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Large-scale magnetic fields from hydromagnetic turbulence in the very early universe
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We investigate hydromagnetic turbulence of primordial magnetic fields using magnetohydrodynamics
~MHD! in an expanding universe. We present the basic, covariant MHD equations, find solutions for MHD
waves in the early universe, and investigate the equations numerically for random magnetic fields in two spatia
dimensions. We find the formation of magnetic structures at larger and larger scales as time goes on. In thre
dimensions we use a cascade~shell! model that has been rather successful in the study of certain aspects of
hydrodynamic turbulence. Using such a model we find that after;109 times the initial time the scale of the
magnetic field fluctuation~in the comoving frame! has increased by 4–5 orders of magnitude as a consequence
of an inverse cascade effect~i.e., transfer of energy from smaller to larger scales!. Thus at large scales
primordial magnetic fields are considerably stronger than expected from considerations which do not take into
account the effects of MHD turbulence.@S0556-2821~96!02712-9#

PACS number~s!: 95.30.Qd, 04.40.Nr, 98.62.En
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I. INTRODUCTION

It has been suggested that primordial magnetic fie
might arise during the early cosmic phase transitions@1#, and
recently it has been shown that magnetic fields are indee
stable feature of the electroweak phase transition@2#. In a
first order phase transition magnetic fields could also be g
erated when bubbles of the new vacuum collide, whenc
ring of magnetic field may arise in the intersecting regi
@3#. It has also been suggested that at very high temperat
the ground state of a non-Abelian particle theory is a ‘‘fe
romagnetic’’ vacuum with a permanent nonzero magne
field @4#. The plasma of the early universe has a high co
ductivity so that a primordial magnetic field would be im
printed on the comoving plasma and would dissipate v
slowly @5#. Such a field could then contribute to the se
field needed to understand the presently observed gala
magnetic fields@6#, which have been measured both in th
Milky Way and in other spiral galaxies, including their halo
Typically the observed present day magnetic field is of
order of;1026 G.

Locally the primordial field could be very large; it is lim
ited only by the magnetic energy density and effects it
duces in the electron statistics which both affect primord
nucleosynthesis@7#. The actual limits depend on whether o
not one assumes a homogenous field, but a typical up
limit at nucleosynthesis isB<1012 G. Because flux conser
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vation implies thatBrms;R22, whereR is the scale factor,
the field could have been much stronger at earlier times. O
dimensional grounds, a typical value of the magnetic fiel
fluctuation should beBrms;T2, so that at the time of the
electroweak phase transition one could locally obtain field
as high as 1024 G. Depending on how such a strong, random
magnetic field scales at large distances, it could@8# be the
seed field needed to explain the magnetic fields observed
the scale of galaxies and larger.

However, even assuming that a primordial magnetic fiel
is created at some very early epoch, a number of issues
main to be worked out before one can say anything definit
about the role of primordial fields in generating galactic
magnetic fields. At earliest times magnetic fields are gene
ated by particle physics processes with length scales typic
of particle physics. If the inflation hypothesis proves correct
then after inflation rather long correlation lengths are pos
sible @9#. The question is if it is at all possible for the small-
scale fluctuations to grow to large scales, and what exact
is the scaling behavior ofBrms or the correlator
^B(r1x)B(x)&. Even in an inflationary scenario it would be
of interest to see if the relatively large scale can grow eve
further. To study these problems one needs to consider t
detailed evolution of the magnetic field to account for such
issues as what happens when uncorrelated field regions co
into contact with each other during the course of the expan
sion of the universe. In general, turbulence is an essenti
feature of such phenomena. These questions can only be
swered by considering magnetohydrodynamics~MHD! in an
expanding universe@10#. It is the main purpose of this paper
to investigate the subsequent development of the primordi
field. Expressed in a general way, our conclusion turns out
be that MHD turbulence is operative, and hence the scale
magnetic fields is considerably larger than one would expe

tics,
d-
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1292 54AXEL BRANDENBURG, KARI ENQVIST, AND POUL OLESEN
if MHD turbulence was ignored. This means that the pre
ous estimates of the strength of the primordial magnetic fi
‘‘today’’ need to be reconsidered.

We begin by posing the basic equations and consider
tain simplified models. A full~113!-dimensional numerical
simulation would be desirable, but is beyond the scope of
present paper. In Sec. II we derive the relativistic MH
equations for relativistic plasma, which is appropriate for t
very early universe. In Sec. III we discuss the appearanc
waves in relativistic MHD. To elucidate the various MHD
effects pertaining to the early universe, we also present
merical solutions to the MHD equations for a two
dimensional slice. In Sec. IV we study a cascade model
reflects important properties of fully three-dimensional tu
bulence. The cascade model has been rather successf
ordinary hydrodynamics. We find that in the early univer
magnetic energy is transferred from small scales to la
scales. We also compute the correlation functi
^B(r1x)B(x)& in the cascade model. In Sec. V we offer a
interpretation of our results.

II. RELATIVISTIC MHD IN THE EXPANDING UNIVERSE

We begin by presenting a derivation of the fully gene
relativistic MHD equations~see also Ref.@11#, where further
references can be found!, which we rewrite in a form suitable
for our numerical work. We consider the early universe
consisting of ideal fluid with an equation of state of the for
p5 1

3r, wherep is pressure,r the energy density, and th
speed of light is set to unity. We further assume that the fl
supports a~random! magnetic field. The energy-momentum
tensor is then given by

Tmn5~p1r!UmUn1pgmn

1
1

4p S FmsFn
s2

1

4
gmnFlsF

lsD , ~1!

whereUm is the four-velocity of the plasma, normalized a
UmUm521, andFmn5]mAn2]nAm is the electromagnetic
field tensor. Note that, as long as diffusion can be neglec
the presence of the magnetic field does not change the e
tion of state.

The magnetic energy is assumed to be much smaller t
the radiation energy, so that it can be neglected as far as
expansion of the universe is concerned. We therefore ass
a flat, isotropic, and homogeneous universe with
Robertson-Walker metricds252dt21R2(t)dx2. Although
the magnetic field generates local bulk motion, this may s
be consistent with isotropy and homogeneity at sufficien
large scales, e.g., if the magnetic field is random, i.e., sta
tically homogeneous and isotropic on scales much lar
than the intrinsic correlation scale of the field. Even ve
large magnetic fields, together with the ensuing very f
bulk motion, might not contradict isotropy and homogenei
The equations of motion for the fluid arise from energ
momentum conservation

Tmn
;n[

1

A2g

]

]xnA2gTmn1Gnl
m Tnl50. ~2!
vi-
eld
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The Maxwell equations read

Fmn
;n5Jm, F @mn,l#50. ~3!

We defineFmn in terms of the electric and magnetic fields

Fi05REi , Fi j5e i jkR
2Bk, ~4!

where latin letters go from 1 to 3. With this definition the
expression for the total energy has noR factors and takes
therefore the familiar form

T005~p1r!g22p1 1
2 ~B21E2!, ~5!

whereg5U0.
In order to solve~2! and ~3! we rewrite the equations of

motion explicitly in 311 dimensions. We start by writing~2!
as

1

Ag
]

]xn @Ag~p1r!UmUn#1Gsl
m ~p1r!UsUl1gmn

]p

]xn

5FmngnsJ
s, ~6!

whereA2g5R3, and the nonvanishing Christoffel symbols
areG i j

05RṘd i j andG0 j
i 5(Ṙ/R)d j

i5G j0
i . It is useful to de-

fine Ui5gR21v i , because then the normalization
UmUm521 gives the familiar form for the Lorentz factor
g5(12v2)21/2.

For m5 i we obtain

]R4S

]t
5
1

R
@2~“•v!~R4S!2~v•“ !~R4S!2“~R4p!

1~R3J!3~R2B!#, ~7!

whereS5(p1r)g2v. It should be noticed that in this equa-
tion all quantities are scaled by the appropriate powers of
R. Thus, e.g.,R4S is expected to be independent ofR, be-
causep1r scales like 1/R4, andv is expected to be inde-
pendent ofR. Also,“ occurs always multiplied by 1/R, or,
alternatively, the operator]/]t is replaced by itself multi-
plied byR, which means that time is replaced by conformal
time t̃5*dt/R. To emphasize this, it is convenient to intro-
duce new scaled ‘‘tilde’’ variables:

S̃5R4S, p̃5R4p, r̃5R4r, B̃5R2B,

J̃5R3J, and Ẽ5R2E. ~8!

It should be noticed thatv is not scaled. Equation~7! can
then be written

]S̃

] t̃
52~“•v!S̃2~v•“ !S̃2“ p̃1 J̃3B̃. ~9!

For m50 we obtain, using scaled quantities,

S 12 1

4g2D ] lnr̃

] t̃
1

] lng2

] t̃
1v•“ ln~ r̃g2!1“•v5

J̃•Ẽ

~ p̃1 r̃ !g2
.

~10!
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In order to solve this equation numerically with an expli
code we need to eliminate the time derivative] lng2/]t. To
this end we first solve the normalization condition forg2:

g25
1

2
1S 141

S̃2

~ p̃1 r̃ !2
D 1/2. ~11!

We then differentiate

] lng2

] t̃
5

1

g2~2g221!

]S̃2/] t̃

~ p̃1 r̃ !2
2

g221

g22
1

2

] lnr̃

] t̃
. ~12!

Combining~10! and~12! we obtain a final equation suitabl
for numerical work:

2g211

4g2~2g221!

] lnr̃

] t̃
52

]S̃2/] t̃

S 43 r̃g D 2~2g221!

2v•“ ln~ r̃g2!

2“•v1
J̃•Ẽ

4

3
r̃g2

, ~13!

where we have usedr1p5 4
3r for later convenience. In this

equation only scale invariant quantities enter.
The Maxwell equations can be written explicitly as

]B̃

] t̃
52¹3Ẽ, “•B̃50, ~14!

and

J̃5“3B̃2
]Ẽ

] t̃
, “•Ẽ5 r̃e ~15!

wherere is the charge density andr̃e5R3re . Further,

Ẽ52v3B̃, ~16!

which is valid in the limit of high conductivity@11#. Again,
these equations have the natural scaling properties with
spect to powers ofR. We emphasize that in the relativist
regime the displacement current2]Ẽ/]t cannot be ne-
glected. However, in all cases considered we were abl

solve for2 Ė̃5 v̇3B̃1v3 Ḃ̃ iteratively by evaluatingv̇ and

Ḃ̃ from the previous iteration.
The equation of energy conservation isT0n

;n50, or

1

R3

]

]t
~R3T00!1

]

]xj
T0 j1RṘTj j50, ~17!

but since Tn
n50, we have Tj j5Tj

j /R
252T00

/R25T00/R2, and therefore the energy equation is

]

]t
R4T0052

]

]xj
R4T0 j , ~18!

or integrated over the whole space
it

e

re-
c

to

dR4Etot

dt
50, ~19!

where

Etot5E T00d3x[^T00&. ~20!

HenceR4Etot is conserved.
The conclusion from the above expressions is thus tha

the MHD equations in an expanding universe with zero cur-
vature are the same as the relativistic MHD equations in a
nonexpanding universe, provided the dynamical quantitie
are replaced by the scaled ‘‘tilde’’ variables, and provided
conformal time t˜ is used.The effect of this is, as usual, that
the expansion slows down the rate of dynamical evolution.

It should be noted that the velocityv is the bulk velocity.
Thus, in general, we expect thatv is nonrelativistic. This is
physically reasonable since, although the gas particles mov
with velocity near unity, we expect no strong collective ef-
fects which could give rise to a relativistic bulk velocity. The
equations for nonrelativistic bulk motions of a relativistic gas
are given in the Appendix.

In the early universe conductivity is large, and hence the
diffusion length is also large. The conductivity of the isotro-
pic relativistic electron gas, which interacts with heavy~non-
relativistic! ions, is related to the Coulomb scattering cross
section and reads@12#

s5
vp
2

4pscollne
.

T

3pa
, ~21!

wherevp is the plasma frequency,scoll is the collision cross
section, anda is the fine structure constant. This result is
valid for fields smaller than the critical fieldBc

5me
2/e54.4131013 G, above which the electrons cannot be

treated as free, and the conductivity~21! should be multi-
plied by a factorB/Bc . On dimensional grounds, conductiv-
ity of the fully relativistic standard model gas will also scale
ass;T. The expansion rate of the radiation dominated uni-
verse is given by

H[
Ṙ

R
5

1

2t
5A8p3g*

90

T2

MP
, ~22!

whereg* is the number of the effective degrees of freedom,
andMP51.231019 GeV is the Planck mass. Equation~22!
also provides the time-temperature relationship@13#, and the
inverse the length scale of the universe. A measure of th
importance of the diffusion is the magnetic Reynolds num-
ber, which may be defined as Re5Lvs, whereL andv are,
respectively, the typical length scale and velocity in the sys
tem under consideration. A Reynolds number less than
means that diffusion dominates. In the early universe, say a
the electroweak phase transitionTEW.100 GeV where in the
standard modelg*5106.75, the Reynolds number is huge,
typically

ReU;vsH21;
MP

T
;1017, ~23!
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wherev has been arbitrarily chosen to be 1022. In this sense
the very early universe is almost a perfect conductor. Als
the extremely large value of the Reynold’s number indicat
a turbulent situation, which we shall find by other metho
later.

III. ASPECTS OF RELATIVISTIC MHD

A. Magnetohydrodynamic waves

Let us begin by first presenting some general consid
ations. In the framework of relativistic MHD in an expand
ing universe, we can still discuss waves. Although the equ
tions exhibited in the previous section are considerably mo
complicated than their nonrelativistic counterparts, the MH
waves are linear perturbations of the standard cosmolog
background. Thus the bulk velocityv must necessarily be
small relative to the velocity of light. It therefore follows tha
the displacement current can be ignored. The backgroun
homogeneous, and we assume the relativistic relat
p5r/3 for the background as well as for the fluctuation
The continuity equation, i.e.,~10!, gives to the lowest order
the well known resultr5const/R4. To the next order we get

]R4dr

]t
1
4

3
R4rS 1R“•vD50, ~24!

wheredr is the fluctuation inr. Also, from ~7! we get, to
lowest order in the fluctuations,

]R4dS

]t
52

1

R
“R4S 13 dr1BdBD1

1

R
~R2B!“~R2dB!.

~25!

HeredS5 4
3rv, anddB is the fluctuation of the background

field B, which is assumed to behave like;1/R2. Of course,
dB is expected to have a similar scaling behavior as a fun
tion of time, but it also has a spatial dependence. Finally,
have the fluctuation equation

]R2dB

]t
5
1

R
¹3~v3R2B!, ~26!

which follows from~14!, since the displacement current ca
be ignored for small bulk velocities.

We now seek a wave solution which, because of the str
ture of ~24!–~26!, must contain the scale factorR to the
power22:

dB5
b0
R2 exp@ i ~k•x2v t̃ !#, ~27!

and

v5v0exp@ i ~k•x2v t̃ !#, ~28!

dr5
const

R4 exp@ i ~k•x2v t̃ !#, ~29!

whereb0 andv0 are constants. These expressions satisfy
basic fluctuation equations~24!–~26! with
o,
es
ds
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t̃ 5E
t0

t dt8

R~ t8!
, ~30!

where t0 is the initial time, in accordance with the results
obtained in the previous section.

We therefore see that with the scaling properties me
tioned above the equations are similar to the nonrelativist
case@provided we use the timet̃ in ~30!#. Thus we find the
group velocity]v/]k5B/Ap1r. Because the scaling prop-
erties ofB andAp1r with respect to the expansion of the
universe are the same, it follows that the group velocity
independent ofR. As far as the phase velocities are con
cerned, the same is true. Assuming the background field
be in thex direction, thendB andv are in thez direction, as
in the case of nonrelativistic waves@14#. One then finds that
the velocities are given by

1

2 SA1

3
1
3B2

4r
1
2Bx

Ar
6A1

3
1
3B2

4r
2
2Bx

Ar
D . ~31!

Of course, these velocities are given in terms of the confo
mal time t̃. It should be noted that the assumption of sma
bulk velocities can only be maintained ifuBu!Ar. If this
condition is not satisfied, we cannot expect the nonline
effects to be small.

B. Two-dimensional slice

Ideally, we would like to solve the MHD equations in
three ~plus one! dimensions. However, as indicated in
Sec. II, this is a major computational task. We restrict ou
selves therefore to a two-dimensional slice only. The ma
conclusion will be that much of the qualitative behavior o
nonrelativistic MHD carries over to the case of relativistic
MHD.

We solve~9! and~13!–~16! numerically using sixth order
centered differences to compute the spatial derivatives an
third order Runge-Kutta scheme for the time step. We ado
random initial conditions forB. First we selectB at each grid
point independently from a Gaussian distribution, but in or
der to guarantee that“•B̃50 for all times, we advance the
z component of the vector potential by means of the equatio
]Ãz /] t̃5ez•(v3B̃), whereB̃5“3(Ãzez). The initialAz is
computed by solving¹2Az52Jz . Initially ( t5t0 , i.e.,
t̃ 50) we putr to unity. Periodic boundary conditions are
adopted in thex and y directions. The initial velocity is
chosen such that the velocity vanishes everywhere. Thus
effects that we subsequently see are entirely generated by
random initial fieldB. We emphasize that our calculations
are exploratory, and hence we do not use any particu
model~e.g., based on the electroweak theory! in selecting the
initial random magnetic field.

Our new equations~9! and ~13!–~16! are scale invariant,
so it is sufficient to solve them on a computational domai
with sizeL51. The results for a different domain sizeL8 are
the same, but taken at a different timet̃85(L8/L) t̃.

As in all turbulence calculations there has to be som
diffusion to prevent the accumulation of energy at the sma
est scale. In order to restrict the effects of dissipation only
the largest possible wave numbers we use hyperdiffusio
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i.e., instead of the usual diffusion operator¹2, we use an
operator of the form2¹4 for the evolution of all variables.
This technique is well known in turbulence research~see,
e.g.,@15#!. Also, since this procedure is merely of comput
tional relevance, we did not use the relativistic expressio

The minimum diffusion coefficientn we can afford is
given by the empirical constraint that the ‘‘mesh Reynol
number’’ Remesh5Udx/n must not exceed the value 5–10
Here, dx is the mesh size andU is a typical velocity that
includes the velocity of waves and bulk motions. As w
pointed out before, in the early universe the Reynolds nu
ber is very large, which means that the magnetic diffusiv
h54p/s should be much smaller than the adopted value
n. In other words, in order to have realistic values ofn,
dx has to be extremely small. However, the maximum nu
ber of mesh points,N5L/dx, is limited by computer
memory and time. Our present, rather exploratory, calcu
tions were carried out on a workstation, and so we restric
ourselves toNmax5128. Even on larger computers we wou
never reach realistic values. This demonstrates the diffic
of a realistic simulation. It is obvious that numerical simul
tions with a low Reynolds number cannot provide a realis
picture of the early universe MHD. However, we believ
they are useful in illustrating the qualitative features of t
problem.

The evolution of the magnetic field is compared in Fig.
for lower and higher resolution. As time goes on, the coal
cence of magnetic structures leads to the gradual forma
of larger and larger scales. In the higher resolution case th
are more small-scale structures, but also here the deve
ment of large-scale fields is evident. In turbulence resea
this phenomenon is known as an inverse cascade. Such
cade processes are linked to certain conservation prope
that the basic equations obey. For further details, see R
@16#. We mention here only a few important aspects. A
inverse cascade exists both in two-dimensional and in th
dimensional MHD turbulence. The only difference is that
the two-dimensional case it is an inverse cascade of the m
netic potential, whereas in the three-dimensional case it is
inverse cascade of the magnetic helicity densityA•B. In
fact, the conserved quantities in the two cases are*d2xA2

and *d3xA•B, respectively. For comparison we also me
tion that the difference between two- and three-dimensio
hydrodynamic~nonmagnetic! turbulence is more drastic. In
two-dimensional hydrodynamics there is an inverse ene
cascade associated with the conservation of enstrophy~mean
squared vorticity!, which has no counterpart in three
dimensional hydrodynamics.

The significance of an inverse cascade is that it leads
transfer of magnetic energy to larger and larger scales. T
process is due to the nonlinear terms giving rise to mo
interactions. Energy spreads over different scales until so
balance is achieved where the kinetic and magnetic ene
spectra have a certain slope. In the ordinary MHD turbule
a relevant energy spectrum could be the Iroshniko
Kraichnan spectrum@17#, where the spectral energy varies
k23/2, or a Kolmogorov type spectrum likek25/3. These dif-
ferent spectra describe equilibrium situations, but in any c
it is clear that the spectrum will be very different from whi
noise, which has ak12 power spectrum~see Sec. IV B be-
low!. The possibility of energy transfer from small to larg
a-
ns.

ds
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scales via an inverse cascade could be of major importan
in cosmology. It could provide a seed field at the parsec o
kiloparsec scale, albeit at small amplitude.

IV. A CASCADE MODEL

A. Description

The ultimate goal is to solve the basic MHD equations in
three dimensions at high resolution, using random initia
conditions. Although we would be unable to cover a realis
tically large range of length scales, it is important to know
whether dynamo action could be possible in a relativisti
flow. This is a major task, which would go beyond the scop
of this paper. To see the difficulties involved in such a pro
gram, the reader should recall the difficulties in making long
term weather predictions based on the Navier-Stokes equ
tions. Therefore, in order to demonstrate some of th
anticipated behavior of the full 113 MHD universe, we now
study a cascade model of hydromagnetic turbulence.

In ordinary hydrodynamics and hydromagnetics man
properties of turbulence, in particular those related to energ
transfer and to the spectral properties, including small inte

FIG. 1. Left column: magnetic field lines at different times at
low resolution (64364 mesh points!. Right column: magnetic field
lines at different times at higher resolution (1283128 mesh points!.
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1296 54AXEL BRANDENBURG, KARI ENQVIST, AND POUL OLESEN
mittency corrections, have been studied successfully usin
simple cascade model@18#. This is true not only qualita-
tively, but also quantitatively, which is the reason why th
cascade model is now much used in studies of nonlin
physics~see, e.g.,@19# and references therein!.

The basic idea is that the interactions due to the nonlin
terms in the MHD equations are local in wave number spa
In k space the quadratic nonlinear terms, such
“3(v3B), v•“v, and J3B, become a convolution and
have the general form@20#

Nk~v,B!5E Cabva~p!Bb~p2k!d3p. ~32!

~There are similar terms also for the other two nonlinea
ties.! WhereCab5Cab(k) is a tensor which is linear ink.
Interactions ink space involving triangles with similar side
lengths have the largest contribution, as discussed in@20#.
This has led to the shell model~see, e.g.,@19# and references
therein!, which is formulated in the space of the modulus
the wave numbers. This space is approximated byN shells,
where each shell consists of wave numbers w
2n<k<2n11 ~in the appropriate units!. The Fourier trans-
form of the velocity over a length scalekn

21 (kn52n) is
given by the complex quantityvn , andBn denotes a similar
quantity for theB field. Furthermore, the convolution is ap
proximated by a sum over the nearest and the next nea
neighbors:

Nn~v,B!5 (
i , j522

2

Ci jvn1 iBn1 j . ~33!

Here v andB have lost their vectorial character, which re
flects the fact that this model is not supposed to be an
proximation of the original equations, but should be cons
ered as a toy model that has similarconservationproperties
as the original equations. Thus, e.g., the energy flow sho
be represented by these equations. It is quite remarkable
such models show several realistic features, including int
mittency corrections to the structure function exponents, a
are therefore rather popular both in the absence@19# and in
the presence@21# of magnetic fields. Therefore we propose t
apply such a model also to the early universe.

Velocity and magnetic fields are thus represented by
scalar at the discrete wave numberskn52n (n51, . . . ,N),
i.e., kn increases exponentially. Therefore such a model c
cover a large range of length scales~typically up to ten or-
ders of magnitude!. The important conserved quantity i
EtotR

4, whereEtot5*T00d3x is the total energy. Using that
the bulk velocity is nonrelativistic, we haveg→1, so we can
expandg2'11v2. Hence

Etot'E S r1
4

3
rv21

1

2
B2Dd3x. ~34!

Since we are here mostly interested in the evolution of t
magnetic field we ignore the detailed evolution ofr and
assumer'r0R

24. Thus we require that

E S 43 r0v
21

1

2
B2R4Dd3x5const. ~35!
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We useb5BR2 and construct equations forvn andbn such
that

8

3
r0(

n51

N

vn*
dvn
dt̃

1 (
n51

N

bn*
dbn
dt̃

50. ~36!

In computing the conservation of the energy, the comple
conjugate of this equation should be added. However, it turn
out that the ‘‘complex energy’’~exhibited in the above equa-
tion! is conserved by the following construction.

As pointed out, the main idea of the cascade model is t
construct a set of equations that share the same basic cons
vation properties of the nonlinear~quadratic! terms as the
original equations. Thus we write equations which mimic
equations~9! and ~14!:

4

3
r0
dvn
dt̃

5Nn~v,b!, ~37!

dbn
dt̃

5Mn~v,b!, ~38!

where

2Nn~v,b!5 ikn~A1C!~vn11* vn12* 2bn11* bn12* !

1 ikn~B2 1
2C!~vn21* vn11* 2bn21* bn11* !

2 ikn~
1
2B1 1

4A!~vn22* vn21* 2bn22* bn21* !,

~39!

Mn~v,b!5 ikn~A2C!~vn11* bn12* 2bn11* vn12* !

1 ikn~B1 1
2C!~vn21* bn11* 2bn21* vn11* !

2 ikn~
1
2B2 1

4A!~vn22* bn21* 2bn22* vn21* !,

~40!

with A, B, andC being free parameters. It is straightforward
to verify that 2(vn*Nn1(bn*Mn50, using thatkn52n. The

t̃ differentiations in Eqs.~37! and ~38! are included to
mimic closely the nonrelativistic form of Eqs.~9! and ~14!.
In the actual computations we have restored magnetic an
kinematic diffusion terms,2nkn

2vn and 2hkn
2bn , on the

right hand sides of~37! and ~38!, respectively. We chose
n5h and as time goes on, loweredn gradually using the
formula n>((kn

2uvnu2)1/2/kmax
2 , where kmax52N. This for-

mula estimates the minimum amount of diffusion necessar
to prevent the buildup of energy at the smallest resolve
scale. We use a third order time step, which is calculated v
the formulad t50.25min@((kn

2uvnu2)21/2#.

B. Results

The numerical study of the cascade model requires, o
course, that the parametersA, B, andC are fixed. This prob-
lem turns out to be quite interesting, since it allows one t
associate the cascade model with a dimension. In hydrod
namics the parameters are fixed by taking into account
conservation law which is nontrivial in the dimension con-
sidered. In two dimensions, for example, one uses the r
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quirement that the enstrophy is conserved, whereas in t
dimensions the helicity should be conserved. In three dim
sions Jensenet al. @19# used the valuesA51, B521/4, and
C50, which we have adopted also in several models p
sented here. We compare the results with another set of
rameters for which the quantity

HM5( ~21!nkn
21bn* bn ~41!

is conserved, in addition to the total energy@21#. This re-
quires thatA57/5, B521/10, andC51. The quantity
HM resembles the magnetic helicityA•B, which is impor-
tant, because associated with it is the inverse cascad
magnetic helicity and energy@22#. In Fig. 2 we plot the
spectral magnetic energy densityEM(kn)5ubnu2/(kR4) com-
puted for these values, with the initial field taken to be ra
dom @i.e., EM(k)5k2#. The reason we interpret this expre
sion as the magnetic energy is that we know that(bn* bn
enters in the conserved energy. However,(;*dn
5*dk/(k ln2), soEM(kn) is the energy ink space. We used
N530, which covers a range of length scales of appro

FIG. 2. Spectra of the magnetic energy at different times. T
straight dotted-dashed line gives the initial condition (t051), the
solid line gives the final time (t533104), and the dotted curves ar
for intermediate times@in uniform intervals ofD ln(t2t0)50.6].
A51, B521/4, andC50.
ree
en-

re-
pa-

of

n-
-

xi-

mately ten orders of magnitude. As one can clearly see, mag
netic energy is transferred from small scales to large scale
This is called the inverse cascade effect. Such an effect
found in many nonlinear systems, for example, in two-
dimensional turbulence, relevant, e.g., for the atmosphere.

The quantity of paramount interest is the magnetic field
correlation function

CB~r ![^B~r1x!B~x!&, ~42!

which is related to the power spectrum via a Fourier trans
form, CB(r )5*EM(k)cos(kr)dk. It is difficult in general to
compute this quantity, due to the fluctuations in the spectrum
EM(k). Therefore we have computedCB(r ) from the spectra
of the cascade model by interpolatingEM(k) on a uniformly
spaced mesh. This, of course, introduces some uncertaint
The result is shown in Fig. 3. Note the clear increase of the
widths of the correlation functions.

Note also the anticorrelation at larger length scales. For
magnetic field this is natural, because if one considers th
field in some region from a point far away from this region,
the magnetic field in the region appears to be approximatel
a dipole. A negative correlation then arises because the fiel
loop has to close. This would then basically be a conse
quence of divB50, which has a tendency to lead to negative
correlations. However, the cascade model of course has th
difficulty that it does not really operate in ordinary space, but
instead it is formulated in the modulus ofk space. Hence we

he

FIG. 3. Left column: the correlation function ofB for three
different times. Right column: the rms magnetic field as a function
of distance for three different times.
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cannot really investigate to what extent the conditio
divB50 is satisfied, in contrast to the two-dimensional ca
discussed in Sec. III B.

Another quantity of interest is the average magnetic fie
as a function of distance,

B~r ![
1

r DE dDxB~x!, ~43!

where the integration is over a volume of sizer D in D di-
mensions. From this definition we have

^B~r !2&5
1

r 2DE dDxE dDy^B~x!B~y!&, ~44!

where both integrations are over a volume of sizer D. Thus
the root mean square magnetic field

Br5^B~r !2&1/2 ~45!

can be computed directly from the correlation functio
CB(r ) via

Br5S 1r 3E0r r 82dr8CB~r 8! D 1/2. ~46!

For a random field,Br behaves liker
2D/2, so the interesting

question is whether this initial behavior changes as tim
passes. In Fig. 3 we show the results. There is a clear bro
ening ofBr towards larger distances as time passes, as
would expect from the inverse cascade behavior.

The determination of the width of the correlation functio
above is not very accurate because of the fit involved
computing the Fourier transform of the spectrum. We sh
therefore now introduce another length scale that is easie
compute, but whose value is similar to the width of the co
relation function. The relevant length scale in turbulen
theory is the so-called integral scale, which is the charact
istic length associated with the large energetic eddies of t
bulence. Roughly speaking one could view it as a measure
the coherence of the magnetic field, too. It is defined by

l 05E 2pk21EM~k!dk YE EM~k!dk, ~47!

which, in our cascade model, corresponds
l 05(2pkn

21ubnu2/(ubnu2. If the spectrum is random we ge
l 0. 3/22pkmax

21 , where 2p/kmax is the shortest length scale
present in the model. This length scale in the initial rando
spectrum is determined by the mechanism generating the
mordial field. In Fig. 4 we show the evolution ofl 0(t) in two
cases, namely, for the hydromagneticA,B,C ~circular
points! and for the MHDA,B,C ~diamond-shaped points!.
Although the two sets of values forA,B,C do not yield
identical results, we see that the curves are qualitatively si
lar. In both casesl 0 increases rapidly by 4–5 orders of mag
nitude, and there is a plateau structure. The MHD res
~diamond-shaped points! has a plateau stretching to
t/t05108, but for larger timesl 0 keeps increasing. The in-
crease ofl 0 by almost five orders of magnitude is importan
because it could lead to magnetic fields at the present tim
length scales comparable to 1 pc. If we take the electrowe
n
e
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n

e
ad-
we
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phase transition as the initial state, the QCD phase transiti
occurs approximately fort/t05106. The maximum time
t/t05109 reached in our simulation corresponds to a tem
perature of 3 MeV, which is close to the nucleosynthesis.
should be noticed that from these results one cannot,
course, say anything about what happens at later time
Therefore it could be thatl 0(t) increases further, either by
reaching new plateau~s!, or otherwise.

We also measured the integral scale of the magnetic fie
in the two-dimensional model of Sec. III B and found a clea
increase with time. For the three times plotted in Fig. 1 w
found for the 64364 case the valuesl 050.09, 0.50, and
0.95, whereas in the 1283128 case the values were
l 050.04, 0.28, and 0.76. The initial difference of a factor o
2 is due to the different resolution. At later times the integra
scales for low and high resolution are more similar.

The evolution ofl 0 is not straight, but if we make a linear
fit through the values given by the diamonds in Fig. 4 w
find ~ignoring the steep initial increase!

l 0~ t !'r 0~ t/t0!
1/4. ~48!

For further applications of the rough fit formula~48! it may
be more sensible to express time in terms of temperatu
T}t21/2, so

l 0~T!'r 0~T/T0!
21/2, ~49!

wherer 0'1026; see Fig. 4. If we wish to extrapolate to the
present time we first have to fix the scaler 0 by physical
arguments. The various models presented in the literatu
@1,9# give characteristic scales for the primordial field whe
it is generated. This scale should be identified with the low
est scale in our calculations which, in the case of the sh
model, is about 1028. The scaler 0 is typically somewhat
larger (1026 in the shell model!. The reason for this is pre-
sumably that a purely random initial condition is not consis
tent with the MHD equations.

In order to clarify these points we take an example. If w
assume that at the time of the electroweak phase transit
(T5100 GeV! r 0 was 1023 cm ~the horizon scale was
'4 cm! then, using our extrapolation~49!, we arrive at a

FIG. 4. Evolution of the integral scale. The plot symbols denot
uniform intervals ofD ln(t2t0)50.6. The circular points correspond
to the hydrodynamic valuesA51, B521/4, andC50, the dia-
monds correspond to the MHD valuesA57/5, B521/10, and
C51, and the triangles are the widths computed for the correlatio
function.
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scale of 2 pc. If we assume that the initial magnetic field w
1018 G, then the present day value would be 10211 G. Such
values would lead to sufficiently strong seed magnetic fie
to explain the field even in high redshift galaxies by dynam
action @6#. This extrapolation may be too naive, because
nature of turbulence will change as the universe cools do
Furthermore, at later times, when structure formation beg
gravitational energy may lead to additional stirring and e
hancement of turbulence in localized regions.

V. DISCUSSION

In the two-dimensional case we found that, starting from
small-scale magnetic field, magnetic structures develop
progressively larger scales. This process of self-organiza
corresponds to an inverse cascade of magnetic energy
helicity. Using then a cascade~or shell! model to study three-
dimensional MHD turbulence we were able to follow th
inverse cascade over much longer times. Such a cas
model has been rather successful in the study of hydro
namic turbulence.

The possibility of an inverse cascade means that the s
of fluctuations of the primordial magnetic field increas
much beyond its original scale given by particle physi
Taking the parameterl 0 as a measure of the coherence leng
of the magnetic field, we see that there is an increase in
coherence of 4–5 orders of magnitude. This means that
vious estimates of the field strengths in various mechanis
for generating a primordial field should be revised acco
ingly. For example, let us consider the estimate by V
chaspati in Ref.@1#. Taking the area average one has t
estimate

Br;gT2/4N, ~50!

whereN is the number of steps needed to reach a given s
in terms of the ‘‘fundamental’’ scale at which the field
generated. In this case the fundamental scale is the e
troweak scale@1#. Proceeding as in Ref.@1# one has
N;1024 today, if the relevant scale is of order 100 kp
However, due to the MHD correctionsN is, from a conser-
vative point of view, reduced because of the effect of turb
as
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lence, and one would instead haveN<1019, which reduces
the stochastic decrease ofBr . It should be emphasized that
from our calculations one can only say what happens up to
time of order 109tEW, so presumablyN is considerably be-
low 1019 today.

The turbulent nature of the magnetic field may have in
teresting effects on the various phase transitions in the ear
universe. Also, the inherent shift of energy from small to
large scales may be of interest in connection with the densi
fluctuations due to the magnetic energy.

Of course, the cascade model is amodel of the real
~113!-dimensional MHD turbulence. Its successful applica
tion in many, widely different nonlinear physical problems
suggests, however, that it might also be applicable to th
primordial magnetic fields of the early universe. Therefore
we believe that its indication of the strong increase in th
coherence scale of the primordial field should be taken ser
ously, and that further, more detailed studies are warrante
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APPENDIX

We give here the equations for the case where the bu
velocity is small~the gas remains still relativistic, which is
important for the scaling properties ofr̃ and p̃):

] lnr̃

] t̃
52

4

3
~v•“ lnr̃1“•v!2

J̃•Ẽ

r̃
, ~A1!

Dv

Dt̃
52vSD lnr̃

Dt̃
1“•vD2

1

4
“ lnr̃1

J̃3B̃

4

3
r̃

, ~A2!

whereD/Dt̃5]/] t̃1v•“ is the total derivative, and

]B̃

] t̃
5¹3~v3B̃!, J̃5“3B̃. ~A3!
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