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Abstract. Three-dimensional simulations of a thermally stably
stratified gas with a localized layer of toroidal magnetic field are
carried out. The magnetic field gives rise to a magnetic buoyancy
instability. Due to the presence of rotation the resulting fluid
motions are helical and lead to anα-effect, i.e. to a component
of the electromotive force in the direction of the mean magnetic
field. The value ofα is estimated during the exponential growth
phase of the instability. The mean vertical transport velocity of
the magnetic field is also calculated. It is found thatα varies with
latitude and its value is positive in the northern hemisphere.
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1. Introduction

The concept of anα-effect invoked to explain the origin of large
scale magnetic fields in rotating astrophysical bodies has a long-
standing history since the seminal papers by Parker (1955) and
Steenbeck, Krause & R̈adler (1966). The original idea was that
cyclonic or helical background fluid motionsu could distort
the magnetic fieldB such that the resulting average electromo-
tive force,〈u × B〉, has a componentα〈B〉 in the direction of
the mean magnetic field,〈B〉. The coefficientα represents the
α-effect (Moffatt 1978, Krause & R̈adler 1980).

There is now increasing evidence that, once the field has
reached appreciable strength, the relevant fluid motions may
result from the magnetic field itself or, more specifically, from
magnetic instabilities. Thus, the velocity field that provides the
α-effect is directly dependent on the magnetic field. Of major
interest recently has been the Balbus-Hawley (1991) instabil-
ity, relevant to explain turbulence in accretion discs. The three-
dimensional simulations of Brandenburg et al. (1995, hereafter
referred to as BNST) have shown that large scale magnetic fields
can be generated from the fluid motions associated with this in-
stability.

In the context of the solar dynamo the dominant instabil-
ity could be a magnetic buoyancy instability. This possibility
was first proposed by Moffatt (1978) and explored in detail
by Schmitt (1984, 1985). He considered, in the magnetohydro-

dynamically rapidly rotating limit, a localized magnetic layer
with a toroidal field in the overshoot region at the base of the
convection zone. The upper parts of the layer, where the mag-
netic field decreases rapidly enough with height, are unstable
due to magnetic buoyancy. In this buoyancy instability poten-
tial energy of extra mass supported against gravity is released by
downward transport of mass and upward transport of magnetic
flux. Because of rotation the instability takes the form of magne-
tostrophic waves where the Coriolis force and the Lorentz force
are in approximate balance with each other. These waves are
helical; their growth in amplitude causes a phase shift between
the magnetic field and velocity perturbations, which leads to
a component of the electromotive force parallel or antiparallel
to the background toroidal field. This dynamicα-effect oper-
ates in strong fields which resist distortion by convective flows.
In Schmitt’s linear asymptotic analysis there are always two
magnetostrophic modes with the same growth rate but with a
north- and a southward component of phase velocity, respec-
tively. Superposition of the most unstable modes leads to a
non-monotonic latitudinal dependence, withα negative near the
equator and positive near the pole in the northern hemisphere.
However,α remains always antisymmetric with respect to the
equator.

Related investigations have recently been carried out by
Thelen (1997). Anα-effect has also been derived from an in-
stability of thin magnetic flux tubes (Ferriz-Mas et al. 1994, see
also Hanasz & Lesch 1997). An application to the solar dynamo
can be found in Schmitt et al. (1996). Estimates for turbulent
magnetic diffusion due to the Parker instability have been given
by Hasler et al. (1995), who used two-dimensional simulations
without rotation.

In this Letter we present some exploratory three-
dimensional simulations of anα-effect due to magnetic buoy-
ancy using the code and setup described in Brandenburg et al.
(1996, hereafter referred to as BJNRST). The governing equa-
tions are the continuity equation, the momentum equation with
vertical gravity, Coriolis, Lorentz and viscous forces, the energy
equation and the induction equation. For the full set of equations
and details of the model we refer to BJNRST. Unlike Schmitt’s
original work we do not adopt the anelastic approximation, nor
do we neglect the inertia term in the momentum equation. How-
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ever, it would be computationally expensive to approach the
limiting magnetostrophic regime of Schmitt (1985), who con-
sidered the ordering

τac � τΩ � τA � τms (1)

of acoustic, rotational, Alfv́en and magnetostrophic time scales,
respectively. The magnetostrophic time scale is given byτms =
τ2
A/τΩ. In the present work we restrict ourselves to the ordering

τac ∼ τΩ < τA < τms. (2)

Our main objective is to establish the existence of anα-effect,
as well as its sign and latitudinal dependence.

2. The model

2.1. Basic setup and parameters

We use the code of BJNRST in a rectangular domain|x| <
Lx/2, |y| < Ly/2 and |z| ≤ Lz/2, wherex points north,y
east, andz increases downwards. The linear analysis by Schmitt
(1985) suggests that the most rapidly growing eigenmode should
be well accommodated if the box aspect ratios satisfyLx <
Lz < Ly. We thus takeLx = 0.5, Ly = 5, Lz = 1 for all our
models using31 × 31 × 64 meshpoints.

We use periodic boundary conditions in thex andy direc-
tions and stress-free boundary conditions in thez direction. The
x andy components of the magnetic field are assumed to vanish
atz = ±Lz/2. At the top of the box (z = −Lz/2) the temper-
ature is such that the local pressure scale height at the top,Hp0,
is equal to the height of the box. At the bottom (z = +Lz/2)
the temperature gradient (proportional to the radiative flux) is
given.

We assume a perfect gas with the ratio of specific heats
being 5/3. The basic state is a polytrope with polytropic index
m = 3, corresponding to stable stratification in the absence of
a magnetic field. The initial temperature profile is linear, but
the density profile is modified such that the initial state is in
hydrostatic equilibrium. We use nondimensional variables such
that Hp0 = g = ρ = µ0 = cp = 1, whereρ is the average
density of the gas in the box. (So time is measured in units of
(Hp0/g)1/2, length in units ofHp0, and the magnetic field in
units of(µ0ρHp0g)1/2.) To characterize a particular simulation
we use the nondimensional parameters of BJNRST. In practice
we fix the value of the rotational time scale,τΩ = (2Ω)−1 in
terms of the acoustic time scale,τac = Hp0/cs0 =

√
Hp0/g,

wherecs0 is the isothermal sound speed at the top of the box. The
ratioτac/τΩ is related to Taylor, Rayleigh and Prandtl numbers,
Ta, Ra and Pr, respectively, via
(

τac

τΩ

)2

=
(2Ω)2

g/Hp0
= − 2

15
Pr Ta
Ra

. (3)

Unless stated otherwise, the nondimensional parameters of
BJNRST are Ra= −106, Ta= 7.5 × 106, and Pr= PrM = 1.

The initial magnetic field is given byB = (0, By, 0) with

By = vA0 exp[−(z/HB)2], (4)

whereHB = 0.3 is the scale height of the magnetic field.
For most of our runs we takevA0/cs0 = 0.3, so τA/τac =
(vA0/cs0)−1 ∼ 3. This corresponds to a Lundquist number,
vA0Hp0/η, of 820.

2.2. Calculation of alpha

We restrict ourselves to estimating only those transport coef-
ficients that involve the initial toroidal magnetic field,〈By〉.
We assume that we can represent the mean electromotive force,
E = 〈u × b〉, whereu andb are fluctuations, in the form

E ≈ α〈B〉 + γẑ × 〈B〉 − ηt∇ × 〈B〉, (5)

whereηt is turbulent magnetic diffusion andγ measures the
magnitude and direction of an average transport velocity of
the mean magnetic field (sometimes called theγ-effect, see
Krause & R̈adler 1980). We take averages,〈...〉, over the en-
tire box. Since we use periodic and zero horizontal field bound-
ary conditions in the horizontal and vertical directions, respec-
tively, all derivatives of averages vanish. In particular we have
∇ × 〈B〉 = 0. ThereforeE depends in our case only onα and
γ. Since the main contribution to〈B〉 comes from the toroidal
component of〈B〉, we haveα ∼ Ey/〈By〉 andγ ∼ −Ex/〈By〉.

We note that Hasler et al. (1995) used horizontal averages
and found bothγ andηt from their two-dimensional calcula-
tions of the Parker instability. However, the inclusion of first and
higher derivatives of〈B〉 in Eq. (5) makes the analysis more
susceptible to statistical errors. Brandenburg & Sokoloff (1998)
have attempted a more complete analysis including the effects
of turbulent diffusion using simulations of accretion disc tur-
bulence. They found that estimatingα andγ in the way just
described is in fact relatively robust and useful as a first orien-
tation. Hasler et al. (1995) and Brandenburg & Sokoloff (1998)
found evidence for nonlocal behaviour, where a whole series of
higher derivative terms becomes important. This is beyond the
scope of the present paper. As a compromise we have therefore
adopted full volume averages, so that derivative terms in Eq. (5)
are absent.

We are interested in the exponential growth phase of the
instability. SinceE depends on the product of two fluctuating
quantities,α andγ will increase proportionally to thesquareof
the rms velocityut. Sinceα andγ have dimensions of velocity,
and since the relevant velocity in the system isvA0, we present
the values ofα andγ in units ofvA0 Al2, where Al= ut/vA0 is
the Alfvén number of the flow. In models involving flux tubes
one may relateut to the velocity of buoyant flux tubes which,
in turn, is limited by turbulent drag forces, so Al should then be
a constant somewhat below unity (Parker 1979).

We initialize the runs with a weak solenoidal velocity pertur-
bation consisting of localized eddies with typical initial Mach
numbers of10−3. We normally choose 20 randomly positioned
eddies, but the results changed somewhat when we took 100,
200, or 500 eddies. We calculate the values ofα andγ for dif-
ferent numbers of initial eddies and use the resulting scatter as
an indication of the statistical error ofα andγ.
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Fig. 1. Grey scale images of arbitrarily chosenxz slice ofuy (left) andyz slice ofux (right) of the solution for−30◦ latitude att = 20. The
top of the box is atz = −0.5. (In the northern hemisphere, the structures in both panels would be tilted the other way around.)

Fig. 2. Example of a plot ofα versusut for −30◦ latitude. The solid
part of the curve refers to the range where the growth of the solution is
exponential. The inset gives the evolution ofα as a function of time.

The dependence on initial conditions means that the simu-
lations have not yet settled on the fastest growing eigenfunction
before nonlinear effects become important. On the other hand,
using weaker initial perturbations still does not remove fluctu-
ations due to hydrostatic adjustment. It is conceivable that we
could improve matters by rescaling the results before the solu-
tion has reached the nonlinear regime.

3. Results

An example of the eigenfunction att = 20, which is still dur-
ing the exponential growth phase, is shown in Fig. 1. Note the
presence of tilted structures concentrated aboutz ≈ −0.1, the
unstable top part of the magnetic layer. There are typically 2–4
nodes (1–2 wavelengths) present in thex andy directions, which
indicates that the adopted box size is adequately chosen. On the
other hand we find more nodes in the vertical direction than
suggested by Schmitt’s (1994, 1995) analysis. After some time
the exponential growth stops and the evolution ofα becomes
more complicated such that even the sign ofα may change. An
example of the evolution ofα is shown in Fig. 2.

We have carried out a number of simulations for different
latitudes and calculated the values ofα and γ. The latitude
enters the simulation through the Coriolis force. In Fig. 3 we
plot the latitudinal dependence ofα using different symbols and
compare with a simplecos θ colatitudinal profile. The agreement
is fair, although the scatter is relatively strong, especially near
the equator where both positive and negative values ofα have

Fig. 3. The latitudinal dependence of the alpha-effect (normalized by
vA0Al2). The stars refer to initial velocity perturbations using 20 ed-
dies. The plus signs and diamonds refer respectively to 200 and 500
eddies. The solid line represents the fitα0 = 0.035vA0Al2 cos θ. The
triangle refers to a run withvA0/cs0 = 0.1 instead of 0.3.

been obtained. The extrema ofα are found to be not necessarily
at the poles, but possibly at somewhat lower latitude.

The value ofγ is always negative, corresponding to a
mean transport velocity upwards. Its value isγ = −(0.5 ±
0.2) vA0Al2, but again with significant scatter. There is no clear
latitudinal dependence ofγ. The growth rate of the instability
varies between equator and pole from roughly 0.17 to 0.25.

In Table 1 we give a summary of the dependencies ofα on the
three input parametersΩ, HB, andvA0 for runs at90◦ latitude.
Again, sinceα increases quadratically in the fluctuations we
give the ratioα/〈u2〉. Sinceα is a pseudoscalar, we also give
the ratios with other relevant pseudoscalars, the helicity〈ω ·u〉
and the current helicity〈j · b〉. The trends are clear:α/〈ω · u〉
and|α/〈j · b〉| increase with decreasing field strength and with
decreasing scale height of the magnetic field, whileα/〈ω · u〉
also decreases with increasingΩ. Furthermore,〈ω·u〉 and〈j ·b〉
have opposite signs, and the signs ofα/〈ω · u〉 andα/〈j · b〉
agree with the signs found in BNST. However, it should be noted
that the averages are the result of imperfect cancellations and
the sign of the helicity tends to change if the average is weighted
in favor of regions where the field is strong.

One might expect thatα increases with the vertical gradient
of the magnetic field. This is indeed the case: lowering the value
of HB from 0.3 to 0.1 leads to an increase ofα/[vA0Al2] by at
least a factor of ten. IncreasingΩ by a factor of three leads to
a decrease ofα/[vA0Al2] by approximately the same factor. A

LE
T

T
E

R



L58 A. Brandenburg & D. Schmitt: Simulations of an alpha-effect due to magnetic buoyancy

Table 1.Summary of parameters for runs at90◦ latitude. Comparison
of the last two columns shows that(ΩH2

BvA0)−1 is roughly propor-
tional toα/〈u2〉.

Run 2Ω HB vA0
α

〈ω · u〉
α

〈j · b〉
α

〈u2〉
1

ΩH2
BvA0

09 1 0.3 0.3 0.007 −0.008 0.07 70
11 1 0.3 0.1 0.02 −0.03 0.2 200
15 1 0.1 0.3 0.10 −0.07 1.0 700
17 3 0.3 0.3 0.002 −0.01 0.03 25

similar behavior was found for an instability of thin magnetic
flux tubes (Ferriz-Mas et al. 1994). On the other hand, for small
values ofΩ there should be noα-effect, so the dependenceα(Ω)
should have a maximum at some value which we do not know
at present.

4. Conclusions

Our results have shown that in the presence of rotation the mag-
netic buoyancy instability leads to flows exhibiting anα-effect.
The sign ofα is positive in the northern hemisphere, and its
latitudinal dependence is roughly consistent with acos θ depen-
dence, whereθ is colatitude. The latitudinal dependence found
here is simpler than the profiles suggested earlier by Schmitt
(1985, 1987) using asymptotic theory. A possible cause of the
discrepancy could be that the growth rates of the unstable modes
are different in the present simulations, which are not in the
asymptotic regime considered by him. This is also indicated by
the nodal structure of the solution in vertical direction. Another
reason might be that the two modes, whose superposition led to
the non-monotonicα-profile, do not show up simultaneously in
the numerical simulation. This is indicated by the existence of
two solutions with values ofα of different sign (with approx-
imately zero sum) at the equator and the slight deviation from
antisymmetry ofα between northern and southern hemisphere.
However, more detailed investigations are necessary to clarify
these points.

It is important to know the value ofα in the nonlinear regime.
It is not clear how to estimateα in that case. After the exponential
growth phase is over the behavior seems to be rather complicated
(Fig. 2). One would expect to approach a (statistically) steady
state where Al (= ut/vA0) is approximately constant. If the
scaling ofα still applies to this case,α would increase with
magnetic field strength–in contrast to traditionalα-quenching.
This idea has recently been invoked to explain the increase in the
observed ratio of stellar cycle frequencies to rotation frequencies
with magnetic activity (Brandenburg et al. 1998)

In order to keep the buoyancy instability going an unstable
field gradient has to be maintained. [This requirement may be
relaxed if the field is in a fibral state; see Moss et al. (1998)
for corresponding model calculations.] It is unlikely that such a
field gradient can be maintained by large-scale dynamo action
with magnetically drivenα-effect alone, because the instability
would diminish the gradient. Instead a separate mechanism may
be necessary. For example a combination of turbulent downward
pumping of magnetic field (Nordlund et al. 1992) together with
field line stretching by vertical shear at the bottom of the convec-
tion zone or in the lower overshoot layer may help to produce
a concentrated large scale field at the bottom of the convec-
tion zone. Preliminary work on overshooting convection with
imposed shear (Brandenburg, Stein, & Nordlund, unpublished)
shows that strong large scale magnetic field are generated and
that the toroidal field profile would indeed sustain magnetic
buoyancy instabilities.
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