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Abstract 

We study the effects of plasma viscosity on the dynamics of primordial magnetic fields by simulating magnetohydro- 
dynamics in the early universe by appropriate non-linear cascade models. We find numerically that even in the presence 
of large kinetic viscosity, magnetic energy is transferred to large length scales. There are indications, however, that the 

inverse cascade stops at a given time which depends on the magnitude of viscosity. For realistic viscosities we do not find 
equipartition between magnetic and kinetic energies. 

There are many ways that magnetic fields could 
have been generated at various stages in the early uni- 
verse. In the theory of galactic magnetism such fields 
are often referred to as “cosmological” or “primor- 
dial”, because they are created well before galaxies 
are formed. These fields may play the role of an ini- 
tial condition for the galactic dynamo, a mechanism 
that would amplify magnetic fields and convert kinetic 
energy into magnetic [ 1 ] . 

There are two major problems when invoking pri- 
mordial magnetic fields as possible seed magnetic 
fields for the galactic dynamo. One problem is the 
very small length scale of such magnetic fields. The 
horizon scale at the time of the electroweak phase 
transition is just a few centimeters, corresponding to 
about 1 AU at the present time. This is nine orders of 
magnitude shorter than the radius of typical galaxies. 
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However, this view is too simplistic, because non- 
linear effects inherent in the magnetohydrodynamic 
(MHD) equations can lead to a redistribution of 
magnetic energy over different length scales. Unfor- 
tunately, MHD in 3fl exceeds the possibilities of 
present day computers. Therefore one has to resort to 
models which simulate the MHD equations. In a pre- 
vious Paper [ 21, hereafter referred to as Paper 1, we 
developed a fully relativistic 3+ 1 d version of the so- 
called cascade model [3] appropriate for MHD and 
found that an inverse cascade is operative, whereby 
magnetic energy is continuously transferred to larger 
length scales. The other problem is that around the 
time of recombination photon diffusion becomes very 
large and could smooth out all fluctuations [ 41. This 
may then also destroy the magnetic field [5]. The 
purpose of this Paper is to show that this too is too 
simplistic a viewpoint, and that nonlinear effects most 
likely prevent this from happening. 

The basic equations have been presented and dis- 
cussed in Paper 1. We started out from the fully rela- 
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tivistic MHD equations in expanding (flat) space and 
showed that all the terms arising from the expansion 
can be removed by using resealed quantities and con- 
formal time, 

t= 
s 

dtH/R( tH) 9 (1) 

where tH is the Hubble time and R( tH) is the expan- 
sion factor. Starting from random initial conditions, we 
obtained turbulent velocity and magnetic fields, very 
much like those in ordinary (nonrelativistic) decaying 
hydromagnetic turbulence. In order to study the effects 
of this kind of turbulence we adopted a simple cascade 
model that captures the qualitative features related to 
turbulent energy spectra. Such models [ 31 have been 
rather successful in predicting even subtle corrections 
to Kolmogorov turbulence due to intermittency effects 
[ 61. (For a recent review, see Ref. [ 71.) Our model is 
more general in that it includes the effects of magnetic 
fields. Unlike nonmagnetic turbulence, in the presence 
of magnetic fields there is an inverse cascade of mag- 
netic helicity, which leads to a transport of magnetic 
energy to larger and larger scales [ 81. Using our cas- 
cade model (also called shell model) we found that 
the integral scale 

lo = 
s 

(2r/k)E&k)dk 
Is 

EM(k)dk, (2) 

where EM(~) is the magnetic energy spectrum, in- 
creases with the Hubble time approximately like t$2s. 

In Paper 1 we considered the case where the kine- 
matic viscosity v was equal to the magnetic diffusivity 
7 (inverse electrical conductivity) which, in turn, was 
assumed to be small (corresponding to a large mag- 
netic Reynolds number). However, around the time 
of recombination the photon mean free path A, be- 
came very large and photon diffusion became very ef- 
ficient in smoothing out virtually all inhomogeneities 
of the photon-baryon plasma [ 91. This process if of- 
ten referred to as Silk damping, which corresponds to 
a kinematic viscosity v z A, (in natural units). We 
have computed numerically the evolution of magnetic 
and kinetic energy spectra in two completely different 
cascade models and studied the effects of viscosity. 
Our results are presented in Figs. 1 and 2 and the main 
point can be summarized as follows: in the cascade 
models magnetic energy is transferred to large length 

scales even in the presence of large viscosity. It seems 
likely that the same is true also in full 3+1 MHD. 

Let us first use the cascade model of Paper 1 to in- 
vestigate the effect of very large values of v on the 
magnetic field. In this model velocity and magnetic 
fields are described by the variables un and b,, repre- 
senting the “collective” behavior at wavenumber k,. 
In the original model, k, = P with Y = 2. Below we 
shall also consider a continuous version of this model 
with Y -+ 1, which was originally studied by Parisi 

[ 101 in a hydrodynamical context. We reiterate here 
the salient features of the model. We present the equa- 
tions of motion in a slightly different form with the 
negative and positive helicity states split, to facilitate 
comparison with the subsequent continuous model: 

(du,+/dt+vk$,+)* =ik,(u,,u,+,,+$&- - n-lUn+l 

1 
- -V- V+ 

$ n-l n-2 - Kt,b,=2 - $&;-lK+l 

i- -$b,lb~_,L (3) 

and 

(db,+/dt + qk;b;)* = ir( I”; r) Ktlc+z 

- b,,v,=, + u,lb;+, - b,p,, - u,;-&-~ 

+ b;_lu,+_,L (4) 

with similar equations with vz t+ v; and b,’ ++ b;. 
The model describes an expanding radiation domi- 

nated magnetic universe (p = p/3). In Eqs. (3), (4) 
t is the conformal time, and the units are such that 
p N T4 (for details, see [ 21) . Eqs. (3)) (4) conserve 
energy and helicity in the absence of magnetic diffu- 
sion 17 and plasma viscosity V, and + and - are related 
to magnetic helicity. Thus, if v = q = 0, the quantities 

~=~(lb~12+l~,1*+I~;f12+I~,j2), 

H = x(lbnt.12 - lb,12)/km (5) 

are conserved. This is a direct consequence of 
Eqs. (3), (4). In the case of ordinary MHD b is just 
the magnetic field. In a cosmological setting with a 
flat universe, b is the magnetic field multiplied by 
R( t)2, and t is conformal time. The conservation of 
helicity exhibited above is nontrivial in three, but not 
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in two dimensions, so that in this sense the cascade 
model is three dimensional. 

There does not exist any proof that the cascade 
model and the standard MHD equations are equiva- 
lent. There are features which are similar in both cases: 
the equations couple many different scales (making 
it hard to predict anything a priori, especially when 
the Reynolds number is large and nonlinear effects are 
important), they have similar conservation laws, and 
the equations of motion are similar. Also, in the pure 
hydrodynamic case the cascade model equations have 
been compared to experiments [6] and good results 
on intermittency have been obtained. In any case, the 
properties of turbulence have not been derived from 
first principles, and the cascade model is therefore an 
interesting (toy?) tool. 

For large diffusion coefficients the equations be- 
come stiff and it is therefore essential to solve for the 
diffusion term exactly. Using the identity 

we solve equations of the form 

dun 
dt +vk;v, = Nn(t) (7) 

by a modified second order Adams-Bashforth scheme 

+ $%[3N&) - K,N(t - &>I} 

where 

(8) 

I(, = e-“s#. (9) 

We start from an initial condition that yields a mag- 
netic energy spectrum similar to that found at later 
stages. Fig. 2 of Paper 1 suggests that the spectrum has 
developed an inertial range which is approximately 
constant, EM(~) = const. for kd < k < ko, where 
ko = 2rr/Za is the wavenumber corresponding to the 
integral scale and kd > ko the wavenumber of the dif- 
fusive cutoff scale. We adopt 30 wavenumber shells 
(1 < it < N with N = 30) and place the cutoff 
wavenumber at n = 27 and use 77 = 10-l ’ . We put 
v, = 0 initially and compare the results for two differ- 
ent values of Y ( 10m2 and 102). 

The resulting spectra are displayed in Fig. 1. The 
results show that u, is generated from b,, but it gets 

weaker if Y is increased. At small v and at large times 
there is an approximate equipartition of the magnetic 
and kinetic energies with v, = b,, = B,R2, where 

B, is the unscaled magnetic field. Since we are us- 
ing units in which the initial effective energy density 
p + p = 4p/3 = 1 it follows that u, is the Alfven ve- 

locity B,/& of the equilibrium plasma. For large 

v equipartition is lost, which signals the breakdown of 
the perturbative approach. As we shall argue later, the 

large Y case is appropriate for the very early universe. 
More importantly, Fig. 1 shows that the evolution of 
b, is not affected by v, and v, but is rather governed 

by ohmic decay, b, N exp ( -qkf, t) . It may also be 
seen that in the case of large kinetic viscosity Y = 100 
the velocity modes decay approximately according to 

u, N exp( -vkit). 
We shall now study the effect of a large Y on b. We 

have done some more detailed calculations in order 
to investigate what is behind the behaviour shown in 
Fig. 1. The results are shown in Fig. 2, which shows 
that for a sufficiently large viscosity, the inverse cas- 
cade stops. With a magnetic energy of lows, the cas- 
cade goes over five decades in the most unfavourable 
case v = 100. The inverse cascade stops at some low 
value of k, and the field just disappears by Ohmic de- 
cay. One can then ask, at which temperature does the 
inverse cascade stop? To estimate this, one studies the 
ratio between the non-linear terms and the Silk vis- 
cosity term, i.e. the Reynolds number. We start at the 
annihilation TV N 1 set, where we assume that there 
are no velocity fluctuations. This is not true if the pri- 
mordial field originates at the electroweak phase tran- 
sition T N 100 GeV, since there will always be ve- 
locity fluctuations associated with the magnetic field. 
However, to allow for the optimal conditions for Silk 
diffusion, we assume that there are no velocity fluc- 
tuations at the annihilation. We then have to estimate 
the resulting Reynolds number, 

Re-A, 
&silk/R 

(10) 

where the viscosity t’alk/R is effectively given by the 
photon diffusion length, 

YN$GeV’. (11) 

As mentioned above, the inverse cascade spans over 
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Fig. I. Magnetic and plasma kinetic energy spectrum as a function of the wave number k in the cascade model for small (V = lo-*) 
plasma viscosity (left) and large (V = 102) plasma viscosity (right). The highest time is t = lOs, corresponding to a Hubble time 10L6. 

five decades in k. Thus, the typical k which enters in 
Re in Eq. (10) is given by 

k = 10-5/xtp, (12) 

where xty is the spatial scale scale of the magnetic 
field at the annihilation. The fraction x is thus deter- 
mined by the mechanism for producing the primordial 
field. Before annihilation, we assume that the viscos- 
ity is so unimportant that it can be ignored. This is 
why we start at annihilation, where Silk diffusion be- 
comes very large. The inverse cascade stops when Re 
is of order one, i.e. when the diffusion equals the non- 
linear terms. We may therefore conclude that in the 
particular case displayed in Fig. 2 (V = loo), with 
u = 10e4, the cascade stops close to recombination. 

To verify that the above results are generic and not 
just a feature of the model adopted, we will now con- 
sider another model of the full 3+ 1 MHD [ IO]. For- 

mally it may be obtained from (3)” (4) by passing to 
the limit Y --+ 1, but it may also be viewed as a com- 
pletely independent model of MHD. Writing r = 1 + E 
we get 

( 

dv+(k, t) 
* 

) ( 

+ 

act 
+ vk;v+(k, t) = ik 4v-k$ 

+ 2v+ks + 3v-v+ - (u-)~ - 4b-kg 

- 2b+kg - 3b+b- + (b+)2 
> 

+0(e) (13) 

and 

db+( k, t) 
* 

+ rjk;b+(k, t) 
> ( 

=ik b+kdv- 
det dk 

db+ db- &I+ db- 
+ Zv-kak - u+kx - Zb-kdk + v-k- 

dk 
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Fig. 2. The behaviour of the cascade model for v = 10’ (left) and v = IO-* (right) at large times (the last time slice is I = 1037). The 

figure shows what happens to an initially flat spectrum (which does not extend to k = 0). Here 7 = 10V3’. 

-b-k% 
> 

+ O(E). (14) 

In addition to Eqs. (13) and (14) there are two 
equations more, obtained by making the replacements 
b+ c) b- and v+ H v-. These equations conserve 
the quantities 

E= J $?lv+i2+ lv-j2+ /b+12+ lb-j2), 

H= J $(lb+/z - lb-12), (15) 

for v = r] = 0, provided the following boundary con- 
ditions are satisfied for k --to and k + 03, 

kv-(v+)2 ---) 0 , kv+b+b- --) 0, kv-b+ + 0, 

kv+(o-)2 ---$O, kv-b+b- ----f 0, kv+(b-)2 + 0, 

(16) 

and 

v-(b+)2 ---f 0, v+(b-)2 ---) 0, 

b+b-vi ---f 0, b+b-v- ---, 0, (17) 

respectively. If the conditions at infinity are not satis- 
fied, this corresponds to “diffusion at infinity”. 

We shall now simplify the continuous cascade 
model by using a scaling first introduced by Parisi 
[lo] for the case of pure hydrodynamics without 
helicity conservation. If one considers the original 
discrete equations (3)) (4) in the absence of viscos- 
ity, and assume that we start at time t = 0 with a 
primordial spectrum 

b+(k,O) = b-(k,O) = k”, 

v+(k,O> = v-(k,O) = 0, (18) 
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then it is easy to see that the discrete cascade model 
equations have a solution with the scaling form 

b+(k,t) = /VB(k’+“t), b_(k,t) = k”M(k”Q), 

u+(k,t) = /Vu(k’+“t), v_(k,t) = k”m(k’+Pt). 

(19) 

These equations imply that EBjk2P-’ is a function of 

kp+‘t only. 

If we insert the scaling ( 19) in the continuous cas- 
cade model Eqs. ( 13)) ( 14)) then we see that powers 
of k cancel out neatly, and we are left with the coupled 

equations 4 

- U’(X) =3(2p+ l)um+4(1+p)xmu’ 

+2(1+p)xum’-m2-3(1+2p)MB 

-4(l+p)xMB’-2(1t_p)xBM’+M2, (20) 

and 

- B’(x) = 3pmB - 3puM + 2( 1 + p)xmB’ 

+(l+p)xBm’-(l+p)xuM’-2(1+p)xMu’ 

+ (1 +p)xmM - (1 +JJ)xMm’, (21) 

as well as two equations where the interchanges B H 
M and u +-+ m have been made. Thus, the original set 
of 2N (with n 5 2N) coupled differential equations 
have been replaced by only four. In these equations 

x = k’+“t 

is the scaling variable. 

(22) 

It should be emphasized that the continuous cas- 
cade model is a priori “as good as” the discrete one, 
since in both cases the conservation equations are sat- 
isfied when there is no diffusion (except for possible 
diffusion at infinity). It may of course turn out that 
phenomenologically one type is better than the other. 

In Paper 1 we found that if one starts with a primor- 
dial spectrum p = 3/2, then there is an inverse cas- 
cade, transferring energy from large to small k. The 
scaling equtions ( 19) satisfy this: For a fixed value of 
the variable x in (22)) the functions B, M, u, and m 
have some definite values. Thus, as time is increased, 

4 We have here selected the phase of b and u to be -7r/2. With 

a dynamical phase the number of equations double from four to 

eight, since each b and u have a real and imaginary part. 

these values remain the same if k is diminished in 
such a way that x remains constant. Thus, the scaling 
relations ( 19) predicts an inverse cascade. 

This is also seen if we consider the integral scale 
(the “correlation length”), given by Eq. (2), which 
measures the large scale structures in comoving coor- 
dinates. We may consider la as the expectation value 
of 1 /k. From scaling we therefore expect that 

ZO =t l/(l+p) ,-.& 1/2(l+P) 
tH ' (23) 

where kP is the initial primordial spectrum. From this 
we see that for p = 312 one obtains 

lo x ty, (24) 

where the power is in essential agreement with the 

previously found [2] value p M 0.25. 
Since we do not commit ourselves to any specific 

model, let us consider an initial spectrum kp. The in- 

tegral scale then behaves as in (23) in comoving co- 
ordinates, which means that in physical coordinates it 
goes like 

lphysical M & 
0 tH . (25) 

Thus, if there exists a model with p = 0, in such a 
case the large scale structures are of the order the hori- 
zon. The case p = 0 corresponds to a scale invariant 
primordial spectrum dk/k. 

The scaling relation is in general only valid in the 
“inertial range” where viscosity can be ignored, be- 

cause the viscosity term is inconsistent with the scal- 
ing. There is, however, one exception, where scal- 
ing and viscosity are consistent, namely p = 1. Here 
-U’(X) on the left hand side of Eq. (20) is replaced 

by 

- U’(X) -VU(X). (26) 

Similarly, in Eq. (21) -B’(x) is replaced by 

- B’(x) - vB(x). (27) 

This is the reason we have preferred to perform the nu- 
merical calculations in the scaled version of the con- 
tinuous cascade model for the case p = 1. We took 
as the initial conditions u = m = 0, M = B = 1 
and as in the discrete case, considered two viscosities 
(V = 10M2 and v = 102). The units are again such 
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Fig. 3. The energy spectra in the continuous cascade model for (a) small (v = lo-*) plasma viscosity; in this case there is equipartition 

and magnetic and kinetic energies are equal; (b) large (V = IO*) plasma viscosity; absence of equipartition is apparent. In both figures 

the curves are, from right to left, for conformal times t = 1, 10,100 and 1000, and 7 = 10e9. 

that initially p = pa = 1. Magnetic diffusion was set to 

v = 10-9. The difference with respect to the discrete 
case is the shape of the initial spectrum of b,. In the 

discrete case b, was initially given by &, whereas 
here we took b, (k, 0) = k. The results are depicted in 

Fig. 3, where the inverse cascade can clearly be seen, 
virtually independent of viscosity. They also confirm 
that equipartition is lost at large V. 

We have also checked the scaling of b for the data 
presented in Paper 1. This corresponds top = 3/2. The 
scaling variable is thus x = k5/%, where it is important 
that t is the conformal time; in terms of the Hubble 
time, the scaling variable is kt$*. From its derivation, 
scaling is only valid in this case in the inertial range, 
where viscosity can be ignored. We see that within 
the fluctuations of the raw data, the predictions are 
approximately valid for large times (see Fig. 4). 

Our results very much suggest that in the real MHD, 

inverse cascade is operative and is essentially not af- 
fected by Silk damping, except very late and perhaps 
for very weak fields (which anyhow are not interest- 
ing) . In our units, in the early universe v >> 1. Thus we 
may conclude that it is unlikely that there is equipar- 
tition in the very early universe. Our relativistic ap- 
proach remains valid roughly until recombination, af- 
ter which the plasma becomes matter dominated. (In 
the non-relativistic regime p - Rv3, which effectively 
produces an extra term of the form -( b/R)u in the 
equations of motion. However, because photon diffu- 
sion is so large, this braking due to expansion is unim- 
portant and conclusions presented above still hold.) 

k 
Fig. 4. The scaled energy spectrum of the discrete cascade model 

at different times (neglecting viscosity). 

Therefore, it seems plausible that small random mag- 
netic domains of the very early universe may grow to 
large scale fields, irrespective of the Silk diffusion. 
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