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Abstract. It is shown that the cross-helicity effect facilitates
rapid growth of the large scale magnetic field in young galaxies.
This field then acts as a seed for the standardαΩ-type dynamo
at later stages. This mechanism may be responsible for the rel-
atively strong magnetic fields observed in young high redshift
galaxies.
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1. Introduction

Observations of polarised synchrotron emission of high red-
shift galaxies have revealed the presence of microgauss mag-
netic fields (Kronberg et al. 1992). ConventionalαΩ dynamo
theory may not be able to explain the amplification of weak
seed magnetic fields∼ 10−18 G to microgauss strengths after a
few 109 years. The basic difficulty is that the growth rate of a
large scale dynamo is typically some fractionξ of the angular
velocity Ω of the galaxy. Typical numbers areΩ = 30 Gyr−1

andξ ≈ 0.1 − 0.5. Even in the most optimistic case, the ampli-
fication factor aftert = 1 Gyr is justexp(0.5Ωt) ≈ 106.5.

Several alternatives have been offered. Chiba & Lesch
(1994) argue that both shear and radial compression during
the early evolution of the galaxy could significantly amplify
the magnetic field. However, doubt has been expressed as to
whether the effect is strong enough and whether the neglect of
turbulent magnetic diffusion is permissible (Beck et al. 1996).

Another more likely possibility is that a small scale dynamo
could amplify the magnetic field on a short time scale (a few
turnover times) and would then provide a strong initial mag-
netic field for the large scale (or mean-field) dynamo (Poezd et
al. 1993, Beck et al. 1995, 1996). This initial small scale mag-
netic field has a typical scale ofl = 300 pc and a strength of
probably a few microgauss. Averaging in the toroidal direction
at radiusR overN = 2πR/l ≈ 100 − 1000 cells, this initial
field is weakened by a factor1/

√
N = (3 − 10) × 10−3. How-

ever, a large scale dynamo may then well be able to provide
amplification of a few hundreds after about one Gyr (109 yr).

In recent years a new mechanism has been explored by
Yoshizawa 1990, Yoshizawa & Yokoi 1993, and Yokoi 1996
who considered the transport properties of inhomogeneous tur-
bulence by making use a two-scale direct-interaction approxi-
mation. They argued that the induction equation for the mean
magnetic fieldB is supplemented by an inhomogeneous term
proportional to the product of cross-helicity〈u′ · b′〉 and mean
vorticity. Here,u′ andb′ are the fluctuating components of ve-
locity and magnetic field, respectively. In this mechanism, the
large-scale magnetic field can be induced by a large-scale rota-
tional motion in the presence of the cross correlation between
the small-scale velocity and magnetic field. One problem, how-
ever, is the generation of significant cross-helicity. In order that
|u′ ·b′| becomes large,u′ andb′ should have parallel (or antipar-
allel) components. Alfv́en waves have this property. However,
there has to be a mechanism that selects Alfvén waves travelling
parallel to the magnetic field from those travelling antiparallel
to the field. Furthermore, the small scale magnetic field has to
be strong enough. In that sense this mechanism resembles that
of Poezd et al. (1993) and Beck et al. (1995), where a strong
small scale magnetic field was assumed to be generated by a
small scale dynamo. The purpose of this Letter is to point out
that, although the growth of the field by the cross-helicity effect
is linear in time, fields of appreciable strength can be generated
much earlier than by conventional dynamos, where the field
grows exponentially from some seed magnetic field. Before we
consider this problem more quantitatively, we begin by briefly
sketching the nature of the cross-helicity effect.

2. Phenomenology and magnitude
of the cross-helicity effect

As in all mean field theories one is interested in expressing the
electromotive force,

E = 〈u′ × b′〉, (1)

resulting from the small scales, in terms of large scale quan-
tities. Normally, those large scale quantities include the mean
magnetic fieldB and the mean currentJ = c∇×B/4π. How-
ever, Yoshizawa (1990) showed that also the mean vorticity
∇ × U enters this equation, whereU is the mean velocity. A
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z-component of the electromotive force would directly generate
toroidal magnetic field, unlike theαΩ-dynamo, where toroidal
field is generated from poloidal by differential rotation.

The effect of a mean vorticity is caused by the inertial term in
the momentum equation and the stretching term in the induction
equation (see Yokoi 1996). To leading order of this effect, the
momentum and induction equations for the fluctuations,u′ and
b′, read

∂u′

∂t
= −(u′ · ∇)U + ..., (2)

∂b′

∂t
= +(b′ · ∇)U + ..., (3)

where the dots refer to further terms that have been ignored for
the purpose of the present illustration. Taking the cross product
of those equations withb′ andu′, respectively, we obtain

∂

∂t
(u′ × b′) = b′ × (u′ · ∇)U + u′ × (b′ · ∇)U + ... (4)

We assume isotropic turbulence with〈u′
ib

′
k〉 = 1

3δik〈u′ · b′〉,
replace the integration after averaging by a multiplication with
some correlation (or turnover) timeτ , and obtain

E = 2
3τ〈u′ · b′〉∇ × U + ... (5)

Note that the electromotive force associated with a non-
vanishing cross-helicity,〈u′ · b′〉 /= 0, gives a non-zero con-
tribution to the field generation even ifΩ = const.

In order to get some idea of how important this effect could
be we now take a look at three different data sets of three-
dimensional turbulence simulations. We first use data of strati-
fied convection of Brandenburg et al. (1996). In this simulation
an initially weak magnetic field is amplified exponentially by
dynamo action until saturation occurs. The magnetic field has
no large scale component, so we refer to this dynamo as a small-
scale dynamo. However, this (local) simulation has been carried
out at30◦ northern latitude, so the turbulence has net helicity.
The resulting value of the relative cross helicity,〈u′ ·b′〉/(utbt),
whereut andbt are the root-mean-square values of the velocity
and magnetic field, respectively, is around 0.03.

Simulations of rotating shear flow turbulence (Brandenburg
et al. 1995) give a lower value for cross-helicity. Here the tur-
bulence is the result of a magnetic shearing (or Balbus-Hawley)
instability, where the magnetic field, in turn, is generated by
dynamo action. In this case the resulting relative cross-helicity
is 3 × 10−4.

Simulations of the turbulence driven primarily by supernova
explosions are perhaps more directly relevant to galaxies (Korpi
et al. 1998). The resulting value of the relative cross-helicity
is 5 × 10−3. However, the simulations have not yet been run
for long enough (just 5 Myr) to allow for the development of
a statistically steady state. This may also be the reason why
the sign of the cross-helicity is the same on both sides of the
equatorial plane. In the first two cases the sign of〈u′ · b′〉 is
positive above the equatorial plane and negative below.

In conclusion, based on a variety of different simulations we
expect the relative cross-helicity to be in the range3×10−2...−4.

In the following we shall see that even for the smallest value
the effect is large enough to cause an appreciable magnetic field
after a few Gyr.

3. Application to galaxies

In order to generate cross-helicity there must be small scale
dynamo action. This is typically a fast process occurring on the
time scale of a few turnover times. If the growth rate of the small-
scale dynamo is exactly one turnover time the amplification
factor after 30 turnover times would bee30 ≈ 1013.

Let us now consider in more detail how the cross-helicity
produces large-scale magnetic fields. Taking into account the
standardα-effect, turbulent diffusivity and cross-helicity effect,
the induction equation for the mean magnetic field can be written
in the form

∂B

∂t
= ∇ × (U × B) + ∇ × (αB)

−∇ × (η∇ × B) + S, (6)

whereη is the turbulent diffusivity and the source term,S =
∇ × (λ∇ × U), is caused by cross-helicity,λ = 2

3τ〈u′ · b′〉.
The source term can be written as

S = λ∇ × (∇ × U) − (∇ × U) × ∇λ. (7)

If the mean motion is rotation, i.e.U = sΩeϕ with s being the
cylindrical radius, then

S =
λ

s2

[
∇

(
s2 ∂Ω

∂ϕ

)
− s3eϕ

(
∆Ω +

2
s

∂Ω
∂s

)]

−1
s

eϕ∇(s2Ω) · ∇λ +
1
s2

∂λ

∂ϕ
∇(s2Ω) . (8)

As mentioned above, the cross-helicity dynamo produces only
toroidal magnetic field, provided the mean flow andλ are ax-
isymmetric. However, ifΩ or λ are nonaxisymmetric this dy-
namo can directly generate a poloidal magnetic field, even if
the α-effect is negligible. Evidently, in the case of rigid rota-
tion, ∇ × U = 2Ω =const and cross-helicity gives a non-
zero contribution only ifλ is nonuniform. The effect of cross-
helicity is vanishing for rotation that is constant on cylinders
with Ω ∝ s−2. Note that Yokoi (1996) proposed the solution
B = (λ/η)U . However, this cannot be correct, because it pre-
dicts nonvanishing magnetic fields forΩ ∝ s−2 as well as for
potential motions with∇ × U = 0.

Let us now estimate the rate at which the cross-helicity pro-
duces large-scale magnetic fields. Note that contrary to the con-
ventionalα-dynamo, the cross-helicity dynamo does not require
a non-vanishing initial magnetic field thus the growth of a large-
scale field can start even if the seed field is zero. Obviously,
during the initial stage of generation, when the magnetic field
is weak, the growth is completely determined by cross-helicity
and follows approximately a linear law,

B ≈ tS. (9)

In the course of further evolution theα-effect and turbulent
diffusion also become important. For the purpose of illustration
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let us neglect in Eq. (6) the induction term caused by differential
rotation. Consider the case when both rotation and turbulence
are axisymmetric and the rotation law differs fromΩ ∝ s−2,
which is likely to be the case for young galaxies. The effects of
α-generation and turbulent diffusivity can roughly be modelled
by corresponding inverse timescalesγα andγη, respectively,
thus the model equation can be written in the form

Ḃ = (γα − γη)B + S. (10)

The general solution of this equation is

B =
S

γα − γη

[
e(γα−γη)t − 1

]
+ B0e

(γα−γη)t, (11)

whereB0 is the initial field. The first term on the r.h.s. describes
the effect of cross-helicity combined withα-generation and tur-
bulent diffusivity, the second term corresponds to the standard
α-dynamo. Let us assume thatB0 = 0, so that theα-dynamo in
its standard form does not work. Then the behaviour of the mag-
netic field is essentially determined by the dynamo parameter,
C = γα/γη. If C > 1, the magnetic field can grow expo-
nentially with the growth rate typical for the standard dynamo.
Although the initial field may be zero, a significant mean mag-
netic field is generated by the cross-helicity effect, before the
exponential growth becomes important. The field amplification
can then only be stopped by nonlinear effects. IfC < 1, after
the initial growth, which lasts∼ (γα−γη)−1, the field reaches a
saturation value depending on the magnitudes of cross-helicity
and turbulent diffusivity,

Bs ≈ S(γη−γα)−1 ≈ 3×10−2...−4 (H2/η) (Ωτ/s) utbt,(12)

where we suppose〈u′ · b′〉 = 3 × 10−2...−4utbt, γη = η/H2,
andH is the semithickness of the disc. Detailed analysis of data
on high-redshift damped Lyman-α systems which are widely
believed to be the progenitors of current massive galaxies shows
that models with discs that rotate rapidly and are thick give a
better fit to observations (Prochaska & Wolfe 1997). The most
likely values of the rotational velocity and thickness are 225
km/s andH = 0.3s, respectively. Assuming the characteristic
length-scale of turbulence to be comparable toH, andη =
1
3utH we obtain for the saturation field

Bs ∼ 3 × 10−2...−4(Ωτ)bt. (13)

The turnover timeτ in galactic discs isτ ∼ 107 yr, and so even
for rapidly rotating discsΩτ ∼ 0.1−0.3. Thus, it seems that the
cross-helicity effect alone may not be able to generate a large
scale magnetic field in galaxies – in contradiction with the con-
clusion obtained by Yokoi (1996). However, the field given by
Eq. (13) is only 2–4 orders of magnitude weaker than observed
magnetic fields in galaxies. Therefore, as seen from Eq. (12),
theα-effect may well be able to amplify the field produced by
cross-helicity to the typical galactic value of a fewµG after a
few revolutions.

4. Numerical solutions

The estimate based on Eq. (13) is quite rough. Therefore we now
consider an explicit model numerically. The method adopted is

similar to that described by Brandenburg et al. (1993). We solve
the dynamo Eq. (6) in a spherer ≤ R, wherer is the spherical
radius. Outside the sphere a vacuum is assumed, so the magnetic
field continues as a potential field. Inside the sphere the profiles
of α, λ, η, andΩ are given by

α

α0
=

λ

λ0
=

z

H
exp

{
1
2

[
1 −

( z

H

)2
]}

+ ε, (14)

η = ηh + (ηd − ηh) exp
[
−1

2

( z

H

)2
]

, (15)

Ω = V0
(
r2
0 + r2)−1/2

. (16)

Here,ε quantifies a small perturbation of the otherwise purely
antisymmetric profiles ofα and λ; see below. The magnetic
diffusivities in disc and halo areηd and ηh, respectively. In
most of the cases we included a nonlinear effect in the form of
α-quenching, i.e. we replaceα0 by α0/(1 + B2/B2

eq).
The parity of the magnetic field generated by the cross-

helicity effect is odd, i.e. dipole-like. This is becauseλ is anti-
symmetric about the equator. On the other hand, the parity of
the most easily excited mode of theαΩ dynamo is even, i.e.
quadrupole-like (Parker 1971). The only way that the parity can
change is by some ‘impurities’ in the system that give rise to
a transfer of energy between purely antisymmetric and purely
symmetric modes. We have therefore introduced in Eq. (14) a
termε of even parity with

ε = ε0 exp
[
−1

2

( z

H

)2
]

, (17)

whereε0 � 1 controls the magnitude of the symmetry-breaking
effect.

We present the results in dimensional form assumingR =
10 kpc, ηd = 1 kpc km/s. We assume the turbulent velocities
in the halo to be larger than in the disc, so the turbulent magnetic
diffusivity in the halo is enhanced and we assumeηh = 10ηd.
We assumeH = 1 kpc, r0 = 1.5 kpc. We also tried larger
values ofH, but the nature of the dynamo changed then consid-
erably (the fields became oscillatory and of odd parity). With the
set of parameters chosen the critical value ofα0 for dynamo ac-
tion (whenλ0 = 0) is0.48 km/s. We takeBeq = 10−6 G, which
results in a saturation value of the maximum field in the disc of
a fewµG. Assuming a relative cross-helicity of3 × 10−2...−4,
we findλ0 = 2

3τ × 3 × 10−2...−4 utbt, or

λ0 = 2 × 10−9...−11 (10 Gyr G km/s), (18)

where we have assumedτ = 107 yr, ut = 10 km/s, andbt =
10−5 G. In those cases whereα0 is non-vanishing we chose an
approximately ten times supercritical value,α0 = 5 km/s.

We start off the calculation with a weak initial magnetic field
of about10−18 G, but note that this initial field is completely
unimportant in all cases, except whenλ0 = 0. We show in Fig. 1
the evolution of the magnetic fieldB (the maximum value at
any given time) and the field parityP = [E(S)−E(A)]/[E(S)+
E(A)], whereE(S) andE(A) are respectively the energies in the
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Fig. 1. Magnetic fieldB (upper panel) and magnetic parity (lower
panel) as a function of time for four different models. The solid and
dotted lines are forλ0 = 2 × 10−9 and2 × 10−12, respectively. For
both line types the upper and lower curves are forε0 = 10−2 and10−5,
respectively. The dashed line gives the result for a pureαΩ-dynamo
with λ0 = 0. Note that all curves start withB = 10−18 G, but in those
cases whereλ0 /= 0 the cross-helicity effect leads to a linear growth of
the field to≈ 10−8 G within approximately three turnover times (see
inset of first panel).

symmetric and antisymmetric components of the field. (P =
+1 for even, quadrupole-like fields and−1 for odd, dipole-like
fields; see e.g. Brandenburg et al. 1992) During early stages of
the evolution the growth is linear due to the cross-helicity effect
and after∼ 0.1 Gyr the field reaches a relatively high value
∼ 0.01µG. Later theα-effect accelerates the growth and around
the timet = 3 − 5 Gyr the growth has become exponential.
However, the exponential growth lasts only a rather short time
of about2 − 4 Gyr, before the field reaches saturation.

The time when the field parity changes from odd to even is
between 3 and 7 Gyr, depending on the value ofε0. After the
field parity has switched from−1 to +1, the magnetic field
strength has increased by a factor of 10 to a few microgauss. In

the absence of the cross-helicity effect theαΩ dynamo leads to
exponential growth starting from a weak seed magnetic field.
In that case the field strength at a time of3 Gyr is still only
10−14 µG – too weak to explain the magnetic field observed in
young high redshift galaxies.

5. Conclusion

We have shown that in the presence of the cross-helicity effect
the large scale field reaches equipartition field strengths much
sooner (after4 − 6 Gyr) than with a conventionalαΩ-dynamo.
The growth of the large scale magnetic fields is significantly
enhanced. The presence of cross-helicity requires the presence
of a small scale magnetic field that correlates with the velocity
in such a way that the two are either preferentially parallel or
antiparallel. Simulations show that this may indeed the case,
although the magnitude of the effect is still uncertain. More
work is needed to establish the existence and significance of the
cross-helicity effect in realistic settings.
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