(2.1) and obtain equations for 
the hydrostatic and radiative equilibrium which depend upon m(z)  : 

de/dz = m,dg/[m(z) + 13, (2.1 1) 

dlnpldz = nz(z)dlne/dz. (2.12) 

We specify the normalized pressure scale height 40 at the top of the domain, where 

erop = 40mndgd, (2.13) 

where mad = l / ( y  - 1) = 3/2 is the polytropic index for an adiabatic stratification. 
Small values of to correspond to strong stratification. The actual stratification after 
a statistically stationary state is obtained is measured by the number of scale heights 
over either the full box, Aln(p), or within the unstable layer, Aln(p)cz. 

Convective instability occurs in the interior of a star when X ( p , e )  is smaller than 
a critical value, The dependence X = X ( p , e )  in stars is highly nonlinear with large 
variations over many orders of magnitude. Here, for simplicity we prescribe a vertical 
profile X ( z )  such that the middle layer is convectively unstable and the other two are 
stable to convection (Hurlburt et al. 1986). In each layer X is a different constant, 
Y,(i = I, 2,3) and these different values are joined smoothly in thin transition layers 
of thickness O.ld using third-order polynomials, so that X ( z )  is continuous and 
differentiable. The value of X? in the unstable layer is determined by the values we 
prescribe for the Rayleigh and Prandtl numbers (see $2.3). Since X is a function 
of z so is the polytropic index m. In stellar convection theory Vrod = l / (m  + 1) is 
sometimes used instead of m. A relation between m and .X in each layer is obtained 
by requiring the total Aux of the initial state, X,de/dz = F,,,,. to remain constant. 
Using (2.11) 

m, + 1 = X,mad g/Ffot, i = 1,2,3. (2.14) 
In all cases studied below we adopted ml = m2 = 1 and 1n3 = 3, so the system is 
convectively unstable in the upper and middle parts of the box and stably stratified 
in the lower part. In those cases where z1 < 0 we included cooling with ts = 10, which 
tends to make the upper part isothermal and thus convectively stable. 

This equilibrium is perturbed by the addition of a small-amplitude random velocity 
field. When the convection has reached a statistically stationary state a seed magnetic 
field is added to the convectively unstable region. In most cases we used B = (&, 0,O) 
where 

to = H p ) / d ,  H w p )  = ( y  - l)etop/g, and etop is expressed in terms of by 

By = Bseed sin[2n(z - Z,)/(Zb - z,)] for z, < z < z b  

= 0 elsewhere (2.15) 

with z ,  = 0.3d and zb = 0.7d. With this seed field s Bd3x = 0 for all time. In some 
cases a random initial magnetic field was used. 

2.3. Dimensionless quantities 
After setting 

(2.16) 

we measure length in units of d,  time in units of ( d / g ) ' j 2  (which is $ times the free- 
fall time of the unstable layer), density in units of p = J pd3x/ s d3x, and magnetic 

d = g = p = = c p = 1, 
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field in units of (p0pgd)1/2 .  We define the Rayleigh number as 

(2.17) 

where ;c = X2/777 is an average radiative diffusivity, and (ds/dz)o is the entropy 
gradient in the middle of the initial stratification. It can be shown that 

where 

(2.19) 

Rotation is measured by the Taylor number Tu, which is chosen so that the inverse 
Rossby number, Ro-' = 252d/u,,, is of order unity, as in the Sun. Two Prandtl 
numbers also need to be defined: 

Pr = v/a, Pr,v = v / q .  (2.20) 

The whole system is described by 11 dimensionless numbers: y,  Pr,  PrM, Ra, Ta, 6, 
to, go, ml,  m2, m3, plus those which describe the domain's geometry. 

2.4. Characteristic time and length scales 
Important timescales are the diffusion and dissipation times. The e-folding time 
for the decay of the magnetic field in the absence of induction effects is the ratio 
between the magnetic energy and the Joule dissipation, ziv = E M / Q J ,  which is also 
the magnetic diffusion timescale based on the magnetic Taylor microscale 

i u  = (5(B2)/(p;J2y2,  (2.21) 

that is zy = (1/2p0)(B2)/(yp0J2) = k&/q, which is typically much shorter than the 
global magnetic diffusion timescale d 2 / q .  (The factor 5 in (2.21) is included to give 
agreement with the standard definition of the Taylor microscale in one dimension.) 
Timescales for the decay of kinetic energy and vorticity are T~ = $2;/v, and 
7, - - LA2/,, 10 LO where 

(2.22) & = ( 5 ( . ' ) / ( ~  2 ) )  112 , = ( ~ ( o ~ ) / ( I V  x ~ l ' ) ) ' ' ~ ,  
the kinetic Taylor microscale and vorticity microscale, respectively (Pouquet & Pat- 
terson 1978; Lesieur 1990). The total viscous dissipation is actually e = v [ (w2)  + 
$ ( ( d i v ~ ) ~ ) ] ,  but in the runs considered in this paper ((divu)2) 5 0.01(02). 

2.5. The numerical method 
Equations (2.1)-(2.4) together with the appropriate boundary conditions are solvcd 
numerically using a modified version of the code by Nordlund & Stein (1990). 
Advances in time are achieved either by a second-order Adams-Bashforth scheme 
(Run A) or by a third-order Hyman (1979) scheme (all other runs). Spatial derivatives 
are calculated from cubic splines. Timesteps are usually 25% of the Courant- 
Friedrich-Levy timestep, which in our model is defined as 6x/ucfiL, with 6x a single 
mesh interval and UCFL = max(c, V A ,  JuI, qv/dx, q;(/dx), where c is the sound speed, vA 
the Alfvh speed, and q is an empirical factor (around 0.1). It is usually the sound 
speed which limits the timestep, and only in runs with high resolution and small values 
of Ra and Pr does the diffusive restriction become important (Run 0). A number of 
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Run 0 A B C D 
Mesh 1262 x 105 632 x 63 95* x 63 1262 x 105 126* x 105 

Z4 1.5 2.0 1.85 1.5 1.5 
Z1 -0.15 0.0 -0.15 -0.15 -0.15 

(0 0.1 0.2 0.2 0.1 0.1 
00 10 0 10 10 10 

P r  0.1 0.2 0.2 0.1 0.1 
p T,M 1 .o 4.0 0.5 1 .o 0.5 
Re 140 310 540 1100 1200 

Re,v 140 1240 270 1100 600 
Rei 35 63 89 121 123 

ROC' 7.1 3.2 3.2 5.0 4.6 
iK 0.25 0.20 0.17 0.10 0.11 
AM 0.06 0.08 0.07 0.03 0.03 

1.8 10.9 2.5 6.1 2.7 * ::p, 6.0 3.9 4.6 6.4 6.4 
A 14P)cz 3.8 2.6 2.6 4.1 4.1 

Ra 106 106 3 x 106 3 x 107 3 x 107 

TABLE 1. Summary of data from numerical simulations. The averages arc taken over the whole box. 

runs are summarized in table 1, of which only Runs A and D are investigated below. 
The other runs are included to facilitate comparison of various Reynolds numbers, 
time and length scales, and vertical stratification. In Run 0 the magnetic field is 
decaying and in Run B a horizontal magnetic field is applied, i.e. these runs are not 
dynamos. Runs A, C, and D show dynamo action and the quantities in table 1 refer 
to a state where the dynamo is saturated. 

3. Swirling downdraughts 
Video animations suggest that the magnetic field evolution is primarily controlled 

by swirling downdraughts. We therefore begin by inspecting these downdraughts 
in more detail. The turbulent motions are conveniently visualized using images of 
the magnitude of the vorticity, 1 0 1 ,  and of the normalized helicity density H = 
o - ~ / ( w , ~ ~ u , . , ~ ) ,  where w,,, and u,,, are the root-mean-square values of the vorticity 
and velocity, respectively. The vertical cross-section (figure 2) reveals the complex 
nature of the downdraughts which appear to be reminiscent of the turbulent plumes 
that are believed to exist in the solar CZ (Rieutord & Zahn 1995). Figure 2(b) 
shows that the helicity is large and of either sign within such descending turbulent 
p 1 u m e s . 

These downdraughts are important for the dynamo, because they are able to wind 
up magnetic flux tubes into a spiral, which could lead to an amplification of magnctic 
flux analogous to the shear-twist-fold dynamo of Vainshtein & Zeldovich (1972). 
The degree of twisting is measured by the helicity. However, figure 2 shows that the 
helicity associated with the downdraughts can have either sign. Taken over the whole 
box the relative helicity is small (-0.03) due to cancellations. 

The dynamics of the downdraughts is made significantly more complicated by 
anomalous density reversals in their cores. Fluid in the centre of a downdraught is 
usually heavier than its surroundings. However, under the influence of the Coriolis 
force, a downdraught generates vorticity which leads to an evacuation of mass at the 
very core of the vortex, as in a cyclone (figure 3a). The buoyancy associated with this 
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light fluid decelerates the downward flow and can even cause it to reverse (figure 3b). 
We refer to this effcct as vortex buoyancy. (Comparison with a snapshot taken at an 
earlier time with a weaker magnetic field shows similar behaviour, indicating that the 
magnetic field has little influence on this effect.) 

We explain this reduction in density as follows: rotation imparts vorticity to the 
downdraught resulting in large local horizontal velocities. Horizontal force balance 
requires a central pressure reduction of the order of the dynamical pressure in the 
horizontal motions. The lengthscale on which temperature varies is much larger than 
the scale of the downdraught because the Prandtl number is small. Thus according 
to p K p / e ,  the density reduction is primarily due to the reduction in pressure in the 
downdraughts. For a larger value of the Prandtl number (not shown) we did not find 
such a density reversal, indicating that this is indeed a combined effect of low Prandtl 
number and rapid rotation. It is mainly the dynamical pressure due to the horizontal 
motions which leads to the evacuation. 

The effect of vortex buoyancy reverses the ‘buoyancy braking’ mechanism. In com- 
pressible convection without rotation there are positive pressure fluctuations abovc 
both upwellings and downdraughts. This gives positive density fluctuations which 
brake the upwellings and accelerate the downdraughts, and hence enhance the well 
known up/down asymmetry in compressible convection of high-speed descent in 
thin downdraughts and a low-speed rise in broad upwellings (Toomre et ul. 1976; 
Hurlburt, Toomre & Massaguer 1984). Here though, with rotation, this asymmetry 
is less pronounced because there is less enhancement of the density fluctuation due 
to the reduction of pressure in downdraughts via the mechanism described above. A 
similar connection between low-pressure regions and vortex tubes has recently been 
discussed by Douady, Couder & Brachet (1991). 

An investigation of the formation of those buoyant vortices is beyond the scope of 
the present paper and will be addressed in a separate paper. 

4. Thedynamo 
For large values of ReM the non-magnetic state is unstable and magnetic field 

perturbations grow until saturated by nonlinear effects. In Paper I we described the 
amplification of such a seed field in the kinematic regime where the Lorentz force 
is negligible as well as in the dynamic regime where the magnetic field affects the 
flow. Apart from a brief resume of the dynamo process we concentrate here upon the 
magnetic field structure) and the statistics of the hydromagnetic flow. 

4.1. AmpllJlcation of a seed magnetic Jield 
In figure 4 we show the growth of magnetic energy versus time for two runs with 
different initial seed field energies in which P r  = 0.2 and PrAzr = 4. The seed 
field was either a solenoidal random field, curve (i), or €3, was computed from 
(2.15), curve (ii). In these runs the magnetic energy increases by 3 and 5 orders of 
magnitude) respectively. 

During the growth phase of the dynamo the magnetic Taylor microscale increases 
continuously and levels off at approximately 0.07 as the dynamo saturates. This 
increase is associated with thc magnetic flux tubes becoming stronger and more 
robust as the dynamo settles. We also found that Lvf is fairly constant throughout 
the convection zone, but becomes larger both close to the surface and in the lower 
ovcrshoot layer where convective motions are rather weak. Larger magnetic diffusivity 
(smaller values of P r M )  yields only slightly larger values of iAbf. 
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FIGURE 2. (u )  The logarithm of the magnitude of the vorticity in a vertical cross-section ( y  = 1.88). 
Note the turbulent structure of the downdraughts conipared to the more laminar upwellings. (b) The 
normalized helicity density I€ in the same plane as above. Note that large helicities occur in the 
downdraughts. Run D. 
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FIGURE 3. (u )  Horizontal image of the relative density fluctuation p ' / p .  Light, low-density regions 
are pink. ( h )  Vcrtical vclocity norrnalizcd by thc sound speed. uz/c .  The arrows indicate a strong 
swirling downdraught where vortex buoyancy leads to an upward motion in the core of the vortex. 
Kun D. 
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FIGURE 4. (a)  Exponcntial growth of magnetic cncrgy Eiw over 3 and 5 orders of magnitude and 
subsequent saturation. Note that the saturation amplitude is independent of the seed ficld's strength 
and that the growth is on the convective turnover timescale z ~ ~ ~ ~ ~ ,  . As time increases there is a slight 
decrease in the total kinetic energy E K .  Run A. ( b )  Time series of the magnetic Taylor microscale 
&. The solid line refers to Run A, and the dotted and dashed lines to similar runs, but with 
different values of PrM.  

I . . . . . . . . . I . . . . . . . . . l . . . . . . . . . I  . . . . . . . . .  - . . . . 1  
0 100 200 300 400 

R e p  
FIGURE 5. Growth rate oM of thc dynamo for different values of the magnetic Reynolds numbel- 

based on the Taylor microscale. 

The values of (cf. table 1) are just a few times the mesh size and one might be 
worried that the numerical resolution is therefore insufficient. However, magnetic flux 
tubes are typically 61,~ wide. In 3 6.3 we compute the spatial autocorrelation function 
and find that the lengthscale at which this function has the first transition through 
zero is approximately 0.1 (or about 6 mesh sizes for Run D), which we consider as 
evidence of sufficient resolution. 

Cattaneo, Hughes & Weiss (1991) raised the question of how long one has to run 
a simulation before one can claim to have a dynamo. They proposed a minimum 
time ~ , ~ f ~ ~ ~ ~ ~ ,  , where f , a ~ e t ,  = (L/ l )2  is a safety factor, which is the square of the ratio 
of the scale of the box to a small scale. Assuming 1 = ,iK (see $52.4 and 2.5), the 
minimum time would be around 10 x (1/0.2)* = 250. Note that the integration time 
in figure 4 exceeds this value. 

We have computed the growth rate aw = i(d/dt) In E,,[ of the dynamo for different 
values of Pr. In figure 5 we plot o,,,, for different values of the magnetic Reynolds 
number based on the Taylor microscale, that is, Re;""' = u t A K / ~ .  For the run with 
Pr = 1 we have only two values. Nevertheless, the graph suggests that the critical 
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QJ = r1pn J’dV s EM = [B’dV WL = u - ( J  x B ) d V  s 
Ep = -J’pg.rdC. Wb = f p g - u d Y  

E l  = pedV Lbor = (.Xde/dz),,,,,dx dy Ltop = (Xde/dz)r,pdxdy s s .I’ 
TABLE 2. Definition of the different terms in the energy equations (4.1)--(4.4). 

value for dynamo action is approximately 3&40, and seems to be independent of (or 
only weakly dependent on) Pr. It is interesting to note that the onset of dynamo 
action in the model of Menegmzi & Pouquet (1989) is characterized by a similar 
value of the magnetic Reynolds number based on the Taylor microscale of around 
3040. The Reynolds number based on the integral scale, however, is rather different 
in their and our models. This result suggests that, while the onset of dynamo action 
can depend on a number of different parameters, the critical magnetic Reynolds 
number based on the Taylor microscale seems to be a useful quantity to quantify the 
onset under various circumstances. 

4.2. Energy budget 
Energy equations may be derived from the basic equations (2.1)-(2.4) and the bound- 
ary conditions (2.8)-(2.10). We obtain a set of four equations: 

for the magnetic, E M ,  kinetic, E K ,  gravitational potential, E p ,  and thermal, E T ,  energy; 
W,, Wb, WL, are the work done by compression, buoyancy and by the Lorentz force; 
QJ, Q v  are Joule and viscous heating; and Lbot and Lrop are the luminosities at top 
and bottom. The total energy satisfies 

d 
dt 

The definition of various terms is given in table 2. 
The work done by buoyancy describes the change of the density stratification. 

During the start-up phase when the system changes from a hydrostatic stratification 
to a convective state, wb is important. Even during the statistically steady convective 
state W, is in general non-vanishing due to the presence of acoustic oscillations, but 
this term averages to zero on timescales long compared with the sound travel time. A 
sketch of the interaction between the different energy reservoirs as given in equations 

-(EM + E K  + E P  + E T )  = Lbot - Liopa (4.5) 
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ET 

I; 
FIGURE 6. Sketch of thc energy budget and coupling between the different reservoirs. Gain and 
loss of total energy of the system is determined by the luminosity difference between the bottom 
and top. The magnetic energy generated by the dynamo is supplied via the kinetic energy reservoir, 
which in turn is fed by thermal energy due to compression and expansion. Buoyancy work mediates 
an interplay between the kinetic and potential energy reservoirs. 

E , ~ ~  = 1.3 x 10-3 -wL = 2 x 10-4 Q ,  = 2 x 10-4 i\l % 0.08 
EI, Fs 10-2 W, z 7 x 10-4 Q" = 5 x 10 4 TK z 20 i K  z 0.20 
E p  c -1.3 Wb = *10-4 
ET ~s 10 Lbot % 5 x 10-3 LtOP z 5 x 10 

Thf = 7 

T I  = 2 x 10' 

TABLE 3. Estimates for the various energies and energy fluxes for the standard case with P T ~ M  = 4; 
Run A. 

(4.1)-(4.4) is shown in figure 6. Below we give rough estimates for the different terms 
and discuss the interactions between the different forms of energy. 

Owing to dynamo action the magnetic energy increases and the kinetic energy 
decreases slightly until saturation occurs with EIM = O.lEK. We investigate the details 
of the energy flow by considering simple model equations which are analogous to the 
original energy equations. 

Wc neglect the potential energy and the buoyancy work terms because when 
taken over sufficiently long time intervals, the average value of Wh is zero. The 
contents of the three remaining energy reservoirs, their decay timescales zh.~ = E M / Q J ,  
T~ = E K / Q K ,  z I  = E I  /Lbvt (Kelvin-Helmholtz timescale), and the various work 
terms are measured. The approximate results of such measurements are given in 
table 3. All quantities are non-dimensional, for example time is in units of (d /g)1 '2  ; 
see $2.3. 

The evolution of the magnetic energy (figure 4) shows a maximum with a sub- 
sequent small decrease. The timescale for this decay is shorter than the magnetic 
diffusion timescale d2/(qn2) = 2000. Similar behaviour was noted by Kida, Yanase & 
Mizushima (1991). If this decay persisted then the magnetic energy would decay by 
many orders of magnitude within one magnetic diffusion time. In order to investigate 
this worrying possibility we now consider simple master equations which describe the 
energy balance and the energy transfer between the various reservoirs. 

The construction of such equations is best understood by considering the magnetic 
energy equation (4.1). As the dynamo saturates, the rate of working changes much 
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FIGURE 7. (a) Evolution of the different energy forms obtained by integrating the model equations 
(4.7)-(4.9). An enlarged picture of the evolution of the thermal energy is showii in (b) ,  but over a 
longer timescale. 

less than the dissipation rates. From figurc 4(b) we see that AM varies only slightly 
with time. Therefore the ratio T~ = Elkf /QJ = hA&/q does not vary much, and we 
may approximate the Joule dissipation in our set of equations by EabI.lj~-M. It is the very 
small difference between WI, and Q., that is important here, rather than their actual 
values. During the growth phase of thc dynamo the work done against the Lorentz 
force, - WL, is slightly larger than the work done by dissipation. However, once the 
dynamo saturates (see figure 6 in Paper I) these work terms are approximately equal. 
This bchaviour may be approximated by a nonlinear 'quenching' term which becomes 
important once the magnetic energy equals a significant fraction of the kinetic energy. 
For weak magnetic energies we require -WL = R M E ~ / T ~ ~ ! ,  which is a factor R,,t 
larger than Q J .  Here, R1v plays the role of a bifurcation parameter that must be 
larger than unity if there is to be a dynamo (see below). For large values of EM we 
require that -W, = QJ.  The simplest ansatz is 

This quenching expression vanishes if E M / &  = z A M / z K .  The same term must enter 
with opposite sign in the momentum equation. For the compression work term we 
assume a similar form. The complete set of nonlinear equations may then be written 
as 

where a tilde denotes division by the appropriate timescale, i.e. EM = Enf/TIM,  etc. 
Here, RK is another bifurcation parameter governing the onset of convection. 

The steady-state solutions of these equations are E l  = zTLbUl,  Ex = zxLbot[l  - 
Ri'(2 - Rl;')], and EM = (Th{/T;K)EK(l - Ri ' ) .  We have integrated these equations 
using the relaxation timescales found in our simulation; see table 3. The two 
bifurcation parameters have been adjusted such that the three energies of the steady 
state correspond to those of our simulation, i.e. RM = [l - ( E I M ~ K ) / ( E K ~ M ) ] - l  = 1.591 
and RK = (2 - R;')[l - ( E K T T ) / ( E T T K ) ] ~ ~  = 1.524. The results are shown in figurc 7, 
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where we used the appropriate steady solution of the non-magnetic state as the initial 
condition. 

Once the magnetic field becomes significant the kinetic energy decreases slightly. 
At the same time there is a small increase in the thermal energy followed by a slow 
relaxation to the same energy as before the onset of dynamo action. However, the 
thermal energy is extremely small, and such a change would be difficult to confirm 
in an actual dynamo simulation where there are large fluctuations. Although this 
simple model was only designed to describe the qualitative behaviour of a convective 
dynamo, it quantitatively reproduces various features, such as the dynamo’s growth 
rate. 

4.3. Magnetic f lux tubes 
A remarkable result that emerged from our simulations is the formation of large-scale, 
coherent, magnetic flux tube structures. These tubes are similar to vorticity tubes 
found in homogeneous turbulence (e.g. Kerr 1985; She, Jackson & Orszag 1990; 
Vincent & Meneguzzi 1991). In the literature several mechanisms for the formation 
of magnetic flux tubes have been discussed: expulsion of flux from convection cells 
(Galloway, Proctor & Weiss 1977), instabilities (Parker 1979), and fragmentation of 
buoyant flux (Schiissler 1977; 1984). 

Snapshots of the magnetic field at two different times during this amplification 
show that in the saturated state the magnetic tubes are longer and more clearly 
defined than in the growth phase (figure 8). This may be quantified by the increase 
of Lhl during the growth phase of the dynamo; see figure 4(b). Thus there is a 
noticeable change in the flow structure as the field is amplified prior to saturation. 
This indicates that the formation of extended tubes is a dynamical process where the 
feedback between the magnetic field and the motion is important. 

In order to illuminate the mechanism of flux tube formation further, we computed 
the kinematic evolution of the magnetic field with a steady velocity field taken from 
t = tz ;  see figure 4. A snapshot of the magnetic field in such a simulation is given 
in figure 9. It shows that the growing magnetic field has the topology of flux tubes 
which is a consequence of the stretching and compression of the convective velocity 
field. The dynamical feedback of the Lorentz force seems to cause a reduction of the 
tubes’ curvature (compare figures 8b and 9). 

4.4. Magnetic buoyancy 

Magnetic buoyancy of flux tubes is widely believed to be responsible for transporting 
magnetic flux from the bulk of the convection zone up to the solar surface on a 
timescale much shorter than the period of the solar cycle. In our simulations this 
process does not seem to be very important, and instead we find downward transport 
of magnetic fields due to advection. 

Figure 10 shows horizontal cross-sections of several variables across part of a 
strong magnetic flux tube. A vertical vortex tube is also present. Velocity is directed 
clockwise around the vortex tube. In a video animation we see a long magnetic flux 
tube being wound around this vortex tube. 

The simulations show that flux tubes are a direct consequence of the flow field, and 
that downward motions around the tube are important. We do not see tubes rising 
under the influence of magnetic buoyancy. This could be a selection effect: owing to 
stratification, rising tubes expand and therefore become weaker and thus lose their 
identity. We see flux tubes mainly at stages where their identity is maintained by 
stretching and compression due to the flow. 
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FIGURE 8. (a)  Magnetic field during amplification at t = 514.7. Only vectors above a certain 
threshold are plotted ( B  > 0.005). The interface between stably and unstably stratified layers i s  
marked by a dotted line. (21) Distribution of magnetic field at a later time close to saturation at 
t = 653.8. Threshold B > 0.045. Run A. 

FIGURE 9. A snapshot for the frozen-in kinematic case at t = 856.9. Only vcctors abovc a certain 
threshold are plotted ( B  > 4 x lop4). Run A. 
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We next consider the forces acting on the tube. By examining the cross-sections of 
density, and gas and magnetic pressures we find that the influence of the magnetic 
field on the density, which results in magnetic buoyancy, is weaker than the drag 
force of the velocity field. The tube’s magnetic curvature force, in this case, is in the 
horizontal direction and is therefore irrelevant in determining its vertical acceleration. 

The relative density reduction A p / p  in the strongest horizontal tubes is about 3% 
(see figure lo), approximately equal to the ratio of magnetic to gas pressure, i.e. 
A p / p  = B2/(2pop) .  The acceleration a of the tube is expected to be approximately 
gAp/p = 0.03. Figure 10(b) shows the profile of the vertical velocity along the line 
marked in the contour plots. Surrounding the tube there is a downflow whose speed 
is about 0.1 velocity units. However, within the tube this downflow is reduced to 0.02 
due to the buoyancy of the magnetic flux tube. The velocity of the tube relative to the 
surrounding medium is therefore Au = 0.08. The duration of this acceleration relative 
to the surroundings is At = Au/a  m 3, which is comparable with the typical lifetime of 
these tubes. The displacement associated with this acceleration is Az = $At’ NN 0.1, 
showing that the tubes are not advected far during their lifetime. The lifeiime of such 
strong tubes is typically twice as long as the duration of their advection, but this 
includes the time for its generation and disappearance. The tubes disappear by ohmic 
diffusion, i.e. on a diffusion timescale based on the magnetic Taylor microscale, ZM. 

In a video animation one occasionally sees rapid downward motions of flux tubes 
surrounding intense downdraughts, but these tubes are more vertically oriented than 
the tube considered in figure 10. An example of such a tube may be seen in figure 8(b). 
Vertically oriented flux tubes are often found in the upper part of the convection 
zone, whilst close to the interface, tubes are usually oriented horizontally. 

In our simulations magnetic buoyancy is counterbalanced by drag forces. It is an 
open question, however, how far these conclusions carry over to the solar case, where 
the Mach numbers at the bottom of the convection zone are expected to be much 
smaller (- than in our simulations (2 O.l), and where much stronger toroidal 
magnetic fields can be generated by differential rotation. 

4.5. Magnetic j e l d  stratification 

In a two-dimensional simulation in the (x,z)-plane with an imposed magnetic flux 
in the y-direction Jennings et al. (1992) found that in the relaxed state the quantity 
( B ) / ( p )  is almost uniformly stratified throughout the convection zone, and that 
( B ) / ( p )  goes rapidly to zero in the overshoot layer. In their simulation the total 
magnetic flux is conserved and non-vanishing, whereas in the present case the total 
flux vanishes. We therefore investigated the variation of B,,,, = (B2)1/2 which increases 
towards the upper layers (figure 11). 

For comparison, we have also shown both the depth dependence of B,,,7 and the 
(non-dimensional) average Alfvbn speed uA = { B 2 / p ) l / ’ .  In the bulk of the convection 
zone the r.m.s. value of the magnetic field increases downwards and has a maximum at 
the interface. However, the average Alfvbn speed varies little through the convection 
zone. 

5. Statistics 
In the previous section we characterized the onset and the energy budget of 

turbulent convective dynamos. The magnetic field is always in the form of magnetic 
flux tubes. In this section we focus on the question of how these tubes are oriented 
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FIGURE 10. Horizontal cross-section (5  = 0.68) through a strong magnetic flux tube. Plots (c) and 
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the strong asymmetry of the u, field showing an extended range of strong downdraught motions 
(u, > 0). There is also a slight asymmetry in the distribution of the vertical vorticity with a 
somewhat enhanccd probability of wz > 0 associated with the vorticity generated in downdraughts. 
There are no marked asymmetries in the distributions of B and J .  Run D. 

relative to other relevant fields in the simulation. 
statistical tools such as probability density functions. 

For this purpose we employ 

5.1. Probability density functions 

In figure 12 we present probability density functions (PDFs) of u, a, B, and J .  The 
PDFs have extended exponential tails. Note that the distribution of B is more peaked 
than that of u. This shows that B is more intermittent than u. Similarly peaked 
distribution functions for the magnetic field have been obtained by Dittrich et al. 
(1988). 

The exponential tails of the PDFs of transverse velocity gradients are associated 
with intermittency in hydrodynamic turbulence (Kraichnan 1990), and havc also 
been found in other numerical simulations (e.g. Vincent & Meneguzzi 1991). Such 
exponential tails typically occur with highly turbulent convection (e.g. Castaing et al. 
1989); although they can also occur in non-turbulent flows (Pumir, Shraiman & Siggia 
1991). 

The degree of intermittency of a function f is characterized by its kurtosis kurt(f) = 
(f4)/(f2)2. For Run D, we found kurtosis values around 4-5 for the horizontal vclocity 
components and 8 for the vertical component. The kurtosis of the other fields is much 
larger (around 20 for the vorticity and the magnetic field and around 30 for the electric 
current J ) .  These values are large compared with the Gaussian distribution’s value 
of 3, which indicates a high degree of intermittency. 
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5.2. Filling factor 

An interesting quantity that can be derived from the PDF of (Bl is the smallest 
percentage of the volume V0," occupied by a certain percentage By0 of the total field. 
The relation V%(ByQ) may be expressed in terms of p ( B )  by 

see figure 13. We see, for example, that magnetic fields which exceed their r.m.s. value 
make up 80% of the field (figure 13h) and are contained in only 40% of the volume 
(figure 1 3 ~ ) .  Further, the field vectors with lB1 >, $B,,, contribute 25% to the total 
field and occupy only 5% of the volume. 

The relation By" versus Vyn is not significantly resolution dependent. This is because 
the PDF of lB] is nearly exponential. If it was exactly exponential, the relation would 
be 

which is shown in figure 13 for comparison. 
Bolo = (1 - In Vyo)V%, ( 5 4  

5.3. Correlations 
It has often been emphasized that the equations for vorticity and magnetic field 
are very similar (e.g. Batchelor 1950). It is therefore interesting to compare these 
two vector fields. How certain vectors are aligned with each other cannot easily be 
determined by looking at cross-sections. Only a statistical analysis yields quantitative 
trends. 

In figure 14 we present histograms of the cosines of the angles between the different 
vector fields. There is indeed a high probability for o and B to be either parallel 
or antiparallel, especially when the magnetic field is strong. In a video animation 
we observed however that strong vortex tubes and strong magnetic fields avoid each 
other. Yet, when IBl is strong the two vectors are aligned. This suggests that strong 
magnetic fields enslave weaker vorticity. 

The cosines of the angles between all other fields appear to be random. However, it 
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is evident that J and B are predominantly perpendicular when the field is weak, and 
that this changes markedly when the field is strong. This must be due to the saturation 
of the dynamo: as the field becomes strong, J and B are no longer perpendicular, the 
work done against the Lorentz force, - { u .  ( J  x B ) ) ,  is lowered and the conversion of 
kinetic to magnetic energy is reduced. 

A similar selective analysis, but for the hydrodynamic case, has been presented 
by Pelz et al. (1985) and Kerr (1987), who used the local dissipation as a selection 
criterion. They found large helicity densities in regions of low dissipation, and more 
uniform distributions in regions of high dissipation. 

5.4. Eigenvectors of the rate of strain tensor 
The flow structure may be analysed using the eigenvectors of the rate of strain tensor 
s , ~  = ; (u , ,~  + uj.J. This symmetric 3 x 3 matrix is computed at each mesh point. The 
cigenvectors el, e2, e3 are ordered such that the corresponding (real) eigenvalues satisfy 
A1 < 1,2 < 23. The sum of the eigenvalues would be exactly zero for an incompressible 
fluid, and here the sum is small compared to max(A,). This is consistent with the fact 
that ((div u ) ~ }  << (w2) ,  indicating that compressibility effects are weak on average. 
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The three eigenvectors are orthogonal, with el giving the direction of compression 
and el the direction of stretching. If 1 2  = 0 the flow is two-dimensional. In practice, 
2 2  is usually small compared with 

In figure 15 we show the probability density functions of the cosines of the angles 
between the three eigenvectors of the rate of strain tensor and both the vorticity and 
the magnetic field. Note that there is an enhanced correlation between e2 and both 
the vorticity and the magnetic fields. There is also some tendency for w and B to 
be perpendicular to el and e3, the eigenvectors corresponding to the directions of 
compression and stretching, respectively. We have seen before that the probability for 
vorticity and magnetic field to be aligned is indeed larger than the probability for them 
to be perpendicular. Similar relations between vorticity and the three eigenvectors 
have been observed in the simulations of homogeneous turbulence by Kerr (1985), and 
Vincent & Meneguzzi (1991). These authors explain the correlation between vorticity 
and the intermediate eigenvector as an indication of the quasi-two-dimensionality of 
the flow surrounding vortex tubes. 

It may seem somewhat surprising that there is no alignment of w or B with e3 (the 
eigenvector corresponding to the direction of stretching), because vortex stretching 
and magnetic field line stretching are known to be important properties of turbulence 
and dynamos, respectively. Stretching does, however, contribute to the dynamics of 
vorticity and magnetic fields in that it causes the tubes to have non-circular cross- 
sections. This can be seen in figure 16 where we compare the directions of the 
eigenvectors el and el with the position of a strong magnetic flux tube in a vertical 
slice through the plane x = 1.4. This flux tube is the same as that in the horizontal 
slice of figure 10. In vertical section the velocity is mainly downwards, but in the 
immediate vicinity of the tube, uz is very small; see $4.4. The eigenvectors el and 
e3 show that the tube is compressed in the vertical direction, but stretched in the 
horizontal y-direction. As a consequence the tube is flat. 

The statistical investigations presented in this section have shown that the magnetic 
field vector has a high probability to be aligned both with the vorticity and the 
intermediate eigenvector of the rate of strain matrix. This supports the anticipated 
similarity between the magnetic field and the vorticity. 

and 1.3. 
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6. Spectral properties 
In 5 5 we demonstrated that the statistical properties of magnetic and velocity 

structures found in our dynamo simulation are similar to those of simulations of 
homogeneous turbulence. We now focus attention on the spectral properties of 
velocity and magnetic fields. 

6.1. Enrrgy and helicity spectru 
We consider the spectra of kinetic and magnetic energies in a horizontal plane at the 
interface ( z  = 1 )  as a function of the horizontal wave vector IkfIl, where k i  = k$ + k: 
and write k = lkHl for the length of the horizontal wave vector. We do not include 
the dependence on the vertical wavenumber kZ because of the strong inhomogeneity 
in that direction. The spectral kinetic energy is defined as 

E d k )  = ; ( p )  / 2 n  l W H , z ,  t)I2kd&, (6.1) 
0 

where & = arctan(k,/k,) and the hat denotes the Fourier transformation of the three 
components of M. Likewise, the spectral magnetic energy is defined as 

In order to investigate the spectral properties of the effective ‘forcing term’ we also 
compute the spectrum of the temperature fluctuations 0 = e - ( e )  

E o ( k )  = I&(kH,z,tj12 kd+k. (6.3) 6” 
We compare the spectra of the growth and saturation phases of the dynamo; see 
figure 17. In both cases the kinetic energy spectrum shows a short inertial range with 
a slope compatible with E K ( ~ )  - k-5/3  followed by an extended dissipation range. 
Obviously, the inertial range in our simulation is too short to accurately determine 
the slope. Thus, our data are equally compatible with a kp2 spectrum. 

During the growth phase of the dynamo the magnetic energy spectrum is different 
from that of the saturated state. In the growth phase at t = tl there is an inertial 
range with a slope compatible with k + ’ / 3 .  This was predicted by Moffatt (1961) 
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using the analogy between vorticity and magnetic field. During the saturated state at 
t = tZ the inertial range of the magnetic energy spectrum has a slope compatible with 
k-' (Ruzmaikin & Shukurov 19821, but a k p 3 / 2  spectrum (Kraichnan 1965) is also 
compatible with the data. In figure 18 we give the spectra for a higher resolution case 
(Run D) for the saturated phase and we see that here too the kinetic and magnetic 
energy spectra have an intermediate range close to k-5/3  and k-', respectively. 

At small scales, the magnetic energy exceeds the kinetic energy in Run A, where 
Prw = 4. In Run D, where PrM = 0.5, the magnetic energy saturates at smaller values 
than the kinetic energy. This demonstrates that the saturation value of the magnetic 
field cannot simply be estimated using global equipartition arguments. Similarly 
we should note that in the presence of shear, magnetic energies in excess of the 
kinetic energy of the turbulence are also possible, as was recently demonstrated in a 
simulation by Brandenburg et al. (1 995a). 

Kida et al. (1991) obtained a k-' kinetic energy spectrum from their simulations 
of forced MHD turbulence and a k' (flat) magnetic energy spectrum in the inertial 
range. Thus, their magnetic energy spectrum has the same slope as the enstrophy 
(squared vorticity) spectrum, k2EK ( k ) .  This supports the analogy between vorticity 
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and magnetic field. In our simulations the magnetic and enstrophy spectra are similar 
during the growth phase of the dynamo ( t  = tl), but.not in the saturated phase 
( t  = t2).  This is in contrast to the similarity in the alignment of the two fields found 
in 3 5,  that was valid both for weak and strong (dynamo saturated) magnetic fields. 

Using second-order closure calculations, Pouquet, Frisch & Leorat (1976) found 
that the magnetic helicity exhibits an inverse cascade which causes a growth of the 
magnetic field at large scales. By comparing the two panels of figure 17 we see that 
magnetic energy initially builds up in the small scales, but is then transferred to larger 
scales. This supports the idea of an inverse cascade. The model of Pouquet et al. 
predicts a k-’ spectrum for the magnetic helicity, ( A  B) .  Our data are in rough 
agreement with this, see figure 18, where kinetic and magnetic helicity spectra are 
also plotted. 

The kinetic helicity spectrum (figure 18) displays rather large fluctuations, which 
makes it difficult to decide whether it is closer to k-5 /3 ,  as found by Andre & 
Lesieur (1977) in EDQNM simulation of decaying isotropic turbulence, or to k P 2 / ) ,  
as suggested by dimensional analysis. The latter corresponds to a pure helicity cascade 
towards large wavenumbers (Lesieur 1990 and references therein). 

6.2. Wave excitation 
In a video animation we saw strong isolated downdraughts oscillate such that the 
upper part of the downdraught remained nearly fixed in space, but the lower part 
shook to and fro. This is suggestive of gravity wave excitation in the lower overshoot 
layer. Similar behaviour was observed in two-dimensional simulations with overshoot; 
see Hurlburt et aE. (1986). 

Thc dispersion relation in a weakly subadiabatic isothermal layer is, for small 
wavenumbers, co = yEI,Nk,  where H p  is the pressure scale height, N = (-9 - VS/C,,)’/~ 
the Brunt-Vaisala frequency, and o the wave frequency (not to be confused with 
vorticity). Gravity waves are evanescent in the unstable region, but their amplitude 
is still significant at the interface. Since the fluid in our simulation is not isothermal 
the Brunt-Vaisala frequency has to be replaced by some ‘effective’ value (this is 
an eigenvalue problem). In the present situation where there is a relatively strong 
magnetic field we may also expect the generation of Alfven waves whose dispersion 
relation would be o = vqk if the coupling to other waves is ignored. 

In order to study wave phenomena in our simulation we Fourier analysed the 
velocity with respect to k and o. In figure 19 we sho57 the k and (1) dependence of 
I&(k,w)I2. We note that the wavenumber dependence of the kinetic energy does not 
vary with frequency (figure 19a). This is in contrast to the frequency dependence 
which shows quite different behaviour at different wavenumbers (figure 19b). Thus, 
one would not expect the Taylor hypothesis, i.e. an equivalence of k and w spectra, 
to be valid in our case. 

In figure 19(c) we present a contour plot of IB(k,w)l in the (k,o)-plane. In this 
diagram the change of structure along o = (0.1 - 0.2)k is most likely due to gravity 
waves. The expected slope for Alfv-vdn waves would be o / k  = v A  w 0.02 (see figure 11) 
which is much smaller than the slope observed. A more thorough investigation of wave 
excitation would certainly be worthwhile, but goes beyond the scope of this paper. 

6.3. The autocorrelation function 
Before closing the section on spectral properties we investigate the autocorrelation 
functions C, and Cg, i.e. the Fourier transform of the corresponding power spectra; 
see figure 20. Zeldovich et al. (1987) discussed the autocorrelation function for the 
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FIGURE 20. Autocorrelation functions for the velocity and magnetic field in the plane z = I, where 
r is a lengthscale in the (x,y)-plane. Run D. 

magnetic field and proposed interpretations for two lengthscales that occur in the 
stretch twist-fold dynamo: the thickness of the tube, and their curvature radius; see 
also Zeldovich, Ruzmaikin & Sokoloff (1990). They proposed that the width of the 
peak of CB is related to the thickness of tubes, and that the interval where CB is 
negative reflects the range of curvature radii. 

For Run D the widths of the peaks of C, and CB are 0.2 and 0.05, respectively, 
which is about twice the corresponding Taylor microscale. CB is negative in the range 
0.1 < r < 0.4, consistent with the visual estimates of curvature radii from plots such 
as figure 8. We note that independent statistical estimates in terms of the coherence 
in the direction of the magnetic field (Brandenburg, Procaccia & Segel 199%) give 
similar lengthscales for the tube width and the curvature radius. 

7. Discussion 
In this paper we have carried out a detailed investigation of the properties of the 

magnetic field generated by dynamo action in hydromagnetic convection. A number 
of physical effects that are thought to be important for the solar dynamo have been 
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taken into account, such as rotation and convective overshoot into the stably stratified 
radiative interior. Yet, we are still far from real solar conditions since we cannot 
use realistic values of y and v, as the resulting small scales cannot be handled in 
a simulation such as this. This is basically a matter of spatial resolution, which 
also limits the maximum stratification attainable. Further limitations of our model 
include the relatively large values of the radiative flux and the large value of the 
Mach number resulting from the low sound speed. This may affect our conclusions 
concerning the minor role of magnetic buoyancy in our simulations. Additionally the 
assumption of a perfectly conducting upper boundary is not very realistic, although 
our model was not intended to reproduce surface conditions. Since no magnetic 
flux can escape from the computed domain, Petrovay (1991) has argued that such a 
boundary condition does not tell us whether or not magnetic buoyancy affects the 
dynamo. However, Parker (1984) argues that very little magnetic flux actually passes 
through the solar surface and thus a perfectly conducting upper boundary condition 
might not be too bad after all. 

Despite the above limitations the model has provided us with many useful insights. 
Of primary importance is the fact that the flow is capable of amplifying a seed 
magnetic field. In other words this is an example of a self-consistent dynamo. 

Another important idea to come from this work is the association of strong vorticity 
in areas of descending flow. As is now well known in compressible convection, there 
is an up/down asymmetry in which fluid descends rapidly in narrow plumes and 
rises more slowly in broad upwellings. Here, however, with the inclusion of rotation, 
descending flow acquires vorticity and swirls downwards rather than simply falling 
straight down. This leads to a density inversion in the core of downdraughts. Magnetic 
flux tubes, which come into the vicinity of these vortex tubes, seem to be amplified as 
they are wound round the vortex tubes. The possibility of convective overshoot allows 
the accumulation and storage of magnetic field in the overshoot layer. It has been 
argued that this is an important ingredient of the solar dynamo. Nevertheless, we 
should emphasize that although the dynamo actually works in the entire convection 
zone, owing to effective downward transport, the magnetic field is strongest at the 
interface between the convection zone and the radiative interior. 

We find partial evidence for a similarity between vorticity and magnetic field in 
that vortex tubes and magnetic flux tubes are typically parallel to the intermediate 
eigenvector of the local rate of strain tensor, meaning that they are perpendicular 
to the plane in which the flow is locally two-dimensional. Such behaviour has 
previously been documented for vortex tubes in ordinary hydrodynamic turbulence. 
Furthermore, vorticity and magnetic field are parallel or antiparallel, especially in 
those regions where the magnetic field is strong. 

During the growth phase of the dynamo the power spectra of enstrophy and 
magnetic field behave similarly in that they are compatible with a k+1/3 power law 
in the inertial range. As the dynamo saturates, the magnetic energy in the larger 
scales increases and the spectrum is subsequently compatible with a k-' slope. Thus, 
there is a similarity between the spectra of enstrophy and magnetic field during the 
kinematic regime. Yet once the dynamo has saturated these spectra are different. 

Recent simulations of turbulent dynamos in the presence of differential rotation 
(Brandenburg et al. 1995a) have shown that shear can lead to strong toroidal magnetic 
fields that are large scale and which reverse direction on a long timescale in a cyclic 
manner. There the turbulence is driven by a magnetic shear flow instability, which we 
believe to be important in accretion discs. In future work we plan to combine shear 
and convection, hoping that this will provide a useful model for the solar dynamo. 
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