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Abstract. In a recent work (Covas et al., 1996), the behaviour and the robustness of truncated �

dynamos with a dynamic � were studied with respect to a number of changes in the driving term of
the dynamic � equation, which was considered previously by Schmalz and Stix (1991) to be of the
form � A�B�. Here we review and extend our previous work and consider the effect of adding a
quadratic quenching term of the form�jBj2. We find that, as before, such a change can have significant
effects on the dynamics of the related truncated systems. We also find intervals of (negative) dynamo
numbers, in the system considered by Schmalz and Stix (1991), for which there is sensitivity with
respect to small changes in the dynamo number and the initial conditions, similar to what was found
in our previous work. This latter behaviour may be of importance in producing the intermittent type
of behaviour observed in the Sun.

1. Introduction

Given the importance of hydrodynamic dynamos in accounting for solar and stellar
variabilities, a large number of studies have been made of their dynamical modes
of behaviour using a range of dynamo models. However, the complexity and the
numerical costs of employing the full magneto-hydrodynamical partial differential
equations (Gilman, 1983) have resulted in a great deal of effort going into the study
of simpler related systems, including mean field and truncated models.

Both the mean field models (cf., Krause and Rädler, 1980; Brandenburg et al.,
1989; Brandenburg, Moss and Tuominen, 1989; Tavakol et al., 1995) and trun-
cated systems (Zeldovich, Ruzmaikin, and Sokoloff, 1983; Weiss, Cattaneo, and
Jones, 1984; Feudel, Jansen, and Kurths, 1993) have been shown to be capable
of producing a spectrum of dynamical modes of behaviour, including equilibrium,
periodic and chaotic states.

Here we shall concentrate on truncated models and recall that there have been
two approaches in the study of such models: the quantitative study of the truncated
equations resulting from concrete partial differential equations (e.g., Schmalz and
Stix, 1991) and the qualitative approach involving the use of normal form theory
to construct robust minimal low order systems which capture important aspects of
the dynamo dynamics (Tobias, Weiss, and Kirk, 1995).

Given the approximate nature of the truncated models, an important question
arises as to the extent to which the results produced by such models are an artefact
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of their details. This is potentially of importance since, on the basis of results from
dynamical systems theory, structurally stable systems are not everywhere dense in
the space of dynamical systems (Smale, 1966), and therefore small changes in the
models can potentially produce qualitatively important changes in their dynamics
(Tavakol and Ellis, 1988; Coley and Tavakol, 1992; Tavakol et al., 1995).

To partially answer this question, we take a somewhat complementary approach
to the previous works, by looking at the robustness of the truncated models studied
by Schmalz and Stix with respect to a number of reasonable changes to their
components. This work extends and reviews our previous work (Covas et al.,
1996).

2. Mean Field Dynamo Models with a Dynamic �

As an example of how the details of truncated models can change their behaviour,
we take the truncated dynamic � models considered in Schmalz and Stix. The
starting point of this work is the mean field induction equation

@B

@t
= r � (v � B+ �B� �tr � B) ; (1)

in the usual notation with the turbulent magnetic diffusitivity �t and the coefficient
� arising from the correlation of small-scale (turbulent) velocity and magnetic
fields (Krause and Rädler, 1980).

For the sake of comparison we take an axisymmetrical configuration with one
spatial dimension x corresponding to a latitude coordinate (and measured in terms
of the stellar radius R), together with a longitudinal velocity with a constant radial
gradient (the vertical shear !0). The magnetic field is given by

B =

�
0; B�;

1
R

@A�

@x

�
; (2)

where A� is the �-component (latitudinal) of the magnetic vector potential andB�
the �-component of B. These assumptions allow Equation (1) to be split into

@A�

@t
=

�t

R2

@2A�

@x2 + �B� ; (3)

@B�

@t
=

�t

R2

@2B�

@x2 +
!0

R

@A�

@x
: (4)

Furthermore � is divided into a static (kinematic) and a dynamic (magnetic) part
as follows: � = �0 cosx� �M (t), with its time-dependent part �M (t) satisfying
an evolution equation of the form

@�M

@t
= O(�M ) + F(B) ; (5)
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whereO(�M ) is the damping term and F(B) the driving term, which is a pseudo-
scalar and quadratic in the magnetic field (see Covas et al. (1996) for details of
this and the truncations of Equations (3), (4), and (5)). We consider the interval
0 � x � � (which corresponds to the full range of latitudes) and take A = B =

C = 0 at x = 0 and x = � as boundary conditions. We restrict the allowed modes
to the antisymmetric subset, that is, those modes that satisfy the condition B = 0
at x = �=2.

Schmalz and Stix then fix the functional form of F and study the resulting
modal truncations. Now given the fact that the exact form of F(B) is not known
precisely, we shall examine in the next section how robust their results are with
respect to changes in F(B).

3. Robustness with Respect to Changes in the Driving Term

In their studies, Schmalz and Stix take the following form for the feedback term:

F(B) � A�B� ; (6)

they look at the various N -modal truncations of these equations to find out what
happens to the dynamical behaviour of the resulting systems as N is increased. In
all of the following discussion, we assume pure antisymmetric modes.

To determine the nature of the dynamics, we shall employ the spectrum of
Lyapunov exponents, and distinguish signatures of the types (�;�;�; : : :),
(0;�;�; : : :), and (+; 0;�; : : :) as corresponding to equilibrium, periodic, and
chaotic regimes, respectively.

For the sake of comparison we summarise, schematically, the results of the
integration of the systems of Schmalz and Stix (see also Covas et al., 1996), in
Figure 1. Here the largest Lyapunov exponent is depicted by a solid line and
its negative, zero and positive values indicate equilibrium, periodic and chaotic
regimes respectively (the second Lyapunov exponent is plotted as a dashed line).

Since in many astrophysical settings (including that of the Sun) the sign of the
dynamo number, D, is not known, we also study the effects of changing its sign.
The results for negative dynamo numbers are given in Figure 2.

An interesting mode of behaviour occurs in the spiky regions of Figure 2 which
corresponds to the presence of ‘multiple attractors’ (of more than one attractor
consisting of equilibrium and periodic states) over substantial intervals of D.

To clarify the consequences of this behaviour, we have plotted in Figure 3 the
behaviour of the N = 4 truncation as a function of small changes in the dynamo
number and the initial conditions. It clearly demonstrates that in these regimes small
changes in either D or the initial conditions may produce drastic changes in the
dynamical behaviour of the system. This form of fragility could be of significance
in producing seemingly intermittent types of behaviour.
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Figure 1. Schematic graph of the typical asymptotic behaviour of the two largest Lyapunov exponents
for the D > 0 case with a driving term F(B) � A�B�. The route to chaos seems to vary as the
truncation order increases.

Figure 2. Schematic graph of the typical asymptotic behaviour of the two largest Lyapunov exponents
for the D < 0 case with a driving term F(B) � A�B�.

To study the robustness of this system we considered a modified feedback term
in the form

F(B) = f1A�B� + f2�jBj
2
; (7)

where f1 = (�0�)
�1 and f2 = (�0��)

�1 (� is the combined (turbulent plus ohmic)
diffusion of the field, � the density of the medium and �0 the magnetic constant).
The additional second term on the right hand side of Equation (7) is reminiscent
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Figure 3. Fragility in the dynamics with respect to small changes in the dynamo number D and the
magnitude of the initial vector (A�; B�; �M ). Crosses and circles represent equilibrium and periodic
behaviour, respectively.

of the type appearing in a more physically motivated form of F given by Kleeorin
and Ruzmaikin (1982), Zeldovich, Ruzmaikin and Sokoloff (1983) and Kleeorin,
Rogachevskii, and Ruzmaikin (1995) and discussed in Covas et al. (1996).

Figure 4 summarises the results for this modified form of F and as can be seen,
the inclusion of �jBj2 in Equation (7) has drastic effects on the dynamics of the
system, for both positive and negative dynamo numbers. In particular, it strongly
suppresses the chaotic behaviour found by Schmalz and Stix.

4. Comparison with Other Functional Forms

In Covas et al. (1996), we considered the effects of using more physically motiv-
ated choices for the driving term given by Kleeorin and Ruzmaikin (1982), Zel-
dovich, Ruzmaikin, and Sokoloff (1983) and Kleeorin, Rogachevskii, and Ruz-
maikin (1995) in the form

F(B) = g1J �B+ g2�jBj
2
; (8)

where g1 = �(�0�)
�1 and g2 = (�0��)

�1 are physical constants.
The results of considering the cases with g1 6= 0, g2 = 0 and g1 6= 0, g2 6= 0

can be summarised as follows. In the former case, the behaviour seems to mirror
that seen for the case with F(B) � A�B�, in the sense that for D > 0 there is

sola7043.tex; 16/06/1997; 15:39; v.7; p.5



8 EURICO COVAS ET AL.

Figure 4. Schematic graph of the typical asymptotic behaviour of the two largest Lyapunov exponents
for the case with a driving term F(B) = f1A�B� � f2�jBj2. The overall behaviour is independent
of the sign of D.

an asymptotic dominance of ‘multiple attractor’ regimes, while for D < 0 this
behaviour is replaced by chaotic behaviour. In the latter case, however, where the
term proportional to �jBj2 is included, there is a suppression of both chaotic and
‘multiple attractor’ regimes, and the behaviour looks similar to that depicted in
Figure 4. We also changed the damping operator so that it was of the form derived
by Kleeorin, Rogachevskii, and Ruzmaikin (1995). It was found, however, that this
change did not produce any qualitative changes.

5. Conclusions

We have studied the robustness of truncated �
 dynamos including a dynamic
� equation, with respect to a change in the driving term of the �jBj2 type. We
find that this changes the results of Schmalz and Stix drastically by suppressing
the possibility of chaotic behaviour. Our results presented here and those in Covas
et al. (1996) show that changes in the driving term have important effects on
the dynamical behaviour of the resulting systems. Furthermore, the sign of the
dynamo number also plays an important role, being capable of radically changing
the behaviour of the system. Typically we find that the behaviour of the system for
F(B) � A�B� and D > 0 is similar to the one with F(B) � J � B, but with
D < 0 and vice-versa. The change of sign causes the behaviour to change from
typically chaotic to ‘multiple attractor’ solutions. These correspond to regimes
where equilibrium and periodic regimes are present simultaneously. As a result,
small changes in D or the initial conditions can substantially change the behaviour
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of the system. This type of behaviour can be of importance in producing intermittent
type behaviour observed in solar variability.
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