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Vortex tube models for turbulent dynamo action
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The possibility of dynamo action resulting from a pair of elongated vortex structures immersed in
an electrically conducting fluid is investigated. For elongated vortex structures, the critical magnetic
Reynolds number for dynamo action is about half that for the spherical rotors that have been studied
previously. When applied to Kolmogorov turbulence with vortex structures of scale comparable to
the dissipation length, this model can explain dynamo action only when the magnetic Prandtl
number~5kinematic viscosity/magnetic diffusivity! exceeds a critical value that is larger than unity.
It is argued that in astrophysical bodies where this condition is not satisfied~in stellar convection
zones, for example!, dynamo action must instead result from motions on all scales up to the size of
the region. ©1999 American Institute of Physics.@S1070-664X~99!01001-0#
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I. INTRODUCTION

Over the last decade, the presence of coherent struc
in turbulent flows has been recognized as being a distinc
feature, clearly visible in visualizations of vorticity in hydro
dynamical simulations performed by several groups1–3

These structures consist of vortex filaments, whose diam
is comparable with the dissipation scale and with len
stretching to the integral length scale. The question of
role of this tangle of vortices for the dynamics, and for t
statistical properties of the flow has attracted signific
attention.4,5

In the present paper we address the question of whe
the vortex filaments in an electrically conducting fluid mig
play a direct role in the generation of magnetic fields
means of dynamo action. The generation of small-scale m
netic fields6,7 has been seen in various turbulen
simulations.8–12 Here we attempt to determine whether t
vortex filaments themselves may interact with a seed m
netic field in order to produce small-scale dynamo action

This study is motivated by recent work simulating d
namo action from two inclined rotors.13 This type of dynamo
was first studied by Herzenberg14 and, in fact, provided one
of the first two rigorous proofs of the existence of dynam
action. The original Herzenberg dynamo consists of two r
idly rotating spheres within a solid body of finite but larg
extent. The electrical conductivity of rotor and container a
the same. In an experimental realization of this model,15 the
rotors were metal cylinders, embedded in a block of the sa
material, using mercury as a conducting lubricator. T
three-dimensional simulations13 were carried out on a Carte
sian mesh using a smoothed velocity field representing

a!Electronic mail: Axel.Brandenburg@ncl.ac.uk
721070-664X/99/6(1)/72/9/$15.00
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two rigidly rotating spheres in an electrically conducting m
dium at rest. Above a certain critical magnetic Reyno
number a weak seed magnetic field begins to grow expon
tially. The critical values for dynamo action, as determin
numerically, agree well with the asymptotic theory14 for the
Herzenberg dynamo. In the paper of Brandenburget al.,13 a
Herzenberg-type process involving close fluid vortex pa
was also briefly discussed as a possible model for dyna
action.

In the present paper we pursue this suggestion furt
First of all we present the results of numerical simulations
a modified Herzenberg-type dynamo, whose geometry is
tended to approximate that of a vortex filament. Thus,
stead of spherical rotors, we consider the case of elong
ellipsoids, whose major axes are much longer than the o
two and lie along the rotation vectors. We find that in th
modified geometry the dynamo still operates and, furth
more, the critical magnetic Reynolds number for the onse
dynamo action is smaller, being roughly one half of that
the original Herzenberg model.

Then, we apply those results to test the hypothesis
small-scale dynamo action resulting from the interaction
vortex filaments in turbulent flows. In order to draw a co
nection between our vortex model and turbulence, we m
use of a scaling argument based on the Kolmogorov the
of turbulence. We then finally compare our predictions w
data from Brandenburget al.,12 who simulated convective
dynamo action in a rotating box.12 Those simulations are
tailored to represent part of the sun near the bottom of
convection zone. The model is compressible, and oversh
into the stably stratified radiative interior beneath is includ
Despite the amount of detailed physics included, the m
features of dynamo action agree with earlier simulations
simpler models.9,10
© 1999 American Institute of Physics
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This paper is organized as follows. In Sec. II we descr
our simulations of a kinematic Herzenberg-type rotor d
namo and obtain an estimate for the value of the criti
magnetic Reynolds number for the onset of dynamo actio
this modified geometry. In Sec. III we make use of Kolmo
orov scaling to give an estimate for the conditions un
which a Herzenberg-type dynamo, resulting from the int
action of vortex filaments, could be excited in Kolmogor
turbulence. In Secs. IV and V we test the hypothesis
vortex-generated dynamo action, using data from simulati
of compressible hydromagnetic convection of Brandenb
et al.,12 in which small-scale dynamo action is observed. W
are led to the conclusion that the role of vortex tubes in
generation of small-scale magnetic fields cannot be
straightforward as suggested by Brandenburget al.13 There-
fore we consider in Sec. VI two possible modifications of t
mechanism proposed in Sec. II: First, we consider a mo
with a spherical rotor and a vortex sheet, and subseque
we examine the possible role of vortex clusters in the g
eration of large-scale magnetic fields.

II. A HERZENBERG-TYPE DYNAMO

The Herzenberg dynamo consists of two rigidly rotati
spheres in a conducting medium. The conductivity is fin
and the same inside and outside the spheres, which
radiusa and are separated by a distance 2d. The magnetic
Reynolds number for the Herzenberg dynamo is defined

Hz[Va2/h, ~1!

where V is the angular velocity of the spheres andh the
magnetic diffusivity. For dynamo action to take place th
number has to exceed a certain threshold, which is a func
of the ratiod/a and of the angle between the rotation ax
Qualitatively, in this model each rotor winds up a local p
loidal field, generates via field line stretching a strong tor
dal field that diffuses then to the other rotor, where it acts
a new local poloidal field. In order for a self-excited dynam
to exist, the two axes must not be exactly parallel or perp
dicular. In the particular case where the two rotation axes
in two parallel planes separated by a distance 2d and are
tilted with respect to one another by the anglef, there is
monotonic ~non-oscillatory! dynamo action whenf is be-
tween 90° and 180°~Refs. 14, 16, 17 and 13!,

Hz.Hzcrit'69~a/d!23f ~f!21/2, ~2!

where

f ~f!5cos2 f sinf. ~3!

For ufu<90° an oscillatory dynamo exists, with a margin
dynamo number that is 3–10 times larger than for
nonoscillatory dynamo present forufu>90°.

A. The numerical simulations

With the aim of connecting the Herzenberg mechani
for dynamo action and the interaction of vortex filaments a
magnetic fields in turbulent flows, we generalize the geo
etry of the Herzenberg dynamo by replacing the spheres
ellipsoids with aspect ratiob/a.1, wherea and b are the
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minor and major semi-axes, and the latter is also the rota
axis. Thus, whenb@a, we will consider the two ellipsoids
as a model of a pair of vortex tubes. In this paper, we o
consider the case of nonoscillatory dynamo action from p
of tubes. We note that a more detailed inspection of vor
pairs in hydromagnetic turbulence simulations does ind
seem to suggest that nearby tubes are more nearly antip
lel than parallel. We use a very similar setup to that d
scribed in Ref. 13. We consider a medium of uniform co
ductivity h. A steady velocity field is constructed such th
two ellipsoids centered atx1 ,x2 with radiusa and major axis
b, separated by a distance 2d, are rigidly rotating with an-
gular velocitiesV1 andV2 given by

Vi~x!5V i~x!V̂i , V̂1,25~0,6sin 1
2 f,cos1

2 f!. ~4!

~We point out that the corresponding Eq.~2! in Ref. 13 con-
tains a misprint; the 1/2-factor was moved outside the
and cos functions.! In practice, we construct the velocit
field as

u~x!5 (
i 51,2

V i~x!3~x2xi !, ~5!

where V1,2(x), are two profile functions that tend to zer
outside the rotors. We set

V i~x!5V exp@2 f i~x!n#, ~6!

wheren55 in our simulations and the scalar functionsf i are
given by

f i~x!5
~x2xi !3V̂

a2
1

~x2xi !•V̂

b2
. ~7!

The evolution of the magnetic field is governed by the line
induction equation

]B

]t
5“3~u3B!1h“2B. ~8!

In order to ensure the solenoidality condition“•B50 we
write B5“3A and solve numerically the equation for th
vector potentialA,

]A

]t
5u3B2h“3B1“F. ~9!

Adopting the gaugeF5h¹•A, we can write

]A

]t
5u3~“3A!1h“2A. ~10!

Equation~10! is solved in a cartesian box using a compa
sixth order scheme in space18 and third order time stepping.19

We adopt periodic boundary conditions in the horizon
plane (x,y) and vertical field conditions at the vertica
boundaries, i.e.,Bx5By50 on z56Lz . The aspect ratio is
Lx :Ly :Lz51:1:1.

B. Results

In Fig. 1 we show the behavior of the critical Herze
berg number Hzcrit , as a function ofb/a, the aspect ratio of
the ellipsoids. For elongated structures withb.a, the criti-
P license or copyright, see http://pop.aip.org/pop/copyright.jsp
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cal value of the dynamo number is smaller than for the c
b5a for the same value ofa. For the particular valuef
5125°, we find numerically that Hzcrit approaches a limit as
b/a increases~see Fig. 1!. In this limit Hzcrit is about half the
value for spherical rotors,a5b. For values off closer to
0°, 90° or 180° the critical value is larger, in accordan
with Eq. ~2!.

The fact that the critical value of the dynamo numb
does not decrease further asb/a increases can be explaine
if we note that dynamo action originates from the interact
of magnetic fields in those regions where the separation
the vortices is smallest. The size of these regions does
vary asb/a increases beyond a certain critical value, for a
given orientation. Also, the field twisting and stretching w
be most effective near the equatorial regions of the vortic
A vector plot of the field structure, when the dynamo
excited, for the case whenb/a56, is given in Fig. 2. The

FIG. 1. Behavior of the critical magnetic Reynolds number Hz as a func
of b/a for a50.3, d50.4 andf5125°. In the inset the same data a
plotted on a log-linear scale in the form (Hz2Hz`)/Hz` , where Hz̀
5160 is the estimated asymptotic value asb/a→`.

FIG. 2. Three dimensional visualization of the level surface of the magn
field where B251.3, which corresponds to 45% of the maximum fie
strength. The orientation of the magnetic field is indicated by arrowsf
5125°, b51.8, a50.3, d50.4, Hz5180. Note that the field is concen
trated about a central region around the two elongated rotors, where
interaction is largest.
Downloaded 14 Feb 2005 to 130.225.213.130. Redistribution subject to AI
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resulting field looks similar to that in the case of spheric
rotors,a5b, see Ref. 13, indicating that the elongated sha
of the rotors has only a weak effect on the resulting fie
structure.

The behavior of the asymptotic critical value Hzcrit as a
function of a/d is shown in Fig. 3 for the casef5125°.
Extrapolating from the figure, we obtain the scaling for t
critical asymptotic value,

lim
b→`

Hzcrit[Hz`5C3~a/d!22.7, ~11!

which is similar to that of Eq.~2!. HereC is a function off
and, possibly,a/d; for f5125° anda/d50.75 we haveC
'75.

III. THE HERZENBERG-TYPE DYNAMO IN
TURBULENT FLOWS

We have already mentioned that vortex tubes, as see
numerical simulations, have a typical length much grea
than their radius. So we use Eq.~11! to estimate the critical
Herzenberg number Hzcrit for a pair of vortex tubes. We
define the Herzenberg number Hz for such a pair in a fash
analogous to~1!,

Hz5Va2/h5va2/2h, ~12!

where the angular velocityV is set at half the value of the
vorticity v at the center of the tube. Thus expression~12! for
the Herzenberg number only contains quantities that can
related to the properties of the flow. The size of the vort
a, and the magnitude of the vorticityv, both depend on the
Reynolds number of the flow Re. If the scaling of tho
quantities with Re is known we can calculate the scaling
Hz. In the following we shall assume that Kolmogorov sc
ing holds for all the quantities related to the flow. The Re
nolds number Re is defined in the usual way as
5UL/n, whereU is the rms velocitŷ u2&1/2, L the integral
scale of the flow, andn the kinematic viscosity.

n

ic

he

FIG. 3. The critical Reynolds number Hz` as a function ofa/d, for f
5125°, b51.8, d50.4. a is varied and takes the values 0.25;0.30;0.3
The dotted lines give quadratic (m522) and cubic (m523) scalings for
comparison.
P license or copyright, see http://pop.aip.org/pop/copyright.jsp
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A. Scaling for the tube radius a

In order to establish the scaling law for the diameter
the vortex tubesa in ~12!, we have to relate this quantity t
other characteristic scales in the flow whose scaling law
known from the theory. This is in fact a topic over whic
debate is still open~see, e.g., Ref. 20! and we thus make us
in the following of the two most recurrent hypothese
namely that

a5l or a5l, ~13!

l is the dissipation scale andl is the Taylor microscale
defined as

l5A5^u2&/^v2&, ~14!

where angular brackets indicate volume averages. In K
mogorov turbulence,l scales with the Reynolds number a

l 5L Re23/4, ~15!

while l scales with Re like

l5L Re21/2. ~16!

These relations assume a Kolmogorov spectrum for the
netic energy,E(k);k25/3. While the relation~15! is well
known, we want to briefly sketch a derivation for Eq.~16!. If
we calculate the mean square value of the vorticity, we h

^v2&5E k2E~k!dk;kmax
4/3 , ~17!

since kmax52p/l , we find from Eq.~15! that ^v2&;Re.
This, together with the definition~14!, leads to Eq.~16!.

B. The scaling of Hz with Re

The scaling law forv in ~12! is obtained by putting
va/2[Va5ua whereua is a typical velocity at scalea. In
Kolmogorov turbulence the scaling

ua5U~a/L !1/3 ~18!

holds. Dropping factors of order unity, as elsewhere in t
scaling argument, we thus obtain from Eqs.~12!, ~15!, ~16!
and ~18! that

Hz5
UL

h S l

L D 4/3

5PrM ~case I!, ~19!

and

Hz5
UL

h S l

L D 4/3

5Re1/3PrM ~case II!, ~20!

in the two cases wherea scales either withl or with l.
Here, PrM5n/h is the magnetic Prandtl number (n and h
are the kinematic and magnetic diffusivities!.

Thus we see that, in the first case, the magnetic Reyn
number of a Herzenberg–type dynamo made of a pair
vortex tubes dependsnot on the Reynolds number of th
flow, but just on its magnetic Prandtl number. A criterion
this type was first suggested by Batchelor21 using a qualita-
tive argument based on the similarity between the equat
governing magnetic field and vorticity.
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In the second case, there is the possibility that the crit
Herzenberg number for dynamo action can be achieved
increasing the Reynolds number of the flow, and not just
changing the Prandtl number. We note here that, in the S
PrM is of the order 1027, so that this mechanism canno
provide a qualitative picture of the phenomena involv
there in the small scale dynamo. Moreover, whenever PM

&1, the mechanism proposed here could not work beca
then the typical length scale for magnetic diffusion (h3/e)1/4

would be larger than the kinematic dissipation length so t
advection of magnetic fields on the scales of the vortic
tubes would be impossible.

IV. A COMPARISON WITH TURBULENT
HYDROMAGNETIC CONVECTION DATA

We now use our vortex model of dynamo action to try
explain dynamo action seen in the numerical simulations
Brandenburget al.12 In those simulations, the dynamo resu
from turbulent convection that develops in a convective
unstable layer of depthL between two stably stratified layers
The nondimensional units used are such that length and
units are@x#5L and @ t#5(L/g)1/2, whereL is the depth of
the unstable convection zone andg is the acceleration of
gravity. For further details see Ref. 12. In particular we lo
at snapshots of velocities from two runs, Run A and Run
that differ from each other in resolution, Reynolds a
Prandtl numbers~see Table I!. Run A has a smaller Reynold
number and a larger magnetic Prandtl number than Run

In both cases, a turbulent magnetic field is sustain
against magnetic diffusion by dynamo action. Looking at t
flow pattern~Fig. 4!, we can identify vortex pairs. We, there
fore, measure the relevant parameters for the local magn
Reynolds~or Herzenberg! number, as defined in Eq.~12!, at
the scalea of the vortex tubes and compare this value w
the critical value for dynamo action as estimated in Eq.~11!.

We display in Table II the measured values of the p
rameters for two arbitrarily chosen vortex pairs in Runs
and D. The value ofa is taken to be the radius within whic
the vorticity exceeds three times the rms value. The value
V is taken to bevmax/2. Given the value ofh ~Table I! we
find the values of Hz to be 100 and 20 for Runs A and
respectively. The critical value, on the other hand, is arou
75. Here we have assumed thatd5a, which is appropriate
for close vortex pairs. We have also assumedf5125°,

TABLE I. Parameters of Runs A and D.v andU are given in nondimen-
sional units, whereg5L51.

Run A Run D

Mesh 633 12623105
Box extent:Lx3Ly3Lz 23232 23231.65
L 1 1
Re 310 1200
PrM 4.0 0.5
^u2&1/2[U 0.065 0.036
^v2&1/2 0.74 0.78
l 5L Re23/4, Eq. ~15! 0.013 0.005
l5A5U/^v2&1/2, Eq. ~14! 0.20 0.10
P license or copyright, see http://pop.aip.org/pop/copyright.jsp
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which is the most optimistic case. However, even in that c
the vortex model would still be subcritical by a factor
almost 4 when applied to Run D. Thus, although Herzenb
dynamo action is possible in case A, this is hardly a via
dynamo mechanism, because it does not work in case
where turbulent dynamo action is also observed.

Note that, in Run D the Prandtl number is less th
unity. As we have already seen at the end of Sec. III B thi
an unfavorable condition for the mechanism that we h
proposed to explain dynamo action. This is simply beca
the diffusion length of the magnetic field is now larger th
the dissipation scalel . Thus, on the scale of the vortex tub
the magnetic Reynolds number is too small for dynamo
tion to be possible.

V. ON THE SCALING OF THE RATIO a/d WITH Re

We have seen in Eq.~11! that the critical value of Hz
depends on (a/d)22.7 multiplied by a number that is aroun
75 for f5125°. We have so far assumed that (a/d);1. We
are here interested in the possibility that this ratio depe
upon the Reynolds number. On the one hand,a decreases a
Re increases, but on the other, the number of vortex tube
increased. In order to estimate the mean separation of
tubes,d5D/2, we first relateD to the number of tubes,NL

FIG. 4. Run D. Velocity vectors in a part of ax2z cross section through
y51.03. The two vortices seen near the bottom are considered in the
model of Sec. IV.

TABLE II. Parameters measured in Runs A and D and the resulting Her
berg numbers.V, d andh are given in nondimensional units, whereg5L
51.

Run A Run D

V5vmax/2 1 1.4
a 0.07 0.03
d 0.07 0.03
h 5.031025 6.231025

Hz, Eq. ~12! 100 20
Downloaded 14 Feb 2005 to 130.225.213.130. Redistribution subject to AI
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say, in the volumeL3. This number is related to the frac
tional volume occupied by the tubes which in turn is relat
to the filling factor.

For the purpose of counting the number of tubes,
may think of all tubes being rearranged such that they are
parallel to each other and equally spaced, the distance
tween each tube beingD. To cover the whole surface of
box of sizeL we needNL tubes such thatNLD25L2. There-
fore the number of those tubes is just

NL5~D/L !22. ~21!

On the other hand, given the assumption about the siz
such tubes, the volume of each tube is roughly

V'a2L, ~22!

so the number of tubes equals the total volume occupied
all tubes divided by the volume of each tube, which isV.
The total volume occupied by all tubes isf L3, wheref is the
filling factor. Thus, we haveNLV' f L3, or

NL' f L3/V5 f ~a/L !22. ~23!

Eliminating NL from Eqs. ~21! and ~23!, we find thatD
5a f21/2, or, sinceD52d,

a/d52 f 1/2. ~24!

Thus,a/d depends on the filling factor. The value off is not
well defined, because vortex tubes do not have sharp bo
aries. If we define tubes as those regions whereuvu exceeds
25% of the maximum value, then the filling factor is 0.0
and fairly independent of resolution and Reynol
numbers.12 This is because the probability density functio
of the vorticity is very nearly exponential. In this case n
only f , but alsoa/d would be independent of the Reynold
number. There is however a problem, because in orde
have dynamo action we would have to require, according
Eqs. ~19! and ~11!, that PrM*75f 21.35'6000. This clearly
cannot explain the results of the simulations where PM

5O(1) ~see Table I!. One possible explanation is that som
tubes may have much smaller separations than others,
dynamo action is mainly accomplished by a small numbe
close pairs of tubes. But even thenPrM would have to ex-
ceed a value of about 70, which is not the case.

VI. VARIATIONS ON THE MODEL

The considerations of the previous sections suggest
the hypothesis of dynamo action from interactions of pairs
vortex tubes can be rejected, if the magnetic Prandtl num
is small. Many astrophysical bodies, including the Sun a
other stars, have small magnetic Prandtl numbers, where
is generally believed that in them a small-scale dynamo d
operate.22 Of more immediate concern to us is the fact that
Run D, where we know that there is small-scale dyna
action, the numbers do not support the hypothesis that sm
scale dynamo action is due to interaction between pairs
vortex tubes. Thus, we must look for other ways to expl
this.
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A. Vortex sheets

Closer inspection of visualizations of vorticity sugges
not only the presence of vortex tubes, but also of vor
sheets due to regions of fluid moving in the form of dow
drafts. An example is shown in Fig. 5, where we show
two-dimensional cross-section of the velocity field of Run
and the corresponding magnetic field of the form shown
Fig. 6. The combined occurrence of vortex sheets and tu
has also been noted earlier.4

Although vortex sheets are probably not as prominen
tubes when visualized using a threshold procedure, they
still be important for the dynamo because of the enhan
area over which tubes interact with a sheet. We have
formed a simulation relevant for this case, in a similar fa
ion to that used in the case of vortex tubes. We have con
ered a system composed of a vortex sheet and a sphe

FIG. 5. Run D. A close-up of velocity vectors in ax2z cross section (y
51.03) showing a vortex sheet together with part of a vortex.

FIG. 6. Run D. Magnetic field vectors in the same cross section as in Fi
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rotor of radiusa whose rotation axis is inclined with respe
to the direction of the vorticity vector of the sheet. The sh
is defined such that the vorticity takes the form

v5vx~z!~1,0,0!, vx522
u0

a2
z exp@2~z/a!2#, ~25!

with the corresponding velocity of the formu5(0,uy,0),
where

uy5u0 exp@2~z/a!2#. ~26!

The rotor is placed a distanced5a from the sheet.
For such a system, we can define a modified Herzenb

number Hz̃as the geometrical mean of the relevant magne
Reynolds numbers for the rotor and the sheet,

Hz̃5F S Ua

h D S Va2

h D G1/2

. ~27!

The growth rate of the magnetic field depends on the rela
orientation of the rotation axis of the rotor and the vortic
vector of the sheet, and can be positive. In our most fav
able case, when the two vectors lie in two parallel plan
with relative anglef545°, the critical value is

Hz̃crit530. ~28!

~Note that, forf5135°, for example, we found no dynam
action.! The structure of the magnetic field resulting fro
dynamo action forf545° is shown in Fig. 7. The relevan
parameters areU50.08, a50.05, V5v/251.5 and h
56.231025. Making use of the definition~26! and measur-
ing the parameters at an arbitrarily chosen location in Run
we find that Hz̃Run D'60, which is twice the critical value
We thus conclude that this vortex sheet model could poss
contribute to dynamo action in Run D.5.

FIG. 7. The magnetic field vectors for the vortex sheet model with one ro
in a case where the dynamo is excited. Here the rotation axis of the sp
and the vorticity vector of the sheet lie in parallel planes and the two vec
are at an angle off545° to each other.
P license or copyright, see http://pop.aip.org/pop/copyright.jsp
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B. Vortex clusters: A three rotor dynamo

Another possibility for explaining dynamo action in Ru
D is that dynamo action occursnot on the smallest possibl
scale, the diameter of tubes, but on larger scales~either in
addition, or solely!. The power spectrum of the magnet
field supports the view that the magnetic energy conta
contributions from all scales.12 A close inspection of the vor
ticity field in Run D suggests that the tubes group into two
three distinct clusters~see Fig. 8!.

Clusters are in relative motion to each other and so
raises the question whether each cluster could be consid
as a ‘‘super-rotor.’’ In the following we consider this sug
gestion quantitatively. Looking at visualizations of the vo
ticity ~Fig. 8! of Run D we identify three distinct clusters
where many vortex tubes accumulate. We construct fr
each cluster the mean vorticity vector^v& i , i 51,2,3, that we
take in the form

^v& i5v iS sinq i cosw i

sinq i sinw i

cosq i

D , ~29!

whereq and w are polar angles of̂v& with respect to the
vertical axis andi 51,2,3 is a label for the three subvolum
encompassing the three vortex clusters. The definition of
boundaries of the subvolumes is somewhat arbitrary and
have therefore considered different possibilities. Numer
values are given in Table III for one particular choice.

FIG. 8. Three dimensional visualization of the level surface of the vortic
in Run D, where its value is 25% of the maximum. Three vortex clus
may be identified; see the three subvolumes~solid, dotted, and dashed lines!.

TABLE III. Spherical coordinates of the averaged vorticity vectors for t
three rotor model of the dynamo. The values of the individual nondim
sional numbers that occur in the formula for the magnetic Reynolds num
Hz of the system are also given. We usedh56.18•1025, a50.37.

i v i q i w i v ia
2/2h

1 0.06 75° 290° 66
2 0.03 91° 126° 33
3 0.03 116° 2179° 33
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Due to mutual cancellations of nearly anti-aligned pa
of vortex tubes the magnitude of the averaged vorticity
smaller than the vorticity in the small individual vortex tub
considered so far~see, e.g., Table II!. Quantitatively, this can
be described considering the velocity structure function,

dur5U~r /L !1/3, ~30!

wheredur is the transversal velocity difference between tw
points separated by a distancer . The vorticity over a scaler
is then

v r5dur /r 5~U/L !~r /L !22/3. ~31!

The vorticity on a length scale of the order of the integ
scaleL is just U/L. Using the data from Table I we hav
U/L50.036, which is consistent with the value given forv i

in Table III. On the other hand, making use of~31!, we see
that the numerical value of the vorticity on the scalea
50.02L ~which is the scale of the vortex tubes in Run D! is
around one. This is consistent with the direct measurem
of the value ofv for Run D ~see Table II!.

We now use the three vorticity vectors obtained above
construct a system of three spherical rotors in which the
gular velocities of the rotorsVi is such thatVi5^v& i /2. For
this system of vortex clusters we define a Herzenberg n
ber Hz5Va2/h, where nowa is the size of the cluster an
V is the geometric mean of the moduli of the angular velo
ties of the three rotors. In order to test the sensitivity of t
model to the choice of the boxes, we have performed
simulations for three different choices of the dimensions a
location of the clusters. The critical value for the magne
Reynolds numbers Hzcrit for these three different cases a
given in Table IV and they are compared with the critic
values calculated for the Run D. We can see that the th
rotor models are still subcritical by approximately a fact
three.

Instead of taking volume averages, we could have ta
averages over shells of different thickness. This, howev
does not seem to change the qualitative results that we h
obtained with the full boxes. A comparison between differe
averaging procedures is given in Table V. From those res
we may conclude that the vortex cluster model cannot
plain the dynamo action present in Run D.

In summary, among the variations on the model the v
tex sheet model gives dynamo action for the smallest m
netic Reynolds number.

VII. IS TIME DEPENDENCE IMPORTANT?

It is possible that a flow field that is evolving in tim
may accelerate the transport of field between rotors. In

s

-
er

TABLE IV. Critical Herzenberg number Hzcrit for the three rotor system
obtained from the numerical simulations. Three different configurations
the boxes have been considered.

Configuration a Hzcrit /HzRun D

~i! 0.37 4.1
~ii ! 0.27 3.1
~iii ! 0.32 2.7
P license or copyright, see http://pop.aip.org/pop/copyright.jsp



dif
in

fy
io
e

8.

a-

et

r
of
e
le
e
ic
/

w
es
r
0
es
.
lu

eld
lent

ld

the
at
d

ob-
t’’
e
wth
rac-
un
the

lc
ar
m

ag-
ld
um
the

ag-
el
the

av

79Phys. Plasmas, Vol. 6, No. 1, January 1999 Bigazzi, Brandenburg, and Moss
traditional Herzenberg dynamo this is accomplished by
fusion, which is a slow process. One could therefore imag
that field advection~instead of field diffusion! between the
two rotors could facilitate dynamo action. In order to clari
this we now present the results of a kinematic calculat
using a frozen-in-time velocity field taken from the sam
snapshot of Run D for which the vorticity is given in Fig.
The numerical resolution is 12631263105 meshpoints,
which is identical to that of the original convection simul
tions.

We find that, even in the kinematic case, the magn
field organizes itself in the form of flux tubes~see Fig. 10!.
Note that in order to see those structures, we have lowe
the level of the contour shown in this figure to only 7%
the maximum value.~At 18% of the maximum, i.e., the valu
used in Fig. 11, only a single spot would have been visib
Thus the field is much more strongly localized in the kin
matic case.! In Fig. 9 we show the growth of the magnet
energy as a function of time for two different values of 1h
(AgL3/h in dimensional units!. For 1/h523104, corre-
sponding to a magnetic Reynolds number of about 700,
found a growth rate of about 3200 inverse diffusion tim
corresponding to ane-folding time of about 0.2 turnove
times. For 1/h5104 ~magnetic Reynolds number about 35!
we found a growth rate of about 170 inverse diffusion tim
corresponding to ane-folding time of about 6 turnover times
Extrapolating on these two cases we expect the critical va
of 1/h for dynamo action to be just below 104. In both cases

FIG. 9. The dependence of magnetic energy on time in a kinematic ca
lation using a frozen-in-time velocity field taken from Run D. Two cases
plotted; one where the velocity was 18% larger than in the original dyna
cal calculation (1/h523104; upper curve! and one where it was only 60%
of the original value (1/h5104; lower curve!.

TABLE V. The components of the averaged vorticity vector when the
eraging is carried out over spheres and shells of different radii~given as
numbers of mesh points!.

r ext r int v q w

14 0 0.48 59 40
17 0 0.38 49 44
28 0 0.078 61 32
14 12 0.46 52 57
17 16 0.32 33 57
28 13 0.12 50 70
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the growth is oscillatory. The value of 1/h used in the origi-
nal dynamical calculation was 1.63104. The fact that dy-
namo action is found even for a time independent flow fi
suggests that time dependence is not essential for turbu
dynamo action. Moreover, even for 1/h5104 the growth
time was shorter~6 turnover times! than in the dynamical
calculation with 1/h51.63104, where the growth time was
about 20 turnover times. Hence, in an evolving velocity fie
the magnetic field growth is actually slower.

For comparison, we show in Fig. 11 a snapshot of
magnetic field configuration from Run D at the instant
which we took our kinematic velocity field. When compare
with Fig. 10, there are some broad similarities, but also
vious differences. In particular, there is a strong ‘‘hot-spo
in Fig. 10, which is only marginally present in Fig. 11. Th
explanation seems reasonably straightforward. The gro
time for the dynamo is considerably greater than the cha
teristic time scale of the dynamically driven motions of R
D. Thus, in this case, there is never enough time for

u-
e
i-

FIG. 10. Three dimensional visualization of the level surface of the m
netic field in the kinematic calculation using a frozen-in-time velocity fie
taken from Run D. The value of the level surface is 7% of the maxim
field strength. The time is the same as in the vorticity plot in Fig. 8. Note
concentration of field into structures.

FIG. 11. Three dimensional visualization of the level surface of the m
netic field in the dynamical simulation of Run D. The value of the lev
surface is 18% of the maximum field strength. The time is the same as in
vorticity plot in Fig. 8.

-
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magnetic field to approach the steadily growing~instanta-
neous! eigenmode, which is illustrated in Fig. 10.~This also
plausibly explains why the evolving velocity field gives
slower growth rate for the magnetic field.! These compari-
sons provide at least a hint that, although a time invari
‘‘frozen’’ velocity field can support a dynamo, it may not b
a valid way to investigate time dependent dynamo action

A comparable difference between ‘‘frozen’’ and evol
ing velocity fields has also been seen in particle advection
turbulent flows.23 There, with the ‘‘frozen’’ velocity field,
particles continue to stream into the same points, while in
time-dependent case such points are never sufficiently
lived for this to happen. On the other hand, statistical pr
erties such as topological entropies are remarkably simila
the two cases.24 This suggests that the complicated nature
the velocity field~see, e.g., Fig. 8! is an important property
of the dynamo, which is difficult to model by a construct
flow field such as the simple vortex model considered he

VIII. CONCLUSIONS

The present calculations have shown that a vortex pa
cluster model can produce dynamo action with parame
appropriate to the simulation with PrM54 ~Run A!, but not
for parameters chosen to represent the simulation withM

50.5 ~Run D!. Given that the original convection simula
tions did exhibit dynamo action in both cases, we must c
clude that our simple vortex models cannot be viable —
least not for low values of PrM . There are several possib
reasons. If we look at, for example, Fig. 4, we see that
two vortices that we model occupy a small fraction of t
computational domain. It could be imagined that loc
Herzenberg-type amplification of magnetic field might occ
in the vicinity of these vortices, but in a simple model~Sec.
IV !, much of the toroidal~with respect to the vortex axes!
flux generated will diffuse to large distances, whilst deca
ing. For the adopted vortex parameters, a dynamo is
maintained. In the presence of the complete velocity fie
other vortices, either singly or in groups, will interact wi
and amplify this diffusing field.~We do not suggest that thi
secondary process need itself constitute dynamo ac
merely field amplification.! Some of this amplified field will
then diffuse back towards the original vortex pair. This
flux of magnetic field could take a nominally subcritic
Herzenberg-type system into a supercritical regime. In
sense, dynamo action would be a collective phenomen
which cannot be analyzed locally.

Another possibility is that large scale motions not as
ciated directly with the vortex tubes play a vital role in e
citing the dynamo, perhaps by enhancing the transpor
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magnetic flux between vortices. More generally, and in so
ways encompassing both of these points, we might say
turbulent motions occur on a large range of length scales
that essential contributions to dynamo action come from m
tions on larger scales. The geometry of the velocity field
a working dynamo is clearly very complex~see Fig. 8! and
plausibly cannot easily be described by a simple vor
model, which only mimics selected local features of the flo
field.
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