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Abstract 

Coherent structures in turbulent flows consisting of vorticity filaments may generate small- 
scale magnetic fields by means of dynamo action with a mechanism similar to that known as the 
Herzenberg dynamo. In order to anaiyse the consequences of this assumption for the properties 
of the resulting magnetic field, we have performed numerical simulations for a Herzenberg-like 
model system with a prescribed flow, and determined the critical magnetic Reynolds number Hz 
for the dynamo. The critical value is of the order of a few hundred and is to be compared with 
the local magnetic Reynolds number for a pair of vortex filaments, calculated as a function of 
the Reynolds number of the flow by means of a scaling argument following Kolmogorov theory. 
This gives us fairly stringent conditions on the magnetic Prandtl number. PrM has to be large, 
of the order of a few hundred. The resulting magnetic field has a scale comparable with the 
diameter of the vorticity tubes and is thus of small-scale, compared to the integral scale of the 
flow. 

1 INTRODUCTION 

The existence of coherent structures, such as vorticity filaments, is recognised as being a distinc- 
tive feature of fully developed hydrodynamicai turbulence. This is seen to be connected to  the 
intermittency propert es of the velocity field on scales in the dissipation range [I], 121. In magneto- 
hydrodynamic flows, ! uch structures are still present (see Figure 1) and the magnetic field is also 
seen to be concentrated in coherent tube-like structures whose diameter is comparable in size with 
the dissipative scales [3]. We are interested in addressing the question of whether vorticity filaments 
might have a role in the generation of small-scale magnetic fields by means of dynamo action, as 
briefly discussed recently by Brandenburg et al. [4]. We test this hypothesis making use of data from 
simulations of compressible magnetoconvection [3], in which small-scale dynamo action is observed. 

2 THE HERZENBERG-LIKE MODEL 

The Herzenberg dynamo consists of two rigidly rotating spheres in a conducting medium. The 
conductivity is finite and the same inside and outside the spheres. The spheres have a radius a 
and are separated by a distance 2d. The magnetic Reynolds number for the Herzenberg dynamo 
(Herzenberg number) is defined as 

Hz r Ra2/77, (1) 

where R is the angular velocity of the  spheres and the magnetic diffusivity. The dynamo is excited 
when Hz exceeds a certain threshold which is a function of the ratio d la  and of the relative orientation 
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Figure 1: Left: Visualisation of the vorticity field in Run D. Vectors whose modulus exceeds three 
times the rms value are plotted. Right: Velocity vectors on a subset of the plane y = 96 in RUN D. 
The two vortex tubes seen at the bottom are considered. 

of the two rotation axes. We see from numerical simulations that a similar behaviour is found when 
the spheres are stretched along their axes of rotation to form ellipsoids. In particular, the critical 
Reynolds number Hz reaches a limiting value Hz, as the length b of the stretched axis increases. 
We consider the optimal case when the rotation axes lie in two paralIel planes a distance 2d apart 
and inclined to each other by an angle q5 = 125'. In the limit b >> a we take these rotors as a model 
of vorticity tubes. We find, extrapolating from simulations, that for the case 4 = 125" the condition 
for the magnetic Reynolds number Hz to be supercritical is 

Hz > Hz, w 75 x (~ /d) - ' .~ .  (2) 

In Figure (2) we show the magnetic field configuration when a dynamo is excited. 

2.1 The possibility of small-scale dynamo action 

We assume that the length of vortex tubes is comparable to the integral scale L and we make two 
different assumptions regarding the size of the radius a of the tubes, namely that it is of the order of 
the dissipation scale C = (9/c)'14, or that it is of the order of the Taylor microscale A = J w j ,  
where u is the kinematic viscosity, e is the energy dissipation rate. From the Kolmogorov theory of 
homogeneous turbulence, these two lengths can be expressed as a function of the Reynolds number 
of the flow Re = UL/V where U is the rms velocity (u2)'I2, SO that 

C M and X M L R ~ - ~ I ~ .  (3) 

Assuming a - t and a - X in the expression (1) for Hz, we obtain, making use of (3) and dropping 
factors of order unity, 

413 
Hz = 414 (t) il PrM (case I). 

9 

Hz = (g)413 il ~ e ' l ~ ~ r ~  (case 11). 
r ]  

where PrM is the Prandtl number P ~ M  = v/q) . A comparison of these two estimates of the local 
magnetic iteynolds number with equation (2) shows that, assuming that on the small scales a ld  - 
0(1),  there is a possibility of Herzenberg-like dynamo action from vortex tubes only for large magnetic 
Prandtl number or, from the second relation ( 5 ) ,  for very large Reynolds numbers. 
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Figure 2: Three dimensional visualization of the magnetic field. Vectors corresponding to fields with 
strengths exceeding 3 times the rms value are plotted. Left: Herzenberg-like dynamo: = 125", 
b = 1.8, a = 0.3, d = 0.4, Hz = 180. Right: The model system of a vortex sheet and one rotor. The 
rotation axis of the sphere and the vorticity vector of the sheet here lie in the same plane, (0 = 90") 
at an angle 4 = 45" with each other. 

It is worthwhile noting here that, in the Sun, PrM is of the order lo-?, so that this mechanism 
could not be used as a qualitative picture of the phenomena involved in the small scale dynamo. 
Moreover, whenever PrM < ~ r $ ,  the mechanism proposed here could not work because then the 
typical length scale for magnetic diffusion (T3/c)1/4 would be larger than the kinematic dissipation 
length so that advection of magnetic fields on the scales of the vorticity tubes would be impossible. 

2.2 Comparisoli with turbulent mag~letocolivection da ta  

We use now the data from a simulation of turbulent magnetoconvection [3] and in particular data 
from two different runs which we refer to in the following as Runs A and D. In Run A Re = 310 
and PrM = 4.0, whilst in Run D Re = 1200 and PrM = 0.5 (see table in Figure 3). Looking a t  flow 
patterns (Figure l), we can identify and select a typical vortex pair and measure the Herzenberg 
number (1); ( Figure 3). We see that whilst in Run A Hz is sufficiently large to be supercritical, in 
Run D it is not. 

3 FURTHER M O D E L S  

3.1 vortex sheets 

Following the philosophy of investigating the role of coherent structures in dynamo action, we can 
look at different structures. An inspection of the flow patterns shows, alongside with vortex tubes, 
the presence of quasi-2-dimensional structures like downdrafts, where the transverse coherence of 
the velocity field is well pronounced. We have performed kinematic dynamo simulations for a model 
system composed of a vortex tube and vortex sheet of the form: 
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Run A Run U 
Mesh 633 126' x 105 Run A Run D 

Figure 3: Left: Parameters of Runs A and D Right: Vortex tubes. Measured parameters for Run 
A and D. 

so that the velocity takes the form u = (0, u,, 0), where u, = zio exp[-(s/a)']. For such a system we 
can define a magnetic Reynolds number Sh 

The growth rate of the magnetic field depends on the relative orientation of the rotation axis of the 
rotor and the vorticity vector of the sheet and can be positive. In our most favourable case, when 
the two vectors lie in two parallel planes with relative angle 4 = 45", the critical value is 

The structure of the magnetic field resulting from dynamo action, is shown in Figure 2. Making use 
of the formula (7) and measuring the parameters in some arbitrarily chosen location in Run D, we 
have ShR,, D FZ 60, which is of comparable magnitude to the critical value (8). 

4 CONCLUSIONS 

We have seen that, although tempting visually, it is difficult to  explain small-scale dynamo action 
as a direct result of the interaction between coherent structures in the turbulent flow, especially 
because of the restrictions on the values of the magnetic Prandtl number. Another difficulty lies in 
the fact that magnetic field produced exists only on the smallest scales, and thus cannot explain the 
spectrum of the magnetic fields. In the case of Run D this had a behaviour compatible with a k-' 
law, meaning that magnetic energy is equally distributed on all scales. Still, it is conceivable that 
vortex filaments may play a role by producing a magnetic field with r-' dependence, thus giving a 
k-' spectrum via a mechanism similar to that discussed for the hydrodynamical case by Passot et 
al. [5]. 
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