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A B S T R A C T
The stability properties of magnetized discs rotating with angular velocity Q ¼ Qðs; zÞ,
dependent on both the radial and the vertical coordinates s and z, are considered. Such a
rotation law is adequate for many astrophysical discs (e.g., galactic and protoplanetary discs,
as well as accretion discs in binaries). In general, the angular velocity depends on height, even
in thin accretion discs. A linear stability analysis is performed in the Boussinesq approxima-
tion, and the dispersion relation is obtained for short-wavelength perturbations. Any depen-
dence of Q on z can destabilize the flow. This concerns primarily small-scale perturbations for
which the stabilizing effect of buoyancy is strongly suppressed due to the energy exchange
with the surrounding plasma. For a weak magnetic field, instability of discs is mainly
associated with vertical shear, whilst for an intermediate magnetic field the magnetic shear
instability, first considered by Chandrasekhar and Velikhov, is more efficient. This instability
is caused by the radial shear which is typically much stronger than the vertical shear. Therefore
the growth time for the magnetic shear instability is much shorter than for the vertical shear
instability. A relatively strong magnetic field can suppress both these instabilities. The vertical
shear instability could be the source of turbulence in protoplanetary discs, where the
conductivity is low.
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1 I N T RO D U C T I O N

The standard model of accretion discs requires sufficiently strong
turbulence to enhance the efficiency of angular momentum trans-
port, because the molecular viscosity alone is extremely inefficient.
At present, there is no commonly accepted view point as to how a
laminar flow is disrupted and turbulence generated. In general,
turbulence may be generated due to various magnetohydrodynamic
instabilities that can arise in differentially rotating non-uniform
gaseous discs. Although the linear stability properties of discs are
well studied the exact origin of turbulence is still controversial.
Significant progress was made over the last few years in under-
standing that the magnetic field may be important for causing the
onset of turbulence in some cases. In the presence of a magnetic
field, one of the candidates for the origin of turbulence is the
magnetic shear instability first considered by Velikhov (1959) and
Chandrasekhar (1960). This instability was analysed in detail for
stellar conditions (Fricke 1969; Acheson 1978, 1979; Balbus 1995;
Urpin 1996). Here the instability can arise if the angular velocity
decreases from the pole to the equator. This instability may also
operate in protoplanetary discs, although it is possibly not the main
mechanism for driving turbulence because of the low conductivity
of the gas in these objects (Safronov 1969). There are strong
arguments that the magnetic shear instability can arise in accretion
discs where the necessary condition ∂Q=∂s < 0 (i.e. a decrease of the

angular velocity with cylindrical radius) is fulfilled (Balbus &
Hawley 1991;, Kaisig, Tajima & Lovelace 1992; Kumar, Coleman
& Kley 1994; Zhang, Diamond & Vishniac 1994). The instability
exists not only for short-wavelength perturbations, but also for
global modes with scales comparable to the disc height (Curry,
Pudritz & Sutherland 1994; Curry & Pudritz 1995). Note that the
magnetic shear instability can arise only in a restricted range of the
magnetic field strength. The field should not be too strong, because
this would suppress the instability (Urpin 1996; Kitchatinov &
Rüdiger 1997). On the other hand, the field should not be too weak
because the growth time becomes too long in this case. Several
recent papers (Hawley, Gammie & Balbus 1995; Matsumoto &
Tajima 1995; Brandenburg et al. 1995; Torkelsson et al. 1996) have
dealt with the non-linear regime of the magnetic shear instability.
Those simulations show that the generated turbulence may be
sufficient to produce an enhanced effective viscosity. The effective
Shakura–Sunyaev alpha viscosity parameter is on average of the
order 0.01, but this value could be larger in the presence of an
externally imposed magnetic field and for higher numerical resolu-
tion (Brandenburg et al. 1996; Hawley, Gammie & Balbus 1996;
Stone et al. 1996). Also, deviations from Keplerian angular velocity
could change this value (Abramowicz, Brandenburg & Lasota
1996).

The situation is much more uncertain in non-magnetized discs
since, if rotation is strictly Keplerian, i.e. Q ~ s¹3=2, the disc seems
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to be linearly stable. This is in accordance with the well-known
Rayleigh criterion of stability (Rayleigh 1880),

∂ðs4Q2Þ=∂s > 0; ð1Þ

where Q is the angular velocity and s is the cylindrical radius.
Although this criterion is only valid for axisymmetric perturbations,
Stewart (1975) showed that this is also true of non-axisymmetric
perturbations. Of course, this consideration does not concern discs
with unstable stratification, which can be subject to convective
instability (Kley, Papaloizou & Lin 1993). The Rayleigh criterion
does not apply, however, to real astrophysical discs where rotation
depends on both the radial and the vertical coordinates. Hydro-
dynamical equilibrium in the radial and vertical directions can only
be satisfied if Q depends on both s and z, where z is the vertical
coordinate (see, e.g., Urpin 1984; Kley & Lin 1992). The depen-
dence of Q on z is relatively weak for thin accretion discs, but is
much more pronounced for thicker discs, such as galactic and
protoplanetary discs. In any case, however, such a dependence
changes drastically the stability properties, because the flow is then
locally unstable to axisymmetric perturbations for any sign of
∂Q=∂z. This type of instability is closely related to the well-known
Goldreich–Schubert (1967) instability which can arise in the
radiative zones of differentially rotating stars. The main difference
from stellar conditions is a strong stabilizing influence from the
Coriolis force, if the rotation law is close to a Keplerian one. In the
absence of a magnetic field, instability associated with vertical
shear may be sufficiently effective to drive turbulence and to
enhance the effective viscosity.

In the present paper we consider the linear stability properties of
magnetized discs with angular velocity being dependent on both the
vertical and the radial coordinates. We treat the behaviour of
different short-wavelength magnetohydrodynamic modes that can
exist in such objects and determine the parameter domain in which
these modes are unstable.

The paper is organized as follows. In Section 2, the main
equations are presented and a dispersion relation is derived that
describes the behaviour of short-wavelength perturbations in the
Boussinesq approximation. The stability criteria for different
modes are discussed in Section 3. Finally, our results are briefly
summarized in Section 4.

2 D I S P E R S I O N R E L AT I O N F O R S H O RT-
WAV E L E N G T H P E RT U R B AT I O N S

Consider a magnetized axisymmetric disc of finite vertical extent.
The unperturbed angular velocity can generally depend on both s
and z, so Q ¼ Qðs; zÞ, where (s, J, z) are cylindrical coordinates. The
magnetic field, B ¼ ðBs;BJ;BzÞ, is assumed to be weak in the sense
that the Alfvén speed, cA, is small compared with the sound speed,
cs. This enables us to employ the Boussinesq approximation for a
consideration of slow magnetoacoustic waves. We consider axi-
symmetric short-wavelength perturbations with the space–time
dependence expðiqt ¹ ik·rÞ, where k ¼ ðks; 0; kzÞ is the wavevector,
and k·r q 1. Small perturbations will be indicated by subscript 1,
whilst unperturbed quantities will have no subscript, except for
indicating vector components when necessary. In the unperturbed
state, the disc is assumed to be in hydrostatic equilibrium in the s-
and z-directions,

=p
r

¼ G þ
1

4pr
ð= × BÞ × B ; G ¼ g þ Q2s; ð2Þ

where g is the gravity of the central object. As usual, self-gravity of
the disc is neglected. If cs > cA, the unperturbed Lorentz force is
negligible compared with the pressure force in equation (2), thus the
disc structure is mainly determined by the balance between gravity
and centrifugal force.

We use the Boussinesq approximation since the e-folding time of
short-wavelength instabilities associated with shear is typically
much longer than the period of sound wave with the same wave-
length. The linearized momentum, continuity and thermal balance
equations governing the behaviour of small perturbations in this
approximation read

iqV1 þ 2Q × V1 þ eJsðV1·=ÞQ ¼
ikp1

r
¹ bGT1

þ
i

4pr
½kðB·B1Þ ¹ B1ðk·BÞÿ; ð3Þ

iqB1 ¼ ¹iVðk·BÞ þ seJðB1·=QÞ; ð4Þ

k·V1 ¼ 0; ð5Þ

k·B1 ¼ 0; ð6Þ

iqT1 þ V1·ðD=TÞ ¼ ¹xk2T1; ð7Þ

where V1, B1, p1 and T1 are perturbations of the hydrodynamic
velocity, magnetic field, pressure and temperature, respectively;
b ¼ ¹ð∂ ln r=∂TÞp is the thermal expansion coefficient and x is the
thermal diffusivity; ðD=TÞ ¼ =T ¹ =adT is the difference between
the actual and adiabatic temperature gradients; we denote by eJ the
unit vector in the azimuthal direction. The set of equations (3)–(7)
is written in the inertial frame and the term 2Q × V1 in the
momentum equation (3) originates from the inertial force. In
equation (3) it is assumed that the density perturbation in the
buoyancy force is mainly determined by the temperature perturba-
tion, thus r1 ¼ ¹rbT1, in accordance with the idea of the Boussi-
nesq approximation. We also neglect viscous stresses in equation
(3). This is justified for perturbations with q q nk2, where n is the
kinematic viscosity. The magnetic field is assumed to be ‘frozen’
into the disc plasma and dissipative effects are neglected in equation
(4). Note the absence of terms proportional to p1 in the thermal
balance equation (7), since their contribution is negligible in the
Boussinesq approximation. In discs perturbations are generally
non-adiabatic and the effect of the radiative heat transfer has to
be taken into account in equation (5). In the calculations presented
here the disc is assumed to be optically thick.

The general dispersion equation governing the behaviour of
perturbations may be obtained from equations (3)–(5) in the
standard way. Equating the determinant of the set of equations
(3)–(7) to zero, we obtain

ðq2 ¹ q2
AÞ2 ¹ ðq2 ¹ q2

AÞ
iq q2

g

iq þ qx

þ Q2

" #

¹ 4Q2q2
A

k2
z

k2 ¼ 0; ð8Þ

where

Q2 ¼ 4Q2 k2
z

k2 þ 2Qs
kz

k2 kz
∂Q

∂s
¹ ks

∂Q

∂z

� �

;

q2
g ¼ ¹bðD=TÞ· G ¹

k
k2 ðk·GÞ

� �

;

and qg is the frequency of buoyancy waves; qA ¼ ðk·BÞ=
��������

4pr
p

is
the Alfvén frequency; and qx ¼ xk2 is the inverse time-scale of
dissipation due to the thermal conductivity. Since we use the
Boussinesq approximation, the fast magnetoacoustic waves are
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excluded from our analysis and equation (8) describes only five low-
frequency modes: two pairs of slow magnetoacoustic and buoyancy
waves and a thermal mode associated with heat transport. In equation
(8), the term proportional to Q2 represents the effects associated with
the angular velocity and its gradient, the term containing q2

g is caused
by the buoyancy force and the energy exchange between the perturba-
tions and surrounding plasma, and the last term on the left-hand side
describes coupling between the modes that originate from the joint
action of the Coriolis and Lorentz forces.

In a stratified inviscid flow the buoyancy force acts as a stabiliz-
ing factor if the temperature gradient is subadiabatic. However,
stabilization may be substantially reduced if heat is transported
sufficiently fast. This effect is of particular importance for short-
wavelength perturbations because the ‘thermal frequency’, qx,
increases rapidly with the wavevector k. In the limiting case of
very short wavelengths (k → ∞), when perturbations are practically
isothermal, the stabilizing effect of buoyancy is completely sup-
pressed. Conversely, this stabilizing effect is maximal for adiabatic
perturbations with q q qx.

For the particular case of B ¼ 0 and small buoyant response,
equation (8) yields the criterion of the shear instability first derived
by Goldreich & Schubert (1967), Q2

< 0. If rotation is constant on
cylinders the necessary condition of instability reduces to the well-
known Rayleigh criterion (1). If B Þ 0, but the vertical shear and
thermal effects are negligible, equation (8) reduces to the equation
considered by Balbus & Hawley (1991) in their analysis of stability
of magnetized discs.

3 C R I T E R I A O F I N S TA B I L I T Y

In the present paper we deal with the stability properties of slow
magnetoacoustic and buoyancy waves. The dispersion relation (8)
in the general form can be solved only numerically. Therefore we
consider different particular cases. The stability properties of waves
are very sensitive to the efficiency of heat transport and, hence, to
the relationship between q and qx. We consider two limiting cases
of q q qx (adiabatic limit) and q p qx (isothermal limit). Which
limit is more suitable for discs can easily be understood from the
following estimate of qx. Since x ¼ k=rcp, where k is the radiative
thermal conductivity and cp is the specific heat at a constant
pressure, one has

qx ¼
k

rcpH2
T

ðkHT Þ2
:

Here HT is the temperature scaleheight. The thermal conductivity
can be expressed in terms of the heat flux, F, by making use of its
definition, F ¼ ¹k=T , thus k ¼ FHT =T . In turn, the estimate of F
can be obtained from the thermal balance. If the disc is approxi-
mately Keplerian, then

=·F ¼
9
4

rntQ
2
;

where nt is the turbulent viscosity. Thus, one has F < ð9=4ÞrntQ
2HT .

By making use of these estimates the expression for qx can be
transformed to

qx ¼
9
4

nQ2

cpT
ðkHT Þ2

:

Taking into account that in a fully ionized plasma cpT ¼ 5
2 c2

s , and
representing nt in standard form for accretion discs, nt ¼ acsH
where H is the disc scaleheight and a is the dimensionless turbulent

viscosity parameter, one obtains

qx < a
HQ2

cs
ðkHT Þ2

:

In thin accretion discs cs=H , Q, thus we finally have
qx

Q
< aðkHT Þ2

: ð9Þ

The thermal frequency turns out to be relatively large in accretion
discs. Even if the growth time of the instability is comparable with
the Keplerian period, there exists only a relatively narrow range of
wavevectors [1=

���

a
p

q ðkHT Þ q 1] for which waves can be con-
sidered as adiabatic. Outside this range, at kHT q 1=

���

a
p

, waves are
close to isothermality. If the growth time is longer than the
Keplerian period the adiabatic approximation applies even in a
more narrow domain of wavevectors. Therefore, the short-wave-
length perturbations in discs are probably isothermal rather than
adiabatic. Nevertheless, we consider both cases.

3.1 Instability of adiabatic perturbations

In the limiting case q q qx, equation (8) simplifies to

ðq2 ¹ q2
AÞ2 ¹ ðq2 ¹ q2

AÞðq2
g þ Q2Þ ¹ 4Q2q2

A
k2

z

k2 ¼ 0: ð10Þ

The solutions of this equation can be written in the form

q2
1 ¼ q2

A þ
1
2
ðq2

g þ Q2Þ 6

�������������������������������������������������

1
4
ðq2

g þ Q2Þ2 þ 4Q2q2
A

k2
z

k2

r

; ð11Þ

q2
2 ¼ q2

A þ
1
2
ðq2

g þ Q2Þ 7

�������������������������������������������������

1
4
ðq2

g þ Q2Þ2 þ 4Q2q2
A

k2
z

k2

r

; ð12Þ

where the upper or lower signs should be taken if
q2

A þ ðq2
g þ Q2Þ=2 > 0 or q2

A þ ðq2
g þ Q2Þ=2 < 0, respectively. The

modes given by equations (11) and (12) are, respectively, the
buoyant and slow magnetoacoustic waves modified by rotation. If
the unperturbed magnetic field vanishes one has q2

1 ¼ q2
g þ Q2 and

q2
2 ¼ 0. The stability properties of these modes may be very

different.
It is evident from the definition of the buoyant mode (11) that it is

unstable only if

q2
g þ Q2 þ 2q2

A < 0: ð13Þ

Since q2
A > 0, the necessary condition for instability of this mode is

q2
g þ Q2

< 0. Generally, both q2
g and Q2 can be negative. For

example, q2
g < 0 if the temperature gradient exceeds its adiabatic

value. In this case, the standard convective instability can arise in
discs. Convection is probably important in protoplanetary discs or
in the outermost region of accretion discs where gas is not fully
ionized and the opacity is high (see, e.g., Kley et al. 1993).
However, q2

g may also be negative if the temperature gradient is
subadiabatic but D=T is not parallel to the ‘effective gravity’, G.
This obliqueness can be caused, in principle, either by the depen-
dence of Q on z or by radiative heat transport in the radial direction.
In this case the condition q2

g < 0 requires

ðG·D=TÞ ¹ ðn·GÞðn·D=TÞ > 0; ð14Þ

where n ¼ k=k. Introducing the angle w between the vectors G and n
and representing D=T as a sum of components parallel and
perpendicular to G, D=T ¼ ðD=TÞk þ ðD=TÞ', the inequality
(14) can be rewritten in the form

sin2 wðD=TÞk ¹ sin wðD=TÞ' > 0: ð15Þ

Obviously, this condition can be fulfilled even for stratification that
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would be stable according to the standard Schwarzschild criterion
of convection, ðD=TÞk < 0. Due to the obliqueness of G and D=T ,
one has q2

g < 0 for perturbations with a small (but non-zero) angle
w. Since ðD=TÞ' , ðH=sÞðD=TÞk it is easy to estimate that the value
of q2

g for such perturbations is relatively small,

q2
g , ¹Q2ðH=sÞ2

: ð16Þ

For other perturbations q2
g is positive and its value may be compar-

able with Q2.
The term Q2 in equation (13) can generally also be negative. The

inequality Q2
< 0 can be rewritten in the form

k2
z

k2

1
s3

∂
∂s

ðs4Q2Þ ¹
kzks

k2 2Qs
∂Q

∂z
< 0: ð17Þ

For thin accretion discs, the radial dependence of Q is approxi-
mately given by the Keplerian law, Q ~ s¹3=2, and, hence, the first
term on the right-hand side of this inequality is positive. The sign of
the second term depends on the direction of a wavevector k and,
therefore, only this term may cause a destabilizing effect in
Keplerian discs. For any dependence of Q on z there exists,
evidently, a certain domain of angles of the vector k where
Q2

< 0. For example, in thin accretion discs one has

∂Q=∂z < qQz=s2 ð18Þ

(see, e.g., Urpin 1984; Kley & Lin 1992), where q ¼ qðsÞ , 1 is the
parameter in the series expansion of Qðs; zÞ around the Keplerian
rotation. The term associated with the vertical shear dominates the
right-hand side of equation (17) if

ks > jðkz=2qÞðs=zÞj: ð19Þ

Thus, one has Q2
< 0 for perturbations with wavelengths much

shorter in the radial direction than in the vertical. Evidently, Q2
> 0

in the central plane of the disc where ∂Q=∂z ¼ 0.
Thus, both q2

g and Q2 may be negative separately, but the sum
q2

g þ Q2 is always positive in thin discs and, therefore, the buoyant
mode is stable. However, this mode can be unstable in thick discs
where the growth rate of instability may be comparable with Q. Note
that even if q2

g þ Q2
< 0, a relatively strong magnetic field stabi-

lizes the buoyant mode, in accordance with criterion (13).
The slow magnetoacoustic mode (12) is stable when the instabil-

ity criterion (13) is fulfilled and the buoyant mode is unstable. In
this case, the quantity q2

g þ Q2 is negative, thus
q2

g þ Q2 ¼ ¹jq2
g þ Q2j and, hence,

q2
2 ¼

�������������������������������������������������

1
4

ðq2
g þ Q2Þ2 þ 4Q2q2

A
k2

z

k2

r

¹
1
2

jq2
g þ Q2j þ q2

A:

It is easy to check that q2
2 > 0 under the inequality (13).

In contrast to the buoyant mode, however, the instability of the
slow magnetoacoustic wave can develop at

q2
g þ Q2 þ 2q2

A > 0; ð20Þ

when the frequency is determined by equation (12) with the upper
sign. The condition for instability in this case reads

q2
g þ Q2

< ¹q2
A þ 4Q2 k2

z

k2 : ð21Þ

Combining the inequalities (20) and (21), we obtain the domain of
values of q2

g þ Q2 where the slow magnetoacoustic mode is
unstable:

4Q2 k2
z

k2 ¹ q2
A > q2

g þ Q2
> ¹2q2

A: ð22Þ

For vertically directed perturbations, q2
g p Q2 and condition (22)

reduces to

4Q2 ¹ q2
A > Q2

> ¹2q2
A: ð23Þ

Evidently, this condition is weaker than the Rayleigh condition (1),
particularly, if the magnetic field is weak and Q q qA. Thus, for the
rotation law Q ~ s¹g, the criterion (23) is satisfied for 2 > g > 0,
whereas the Rayleigh criterion requires g > 2.

It is seen from inequality (22) that a relatively strong magnetic
field can suppress the shear instability of magnetoacoustic waves.
The instability is suppressed if

q2
A > 4Q2 k2

z

k2 ¹ Q2 ¹ q2
g: ð24Þ

For the most unstable perturbations with ks < 0 and for the case of a
power-law cylindrical rotation, Q ~ s¹g, this condition reads

q2
A > 2gQ2

;

and, hence, an estimate of the critical magnetic field, Bcr, that
stabilizes rotation may be given by

Bcr ,
�������������������

2
p

grQ2l2

r

; ð25Þ

where l ¼ 2p=k is the wavelength of perturbations. The critical
field depends on the wavelength of perturbations: the longer the
wavelength, the higher the magnetic field required for stabilization.
Note that the energy of the magnetic field that can stabilize the
mode with wavelength l is approximately a factor of
4p2ðH=lÞ2 q 1 smaller than the thermal energy of the plasma,
rc2

s , for thin accretion discs.
The growth time of the adiabatic instability may be rather short.

An estimate of the growth time is particularly simple if the magnetic
field is so weak that q2

g þ Q2 q 4jQqAkz=kj. Expanding the square
root in equation (12) in a power series of q2

A and keeping terms only
to the order of q2

A, one obtains

q2
2 <

q2
A

q2
g þ Q2 q2

g þ 2Qs
kz

k2 kz
∂Q

∂s
¹ ks

∂Q

∂z

� �� �

: ð26Þ

For perturbations with ks < 0 and for a power-law rotation constant
on cylinders, Q ~ s¹g, the frequency is given by

q2
2 < ¹

g

2 ¹ g
q2

A: ð27Þ

The growth time is typically much longer than the period of
rotation. The only exception is perturbations with qA , Q, which
can grow on time-scales comparable with the period.

3.2 Instability of isothermal perturbations

In the case q p qx the solutions of equation (8) that correspond to
the buoyant and slow magnetoacoustic modes are, respectively,

q2
1 ¼ q2

A þ
1
2

Q2 6

���������������������������������

1
4

Q4 þ 4Q2q2
A

k2
z

k2

r

; ð28Þ

q2
2 ¼ q2

A þ
1
2

Q2 7

���������������������������������

1
4

Q4 þ 4Q2q2
A

k2
z

k2

r

; ð29Þ

where the upper or lower signs have to be taken if q2
A þ Q2

=2 > 0 or
q2

A þ Q2
=2 < 0, respectively. Of course, the first mode can be called

buoyant only conditionally since the effect of buoyancy is com-
pletely suppressed for this mode as well as for the magnetoacoustic
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one (29). In the non-magnetic case, equation (28) describes inertial
waves, q2

1 ¼ Q2, which can exist in a rotating fluid, whereas the
second mode is degenerate, q2 ¼ 0.

According to definition (28), the buoyant mode is unstable if

q2
A þ Q2

=2 < 0: ð30Þ

Evidently, this condition can hold only if the necessary condition
Q2

< 0 (see equation 17) is fulfilled. In the case of rotation constant
on cylinders, this necessary condition reduces to the Rayleigh
criterion (1). If the angular velocity is dependent on the vertical
coordinate then the condition Q2

< 0 can be satisfied at any
dependence QðzÞ by a particular choice of k. Thus, as was men-
tioned, for thin accretion discs with a radial dependence of Q given
by the Keplerian law (~s¹3=2) and with ∂Q=∂z given by equation
(18), the condition Q2

< 0 is fulfilled if the radial and vertical
components of the wavevector are related by inequality (19).

In a weak magnetic field, Q2 q q2
A, the growth rate of the first

mode is

iq ¼ 6
����������

¹Q2
p

: ð31Þ

In the case of rotation close to Keplerian, the quantity Q2 is negative
only for small values of kz=ks (see equation 19). It reaches its
minimum, Q2

min < ¹q2ðz=sÞ2Q2, approximately at

kz

ks
< q

z
s
: ð32Þ

Substituting Q2
min into equation (31), we obtain the order of

magnitude estimation of the maximum growth rate of the buoyant
mode,

iq , Qjqz=sj: ð33Þ

Thus, the growth time is of the order of the time-scale of the vertical
shear. Since the radial wavelength of unstable perturbations should
be much shorter than the vertical one, the instability associated with
the vertical shear leads, probably, to the generation of strongly
anisotropic turbulence.

Like the case of adiabatic perturbations, a relatively strong
magnetic field satisfying the condition q2

A > jQ2j can suppress the
instability. In the case of an approximately Keplerian rotation with
vertical shear as given by (18), the stabilizing magnetic field, Bcr, is

Bcr ,

����������������������������

q2

2p
rl2Q2 z

s

� �2
r

; ð34Þ

The energy of the stabilizing field (34) is a factor of
ð16p2

=q2ÞðH=lÞ2ðs=zÞ2 smaller than the thermal energy of plasma.
The slow magnetoacoustic mode (29) is stable within the domain

of instability of the buoyant mode (30). However, it can be unstable
for

q2
A þ Q2

=2 > 0: ð35Þ

In this case, the frequency is given by equation (29) with the upper
sign, and the instability condition q2

2 < 0 requires

Q2
< 4Q2 k2

z

k2 ¹ q2
A:

Combining this condition with inequality (35), we obtain the
domain of unstable parameters for the second mode,

4Q2 k2
z

k2 ¹ q2
A > Q2

> ¹2q2
A: ð36Þ

For perturbations directed approximately vertically, this domain
coincides with the domain of instability (23) in the adiabatic limit.

The instability can be prevented by a sufficiently strong magnetic
field, in the same way as all other instabilities of low-frequency

waves. For the most unstable perturbations with kz q ks, the value
of the magnetic field stabilizing the shear flow is given by equation
(25).

In the isothermal limit, the growth rate is small if qA p Q but it
may be comparable to Q in a relatively strong (but not stabilizing)
field. In the case (Q2 q 4QjqAkz=kj), the expression for q2

2 can be
obtain by analogy with equation (26),

q2
2 < 2Qs

kz

k2

q2
A

Q2 kz
∂Q

∂s
¹ ks

∂Q

∂z

� �

: ð37Þ

For the rotation law Q ~ s¹g this expression reduces to equation
(27). For a stronger magnetic field, the dependence of q on the
magnetic field strength and the direction of the wavevector is more
complicated.

We now discuss the dependence of the growth rates of the
instability of the two modes on k. However, we should keep in
mind that a larger growth rate of one of the two modes does not
necessarily imply a more efficient turbulent transport associated
with that mode. The efficiency of transport driven by instabilities
depends on a number of factors (range of the unstable wavelengths,
non-linear behaviour, etc.) and is beyond the scope of the present
paper.

The only dependence on the magnitude of k is through qA,
because Q2 depends only on the ratios ks=k and kz=k. It is therefore
natural to discuss the dispersion relation in terms of the angle
v ¼ cos¹1ðQ·nÞ=Q, so then kz ¼ k cos v and ks ¼ k sin v. It is then
convenient to define the parameter qA0 ¼ Bk=

��������

4pr
p

to be equal to
the maximal Alfvén frequency at a given magnetic field. If B is
aligned with Q and cos vB ; B·Q=BQ ¼ 1 then qA ¼ qA0 cos v.

In the following we present the dependence of q2 on v for
different values of qA0. Larger values of qA0 correspond to larger
field strengths or to larger values of k. Thus, even for very weak
magnetic fields there will always be a wavenumber large enough so
that the growth rate of the magnetoacoustic mode is larger than the
growth rate of the buoyant mode provided k does not exceed the
magnetic dissipative length-scale, ,

�������

Q=h
p

, where h is the magnetic
diffusivity. Moreover, magnetoacoustic waves with k approaching
the value ,Q=cA (but still satisfying inequality 36) can grow on the
time-scale ,Q.

In Fig. 1 we plot q2
=Q2 versus v for different values of qA0=Q,

assuming a vertical magnetic field. In this and the following two
plots we assume that Q is close to the Keplerian angular velocity, i.e.
Q ~ s¹3=2, and that the vertical dependence of Q is given by equation
(18). The ratio z=s is taken to be equal to 0.1, which appears more or
less suitable for typical accretion discs.

The buoyant modes are only excited (i.e. q2
< 0) near v ¼ 948: 3.

For qA0=Q * 0:04 the slow magnetoacoustic mode with v ¼ 0 is
more easily excited. For qA0=Q * 2:2 the field is strong enough to
stabilize both modes.

In Fig. 2 we show the minimum values of q2
=Q2 at v ¼ 948: 3 and

v ¼ 0 as a function of qA0=Q, assuming again a vertical magnetic
field, i.e. vB ¼ 0. Note that for v ¼ 948: 3 and qA0=Q & 0:7 the most
unstable mode is the buoyant mode. For qA0=Q * 0:7 and v ¼ 948: 3
the most unstable mode has turned into the slow magnetoacoustic
mode. However, for 0:7 & qA0=Q & 1:7 this mode has a lower
growth rate than at v ¼ 0. Finally, for qA0=Q * 1:7 the slow
magnetoacoustic mode becomes suppressed.

Evidently, the growth rate of the buoyant mode associated with
the vertical shear is typically smaller than that of the magneto-
acoustic mode caused by the stronger radial shear. The growth rate
of the buoyant mode exceeds that of the magnetoacoustic one
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approximately at qA0=Q < 0:04. For larger values of qA0 the mag-
netoacoustic mode grows substantially faster. For thin accretion
discs the maximal growth rate is of the order of 0:1Q for the
buoyant mode and 0:75Q for the magnetoacoustic mode if
qA0=Q , 1 (Balbus & Hawley 1991). Note that the growth rate of

the magnetoacoustic mode is large only in the relatively narrow
range 0:3 < qA0=Q < 1:5. On the other hand, the buoyant mode can
be unstable only for perturbations with wavevectors close to the
radial direction, whereas the magnetoacoustic waves can arise for a
wider range of v. However, this range narrows with increasing
magnetic field strength or decreasing wavelength. In those cases
where the modes are stable, their frequencies may be of the order of,
or even higher than, the Keplerian frequency.

The stability properties of discs depend on the direction of the
applied magnetic field. In Fig. 3 we show the dispersion curves for
three different values of vB. In the case of a radially directed
magnetic field (third panel in Fig. 3), the instability of the buoyant
mode is overwhelmed by the magnetoacoustic mode. The only
exception is the region qA0=Q < 0:05, where the growth rate of
buoyant waves is larger. For higher values of qA0 the magnetoa-
coustic wave grows more rapidly. The instability of the buoyant
mode is suppressed when qA0=Q is larger than <0:05. The stabiliz-
ing magnetic field for the magnetoacoustic mode is much stronger:
qA0=Q > 5. This value is slightly higher than in the case of a
vertical field. Note also that the range of qA0=Q, where the
growth rate of the magnetoacoustic mode is comparable with Q,
is substantially wider for the radial field and spreads from <0:6
to <5. On the other hand, the range of unstable v seems to be
narrower for the radial field than for the vertical one. Thus, only
perturbations with approximately vertical wavevectors may be
unstable when the field approaches its stabilizing value. As in the
case of a vertical field, when the modes are stable the frequency
of oscillation of both modes is comparable with, or even higher
than, the Keplerian frequency.
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Figure 1. Dependence of q2
=Q2 on the angle v for different values of qA0=Q

and for keplerian rotation, g ¼ 3=2, in the case of the vertical magnetic field,
i.e. vB ¼ 0. The slow magnetoacoustic modes are shown as solid lines,
whilst the buoyant modes are shown as dotted lines.

Figure 2. Dependence of q2
=Q2 on qA0=Q for vB ¼ 0 at v ¼ 948: 3 and v ¼ 0.

As in Fig. 1 the solid lines refer to the slow magnetosonic mode and the
dotted lines to the buoyant mode. In the lower panel a narrower range of
q2

=Q2 is shown, so one can see that the buoyant mode is preferred in the
range 0 # qA0=Q # 0:04. Also in the range 1:73 # qA0=Q # 2:24 the mode at
v ¼ 948: 3 is preferred, but now it is the slow magnetoacoustic mode; cf.
Fig. 1.



4 C O N C L U S I O N

We have shown that magnetized and non-magnetized discs are
unstable with respect to different kinds of shear instabilities for
short-wavelength perturbations. In the non-magnetic case the
instability is associated with the buoyant mode and is caused by
the vertical shear. It can arise for any dependence of the angular
velocity on z: both positive and negative values of ∂Q=∂z can lead to
instability. The most rapidly growing perturbations in a thin accre-
tion disc have growth rates of the order of qQðz=sÞ. For these
perturbations the ratio of the vertical and radial components of

the wavevector is small, kz=ks , qz=s. In other words, the radial
wavelength has to be shorter than the vertical wavelength by
approximately a factor of s=z. Perturbations with suitable wavevec-
tors arise faster near the disc surface than near the central plane. In
the absence of a magnetic field the vertical shear instability does not
arise at z ¼ 0 where ∂Q=∂z ¼ 0. The e-folding time of the most
unstable perturbations is relatively short and, perhaps, the consid-
ered instability may be a candidate for the origin of turbulence in
non-magnetized discs.

In the presence of a magnetic field the instability of discs may be
caused mainly by the slow magnetoacoustic mode (with the
exception of the case of a weak magnetic field when the buoyant
mode grows faster). The instability of magnetoacoustic waves is
associated with the radial shear which, in thin accretion discs, is
much stronger than the vertical shear. Therefore, the growth time of
this instability is typically shorter. For a small Alfvén frequency,
qA p Q, the growth rate is of the order of qA, but it may be
comparable to the Keplerian period for the most rapidly growing
perturbations with qA , Q. However, a relatively strong magnetic
field should completely suppress the instability of magnetoacoustic
waves. The strength of the field that can stabilize the flow depends
on the wavelength of the perturbation and is determined by equation
(25). For all short-wavelength perturbations with kH q 1, the
energy of the stabilizing field is much less than the thermal
energy of the plasma.

In the present paper, we have addressed the behaviour of only
axisymmetric perturbations. It is clear, however, that the results
obtained can apply to non-axisymmetric perturbations with azi-
muthal wavelength much longer than the vertical or radial ones,
minðkr ; kzÞ q kJ. The turbulence that could be generated by shear
instabilities may be strongly anisotropic because the instability
criterion is sensitive to the direction of the wavevector.

Note that the linear stability analysis presented here allows us
only to calculate the growth rate of different modes and the range of
unstable wavevectors. Obviously, the results obtained do not allow
us to estimate the efficiency of the turbulence driven by the
considered instabilities or to calculate the corresponding transport
coefficients. This problem requires fully non-linear, three-dimen-
sional calculations and we are planning to address this in a forth-
coming publication.
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