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Abstract. We investigate the behaviour of αΩ dynamos with
a dynamic α, whose evolution is governed by the imbalance
between a driving and a damping term. We focus on truncated
versions of such dynamo models which are often studied in con-
nection with solar and stellar variability. Given the approximate
nature of such models, it is important to study how robust they
are with respect to reasonable changes in the formulation of
the driving and damping terms. For each case, we also study the
effects of changes of the dynamo number and its sign, the trunca-
tion order and initial conditions. Our results show that changes
in the formulation of the driving term have important conse-
quences for the dynamical behaviour of such systems, with the
detailed nature of these effects depending crucially on the form
of the driving term assumed, the value and the sign of the dy-
namo number and the initial conditions. On the other hand, the
change in the damping term considered here seems to produce
little qualitative effect.

Key words: Sun: magnetic fields – stars: magnetic fields – MHD
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1. Introduction

It is commonly believed that the observed solar and stellar vari-
abilities have their origin in the hydromagnetic dynamos asso-
ciated with turbulent convection zones. Numerical studies have
been made using the full magneto-hydrodynamical partial dif-
ferential equations (PDE), which reproduce some features of
solar and stellar dynamos (e.g. Gilman 1983). Such models are
fairly complex and do not allow extensive parameter surveys.
As a result, a number of alternatives to the direct integration of
PDE have been pursued. Among these has been the employment
of the mean field dynamo formalism (Krause & Rädler 1980) in
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order to construct various types of dynamos, such asαΩ dynamo
models. Despite the fact that such models have been shown to
be capable of producing a large number of observationally rele-
vant modes of behaviour, ranging from stationary to chaotic (cf.
Brandenburg et al. 1989a,b; Tavakol et al. 1995), they neverthe-
less involve a number of unknown features such as the exact
nature of the nonlinearities involved. Furthermore, in order to
clarify the origin of dynamical modes of behaviour observed in
dynamo models, further simplifications of these models have
been considered, involving low dimensional truncations of the
governing PDE. Such models have also been shown to be ca-
pable of producing a number of important features of stellar
variability including periodic, intermittent and chaotic modes
of behaviour (Zeldovich et al. 1983; Weiss et al. 1984; Feudel
et al. 1993).

Now given that these models are cheaper to integrate and
more transparent to study, it would be very useful if we could
employ them as diagnostic tools in order to study the effects
of introducing different parametrisations and nonlinearities in-
volved. The problem, however, is that these low dimensional
models involve severe approximations, and therefore in order
to be able to take the results produced by them as physically
relevant, it is important that they remain robust under changes
which fall within the domain of the approximations assumed.
This is particularly of importance since on the basis of results
from dynamical systems theory, structurally stable systems are
not everywhere dense in the space of dynamical systems (Smale
1966), in the sense that small changes in models can produce
qualitatively important changes in their dynamics. In this way
the appropriate theoretical framework for the construction of
mathematical models and the analysis of observational data may
turn out to be that of structural fragility (Tavakol & Ellis 1988;
Coley & Tavakol 1992; Tavakol et al. 1995).

Here as examples of such changes we shall consider first
changes in the order of truncation and then changes in the de-
tails of the physics assumed. Regarding the former, a number of
attempts have already been made to study the effects of increas-
ing the truncation order on the resulting dynamics. For example,
Schmalz & Stix (1991) (hereafter referred to as S&S91) have
looked at the detailed dynamics of the low dimensional trun-
cations of the mean field dynamo equations and have studied
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what happens as the order of the truncation is increased, while
Tobias et al. (1995) have employed normal form theory to con-
struct a robust minimal third order model which exhibits both
the modulation of basic cycles and chaos. These studies have
shown that low dimensional models can capture a number of
important dynamical features of the dynamo models.

Our aim in this paper is complementary to that of the above
authors. We take a detailed look at the results in S&S91 and ask
to what extent these results remain robust as reasonable changes
are made to the details of the physics employed, and in each case
we study how such changes affect the dynamical behaviour of
different truncations.

2. Models with dynamical α

The starting point of the truncated dynamical α models consid-
ered in S&S91 is the mean field induction equation

∂B

∂t
= ∇ × (v × B + αB − ηt∇ × B), (1)

where B and v are the mean magnetic field and the mean ve-
locity, respectively. The turbulent magnetic diffusitivity ηt and
the coefficient α, which relates the mean electrical current aris-
ing in helical turbulence (the α–effect) to the mean magnetic
field, both arise from the correlation of small scale (turbulent)
velocity and magnetic fields (Krause & Rädler 1980).

S&S91 employ an axisymmetrical configuration with one
spatial dimension x, which corresponds to a latitude coordinate
and a longitudinal velocity with a constant radial gradient (the
vertical shear ω0). The magnetic field takes the form

B =

(
0, Bφ,

1
R

∂Aφ
∂x

)
, (2)

whereAφ is the φ–component (latitudinal) of the magnetic vec-
tor potential, Bφ the φ–component of B and x is measured in
terms of the stellar radius R. These assumptions allow Eq. (1)
to be split into

∂Aφ
∂t

=
ηt
R2

∂2Aφ
∂x2

+ αBφ, (3)

∂Bφ

∂t
=

ηt
R2

∂2Bφ

∂x2
+
ω0

R

∂Aφ
∂x

. (4)

In S&S91, α is divided into a static (kinematic) and a dynamic
(magnetic) part: α = α0 cosx−αM (t), with its time-dependent
part αM (t) satisfying an evolution equation in the form

∂αM
∂t

= ∆(αM ) + f (B), (5)

where ∆ is a damping operator and f (B) is a pseudo-scalar that
is quadratic in the magnetic filed.

It has been argued that theα effect is quenched by the current
helicity density J ·B, which in turn is governed by a dynamical
equation (Kleeorin & Ruzmaikin 1982; Zeldovich et al. 1983).
The reason the feedback (quenching) is not instantaneous is a
consequence of the fact that the magnetic helicity is conserved

in the absence of diffusion or boundary effects. Such models
have been investigated recently by Kleeorin et al. (1995). In
S&S91 a truncated version of yet another model was studied,
in which instead of the current helicity density, the magnetic
helicity densityA ·B, or rather AφBφ, was used. Their model
was motivated on heuristic grounds. Bifurcation properties of a
truncated version of a similar model, but with a different damp-
ing term, have been studied by Feudel et al. (1993). Our present
investigation is thus motivated partially by the variety of models
presented in the literature. It is important to know what is the
effect of the dynamical feedback and how the different repre-
sentations affect the results.

To proceed S&S91 specify the feedback in the following
way

f (B) ∝ AφBφ (6)

and then look at various N−modal truncations of these equa-
tions and study what happens to the dynamical behaviour of the
resulting systems as N is increased.

To do this it is convenient to transform these equations into
a non-dimensional form. This can be done by employing a ref-
erence field B0, measuring time in units of R2/ηt and defining
the following non-dimensional quantities

A =
Rω0

B0ηt
Aφ, B =

Bφ

B0
, C =

αMR3ω0

η2
t

, (7)

ν =
νt
ηt
, D =

α0ω0R
3

η2
t

,

where νt is the turbulent diffusivity. Eqs. (3), (4) and (5) with
the damping operator taken to be

∆ =
νt
R2

∂2

∂x2
, (8)

can then be rewritten in the following non-dimensional forms:

∂A

∂t
=
∂2A

∂x2
+ DB cosx− CB, (9)

∂B

∂t
=
∂2B

∂x2
+
∂A

∂x
, (10)

∂C

∂t
= ν

∂2C

∂x2
+ AB. (11)

Now considering the interval 0 ≤ x ≤ π (which corre-
sponds to the full range of latitudes), taking the boundary con-
ditions at x = 0 and x = π to be given by A = B = C = 0 and
using a spectral expansion of the form

A =
N∑
n=1

An(t) sin nx, (12)

B =
N∑
n=1

Bn(t) sin nx, (13)

C =
N∑
n=1

Cn(t) sin nx, (14)
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allows the set of Eqs. (9–11) to be transformed into the form

∂An
∂t

= −n2An +
D

2
(Bn−1 + Bn+1) (15)

+
N∑
m=1

N∑
l=1

F (n,m, l)BmCl,

∂Bn

∂t
= −n2Bn +

N∑
m=1

G(n,m)Am, (16)

∂Cn
∂t

= −νn2Cn −
N∑
m=1

N∑
l=1

F (n,m, l)AmBl, (17)

where

F (n,m, l) = (18)
8nml

π(n + m + l)(n + m− l)(n−m + l)(n−m− l)
,

if n + m + l is odd and F (n,m, l) = 0 otherwise and

G(n,m) =
4nm

π(n2 −m2)
, (19)

if n + m is odd and G(n,m) = 0 otherwise.
These rules enable the system to describe fields which are

strictly symmetric (i.e. having only components Bn with odd
n and An and Cn with even n) or strictly antisymmetric (i.e.
having only components An with odd n and Bn and Cn with
even n) with respect to x = π/2, provided the initial conditions
have either of these parities.

Using these equations, S&S91 studied a number of such
truncations numerically by varying the dynamo number D at
each truncation N . Their main conclusions were:

1. With the choice of the driving term f given by Eq. (6) the an-
tisymmetric truncation with the smallest non-trivial indices
is identical with the Lorenz system (Lorenz 1963).

2. Different truncations are capable of producing stationary,
oscillatory and chaotic modes of behaviour. They also make
observations about the changes in the route to chaos, and
conclude that, as N is increased, the route changes from
period doubling to the Ruelle–Takens–Newhouse scenario
(Ruelle & Takens 1971; Newhouse et al. 1978).

3. The qualitative behaviour of the truncations stabilises as the
number of modes is increased and in particular for N > 6.
As an example they observe that as N is increased the limit
cycles remain stable for larger dynamo numbers.

4. They also discuss very briefly the D < 0 case, observing
that the N = 2 case is always a stable fixed point and that
for N ≥ 6 the antisymmetric limit cycle becomes unstable
via a saddle node bifurcation1.

Now, as mentioned above, there are arguments in support
of both the form of the driving term as well as the damping

1 Care must be taken when speaking of antisymmetric solutions. In
our studies we mean strictly antisymmetric solutions, while in S&S91
these also refers to the antisymmetric part of mixed parity solutions.

term being different (Kleeorin et al. 1995). So as a first step, we
shall study, in the next section, how robust the results in S&S91
are with respect to various physically justified changes in the
driving term that have been considered in the literature in Eq.
(5). In Sect. 4 we study the effects of changes in the damping
term.

3. Robustness with respect to changes in the driving term

The general physically motivated choice for the driving term is
given by Kleeorin & Ruzmaikin (1982), Zeldovich et al. (1983)
and Kleeorin et al. (1995) to be in the form

f = W1J ·B + W2α|B|2, (20)

whereW1 andW2 are constants. To study the effects of each term
separately, we shall proceed by considering the cases W1 /= 0
(W2 = 0) and W1 /= 0 (W2 /= 0) in the following sections.

3.1. Case (I): f = W1J ·B +W2α|B|2, with W1 6= 0 (W2 = 0)

Taking f to be of the form f ∝ J ·B, substituting for B from
Eq. (2) and recalling that J = ∇×B we obtain

J ·B = (∇×B) ·B =
B2

0ηt
R3ω0

(
∂A

∂x

∂B

∂x
− ∂2A

∂x2
B

)
, (21)

which allows Eq. (11) to be written as

∂C

∂t
= ν

∂2C

∂x2
+
∂A

∂x

∂B

∂x
− ∂2A

∂x2
B. (22)

Proceeding in a similar way as in previous section we obtain
an identical set of differential equations to those obtained in
S&S91, except that Eq. (17) is now changed to

∂Cn
∂t

= −νn2Cn −
N∑
m=1

N∑
l=1

H(n,m, l)AmBl, (23)

where

H(n,m, l) = (24)

4
π

nml(−n2 + 3m2 + l2)
(n + l + m)(n + l −m)(n− l + m)(n− l −m)

,

if n + m + l is odd and H(n,m, l) = 0 otherwise. The function
H is clearly different from F unless F = 0, in which case H is
also equal to zero.

For this system we can study also the pure antisymmetric
and symmetric solutions, but for the sake of comparison with
the results in S&S91 we confined ourselves to the antisymmetric
solutions.

Now for the case of N = 2, the Eqs. (15), (16) and (23)
become

dA1

dt
= −A1 +

DB2

2
− 32B2C2

15π
, (25)

dB2

dt
= −4B2 +

8A1

3π
, (26)

dC2

dt
= −4νC2 +

16A1B2

5π
, (27)
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Fig. 1. Graphs of the two largest Lyapunov exponents for N = 2, 4, 6,
7, 8 and 10 (increasing downwards) for the case where f ∝ J ·B and
D > 0

which upon using the transformations

A1 =
15
√

6π2

64
Y, B2 =

5
√

6π
32

X, C2 =
45π2

64
Z, (28)

result, as in S&S91, in the usual Lorenz equations (Lorenz
1963), with the control parameters given by σ = 4, b = 4ν,
and r = D/3π. To be compatible with S&S91 we also used
ν = 0.5 throughout2.

Since our aim is to study the qualitative effects brought about
by the changes in the form of f , we will not delve deeply into
the details of the dynamics, such as the routes to chaos, and
concentrate instead on the occurrence of equilibrium, periodic
(including quasiperiodic) and chaotic regimes. Accordingly, the
tools we employ are the time series and the spectra of Lyapunov
exponents. The latter is particularly useful as a relatively sensi-
tive tool to characterise the dynamics, with the Lyapunov spec-
tra of the types (−,−,−, . . .), (0,−,−, . . .), (0, 0,−, . . .) and
(+, 0,−, . . .) corresponding to equilibrium, periodic, quasiperi-
odic (with two periods) and chaotic regimes respectively. Also
to keep the numerical costs reasonable, the resolution of D in
all the figures was, unless stated otherwise, taken to be D = 5.

Now given the fact that in many astrophysical settings (in-
cluding that of the sun) the sign of the dynamo number is not
known, we shall also study the effects of changes in the sign of
D.

We note also that the αΩ dynamo concept becomes invalid
if D exceeds a certain limit (Choudhuri 1990). Furthermore, in
general, as D is increased more modes (higher N ) are required
to achieve convergence (numerically bounded solutions).

2 These authors seem to confine themselves to this value of ν in
order to obtain chaotic behaviour, for which one requires σ > b + 1
(Sparrow 1982). This amounts to the expectation that α relaxes much
more slowly than the magnetic field.
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Fig. 2. Graphs of the two largest Lyapunov exponents for N = 2, 4, 6,
7, and 8 (increasing downwards) for the case where f ∝ AφBφ and
D > 0

3.1.1. Results for positive dynamo numbers

For the sake of comparison with S&S91, we studied the dynam-
ics of the system (15, 16, 23), for different values of the trun-
cation order N . A summary of our numerical results is given
in Fig. 1 which is a plot of the two largest Lyapunov exponents
as a function of the dynamo number for different truncations.
In the following figures, the largest Lyapunov exponent is de-
picted by a solid line and its negative, zero and positive values
indicate equilibrium, periodic and chaotic regimes. The simulta-
neous vanishing of the second Lyapunov exponent would imply
the presence of quasiperiodic motion with two frequencies (i.e.
motion on a 2–torus). It was not necessary to plot the third ex-
ponent, since no motion on T 3 or higher dimensional tori was
observed which is not surprising in view of the results of New-
house et al. (1978).

For a more transparent comparison, we have also produced
in Fig. 2 an analogous figure for the system considered in
S&S91. As the comparison of the Figs. 1 and 2 shows, the main
differences produced by the replacement of AφBφ by J ·B are
as follows:

1. The chaotic regimes become less likely in the J ·B case,
in the sense that the intervals of the dynamo numberD over
which the system is chaotic decrease dramatically.

2. There exist indications for the presence of “multiple attrac-
tors” over substantial intervals of D, consisting of equilib-
rium and periodic states. These can be seen as regions of
spiky behaviour in the solid line in Fig. 1, for certain trun-
cations (N = 4, 6, 7, 8, 10). The behaviour of the system
alternates between fixed point solutions (where all expo-
nents are negative) and periodic orbits (where only the first
one is zero) as the dynamo number D is slightly changed.
The presence of such behaviour is potentially of great inter-
est since it suggests that there exist intervals of D in which
small changes in D can drastically change the behaviour of
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Fig. 3. Fragility in the dynamics with respect to small changes in the dy-
namo numberD and the magnitude of the initial vector (An, Bn, Cn).
A cross represents a fixed point while a circle represents a limit cy-
cle. The initial conditions correspond to randomly chosen vectors of
specified magnitude

the system. This is also interesting, if one considers settings
in which D or the initial conditions (IC) can vary slightly,
but randomly, as the resulting behaviour would look very
much like intermittency. To highlight this we have plotted
in Fig. 3 the behaviour of theN = 4 truncation as a function
of small changes in the dynamo number and the IC. As can
be seen, small changes in eitherD or IC can produce impor-
tant changes in the behaviour of the system. This therefore
shows that there are substantial regions ofD over which the
behaviour of the system is sensitive to small changes in D
and IC. Further, we have checked that this fragility is itself
robust in the sense that taking a finer mesh of D does not
qualitatively change this overall behaviour.

3. Regarding the overall behaviour of the systems with respect
to increases in N , we observe the following. For small dy-
namo numbers, the behaviour seems to settle down to equi-
librium and periodic states asN is increased. For example as
can be seen from Fig. 1, for dynamo numbers up toD ≈ 900,
the behaviour settles down for N ≥ 7. For larger values of
D, however, we observe an increase in the dominance of
the “multiple attractor” regime for the values of N consid-
ered here. It is likely, however, that with increasingN , these
intervals only establish themselves at higher values of D.

4. The transition to chaos appears to be very abrupt in theN =
2 case, with the system going from a fixed point into a chaotic
regime very rapidly, at least to within a resolution of ∆D ≈
10−4, with no intermediate behaviour being observed. For
the case N = 3 the system goes from a fixed point → limit
cycle→ chaos. For still higher N , our calculations indicate
that chaos becomes scarce.

5. Chaotic regions were also found in the “multiple attractors”
region, which were fragile with respect to small changes in
the IC and the choice of D.
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Fig. 4. Graphs of the two largest Lyapunov exponents forN = 7, 8, and
10 (increasing downwards) for the case when f ∝ J ·B and D < 0
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Fig. 5. Graphs of the two largest Lyapunov exponents for N = 4, 6,
7, and 8 (increasing downwards) for the case when f ∝ AφBφ and
D < 0

3.1.2. Results for negative dynamo numbers

Our results for the negative dynamo numbers are shown in Fig. 4.
Also, in view of the sparseness of the results reported in S&S91
for the models with negative dynamo numbers, we present Fig. 5
as an analogous figure for their case.

The main features of these models are:

1. The chaotic regimes seem to become less likely in theAφBφ

case. In fact, for the mesh size in D taken here, we only
observed chaotic solutions in the case of N = 8 and then
only for very high dynamo numbers.

2. There are substantial intervals (inD) of “multiple attractors”
(consisting of equilibrium and periodic states) for theAφBφ

case.
3. In both cases the behaviour for D >∼ −900 stabilises as
N is increased. This occurs for N ≥ 2 for the equilibrium
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regime and N ≥ 7 for periodic regime. These results also
indicate that there are parallels between theAφBφ case with
negative dynamo numbers and the J ·B case with positive
dynamo numbers. In both cases, multiple attractor regions
seem to dominate for large D values, as N is increased.

4. For high N (≥ 7) in the J · B case, the transition is from
T 2 to chaotic behaviour. This does not seem not true for
N = 4, 5, 6 where the chaotic behaviour seems to appear
abruptly.

3.2. Case (II): f = W1J · B + W2α|B|2, with W1 6= 0 and
W2 6= 0

To study the effects of including the α|B|2 term, we use the
dynamicα equation from Kleeorin & Ruzmaikin (1982) without
a damping term3 proportional to 1/T

∂αM
∂t

=
νt
R2

∂2αM
∂x2

(29)

− 1
µ0ρ

(
(∇×B) ·B − α0 cosx− αM

β
|B|2

)
,

where β is the combined (turbulent plus ohmic) diffusion of the
field, ρ the density of the medium and µ0 the magnetic constant.

Now using expression (2) forB and turning the system in a
non-dimensional form using the same transformations as before,
we obtain

α0 cosx− αM
β

|B|2 = (30)

B2
0η

2
t

R3ω0β
(D cosx− C)

(
B2 + Γ1

(
∂A

∂x

)2
)
,

where Γ1 = η2
t

R4ω2
0

is a dimensionless constant. This allows the

analogue of the Eq. (11) to be written in the form

∂C

∂t
= ν

∂2C

∂x2
− Γ2 ×

(
∂A

∂x

∂B

∂x
− ∂2A

∂x2
B

)
(31)

+Γ3 × (D cosx− C)

(
B2 + Γ1

(
∂A

∂x

)2
)
,

where Γ2 = R2B2
0

η2
tµ0ρ

and Γ3 = R2B2
0

βηtµ0ρ
are dimensionless constants.

Considering the same boundary conditions and spectral expan-
sions as in the J ·B case, Eq. (31) becomes

∂Cn
∂t

= −νn2Cn + Γ2

(
N∑
m=1

N∑
l=1

H(n,m, l)AmBl

)
(32)

+Γ3

N∑
m=1

N∑
l=1

DBmBlH1(n,m, l)

+Γ3Γ1

N∑
m=1

N∑
l=1

mlDAmAlH2(n,m, l)

3 The inclusion of this term will be studied in Sect. 4.

−Γ3

N∑
m=1

N∑
l=1

N∑
k=1

CmBlBkH3(n,m, l, k)

−Γ3Γ1

N∑
m=1

N∑
l=1

N∑
k=1

lkCmAlAkH4(n,m, l, k),

where H’s are given by

H1(n,m, l) =
1
π

(
m + 1

(m + 1 + l − n)(m + 1− l + n)
(33)

− m + 1
(m + 1 + l + n)(m + 1− l − n)

+
m− 1

(m− 1 + l − n)(m− 1− l + n)

− m− 1
(m− 1 + l + n)(m− 1− l − n)

)
,

H2(n,m, l) =
1
π

(
n− l

(n− l + m + 1)(n− l −m− 1)
(34)

+
n− l

(n− l + m− 1)(n− l −m + 1)

+
n + l

(n + l + m + 1)(n + l −m− 1)

+
n + l

(n + l + m− 1)(n + l −m + 1)

)
,

H3(n,m, l, k) =
1
4

[δ(m− l, k − n)− δ(m− l, k + n) (35)

−δ(m + l, k − n) + δ(m + l, k + n)] ,

H4(n,m, l, k) =
1
4

[δ(m− n, l − k) + δ(m− n, l + k) (36)

−δ(m + n, l − k)− δ(m + n, l + k)] .

Note that δ(n,m) is 1 if n−m = 0 but 2 if n = m = 0 and
H1 = H2 = 0 if n + m + l + 1 is even.

3.2.1. Results

Our results of the study of the system (15), (16) and (32) for
positive dynamo numbers are depicted in Table 1. As can be
seen, the effect of the inclusion of the α|B|2 term is dramatic
and seems to eliminate the possibility of chaotic behaviour for
all N .

For the lower truncations of N = 2 and 3, we only observe
fixed point solutions for allD up toD ≈ 2000. For higher order
truncations, with moderateD, there is a sequence of fixed points
followed by stable periodic cycles.

The corresponding results for the negative dynamo numbers
are shown in the Table 2, and again this is very similar to Table
1 with no evidence for chaotic behaviour at small and moderate
D. In this case the N = 2 system has the origin as the fixed
point for D down to −2000.
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Table 1. Results for the case (II) for D > 0. D1 indicates where the
origin becomes unstable as a fixed point and D2 the dynamo num-
ber where all fixed points become unstable and the solution becomes
periodic

N D1 D2

2 10 > 2000
3 15 > 2000
4 115 115
5 205 205
6 205 240
7 235 240
8 250 250

Table 2. Results for the case (II) for D < 0. D1 indicates where the
origin becomes unstable as a fixed point and D2 the dynamo num-
ber where all fixed points become unstable and the solution becomes
periodic

N D1 D2

2 < −2000 < −2000
3 −70 −80
4 −85 −95
5 −85 −95
6 ≈ −95 ≈ −100
7 ≈ −95 ≈ −100
8 ≈ −95 ≈ −100

4. Case (III): robustness with respect to changes in the
damping term

In this section we employ the equation proposed by Kleeorin et
al. (1995) in the form

∂αM
∂t

= −αM
T

(37)

− 1
µ0ρ

(
(∇×B) ·B − α0 cosx− αM

β
|B|2

)
,

as the evolutionary equation for the back reaction of the mag-
netic field on the time dependent part ofα. In the above equation
T is the characteristic time on which the small scale magnetic
helicity changes, which is typically much longer than the tur-
bulent diffusion time scale.

Using the same expression for B from Eq. (2) and pro-
ceeding in the same way as in the previous cases we obtain the
differential equations for Cn to be

∂Cn
∂t

= −Γ4Cn + Γ2

(
N∑
m=1

N∑
l=1

H(n,m, l)AmBl

)
(38)

+Γ3

N∑
m=1

N∑
l=1

DBmBlH1(n,m, l)

Table 3. Results for the case (III) for D > 0. D1 indicates where the
origin becomes unstable as a fixed point and D2 the dynamo number
where all fixed points become unstable and the solution is a periodic
orbit

N D1 D2

2 10 > 2000
3 15 > 2000
4 110 115
5 170 170
6 ≈ 200 ≈ 200
7 ≈ 200 ≈ 200
8 ≈ 200 ≈ 200

+Γ3Γ1

N∑
m=1

N∑
l=1

mlDAmAlH2(n,m, l)

−Γ3

N∑
m=1

N∑
l=1

N∑
k=1

CmBlBkH3(n,m, l, k)

−Γ3Γ1

N∑
m=1

N∑
l=1

N∑
k=1

lkCmAlAkH4(n,m, l, k),

where Γ4 = R2

ηtT
is a dimensionless constant.

4.1. Results

Our results of the study of the system (15), (16) and (38) are
shown in Tables 3 and 4. Although more modes are required
in order to obtain convergence for higher dynamo numbers, the
results shown in Table 3 and 4 seem to indicate that this type
of change in the damping term does not produce qualitative
changes in the behaviour of the system. This is reasonable, since
the functional forms of the modal equations are quite similar in
Eqs. (32) and (38).

The inclusion of theαM/T term does not change the qualita-
tive behaviour of the smaller truncations (N = 2 and 3 forD > 0
andN = 2 forD < 0, where we observe only fixed points as be-
fore). At moderate dynamo numbers, the qualitative behaviour
is almost the same and remains periodic for |D| > |D2|, butD2

is changed slightly.
We also note that all systems considered here, in particular

Cases (II) and (III), have a common pattern of behaviour, namely
that asD is increased,A andB oscillate with slowly increasing
amplitudes about zero. On the other hand,αM oscillates with an
increasing amplitude around a rapidly increasing average. Also
if D > 0, αM oscillates about a positive average and about a
negative average for D < 0.

5. Conclusions

We have studied the robustness of truncated αΩ dynamos in-
cluding a dynamic α equation, with respect to physically moti-
vated changes in the driving term and a change in the damping
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Table 4. Results for the case (III) for D < 0. D1 indicates where the
origin becomes unstable as a fixed point and D2 the dynamo number
where all fixed points become unstable and the solution is a periodic
orbit

N D1 D2

2 < 2000 < 2000
3 −70 −80
4 −80 −95
5 −95 −95
6 ≈ −95 ≈ −105
7 ≈ −95 ≈ −110
8 ≈ −95 ≈ −110

term appearing in the dynamical α equation. We studied these
systems with respect to changes in the dynamo number D, the
truncation orderN and the IC. Our results show that the changes
in the driving term have important effects on the dynamical be-
haviour of the resulting systems. In particular we find that

– chaos is much less likely in systems with a driving term
of the form J · B (with positive D), as opposed to those
involving AφBφ.

– the inclusion of theα|B|2 term has a dramatic effect in that it
suppresses the possibility of chaotic behaviour at moderate
dynamo numbers.

– changes in the sign of the dynamo number can also produce
important changes. In the case where the driving term is
given by AφBφ, using D < 0 makes chaotic behaviour
much less likely (which seems to be the mirror image of the
case where the driving term given by J ·B and D > 0).

– in case (I) there exists substantial intervals ofD for which the
systems seem to possess ”multiple attractors” (consisting of
equilibrium and periodic states). As a result small changes
in either D or the IC can produce important changes in
these regimes. This form of fragility can be of importance,
especially in presence of noise, where the system would
behave in an intermittent way.

Finally to recapitulate our motivation for studying differ-
ent formulations of dynamic α feedback, we note that even
the usual expression for the driving term, J ·B, derived from
first principles could still be inappropriate, as it involves un-
controlled approximations. However, it is clear that f has to be
a pseudo-scalar (because α is a pseudo-scalar), and the most
obvious possibilities are indeed the ones that we have studied.
Our investigations have shown that the actual choice can signif-
icantly alter the overall conclusion. Therefore, all conclusions,
especially those concerning the occurrence of chaos, should be
taken with utmost care.
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