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Abstract. A recent paper claims that the well known Cowling
‘anti-dynamo’ theorem is a “misconception”, and that a simple
axisymmetric sunspot model constitutes a counter example. We
do not believe these claims to have been substantiated.
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1. Introduction

The MHD literature contains a number of ‘anti-dynamo’ the-
orems, which have proved important in astrophysical and geo-
physical applications. The first of these theorems was estab-
lished by Cowling (1934), and can be simply stated as ‘A sta-
tionary axisymmetric MHD dynamo cannot be driven by strictly
axisymmetric motions’ (see also Ch. 18 of Parker 1979). A re-
cent paper by Lorrain & Koutchmy (1998; hereafter LK) con-
tains the sentences “This dynamo is axisymmetric which is for-
bidden by the Cowling ‘theorem’ (Cowling 1934, 1957, 1976).
However it has long been clear that the ‘theorem’ is a miscon-
ception.” The authors proceed to construct a simple, completely
axisymmetric, model for a sunspot, which they claim to be a
steady self-excited MHD dynamo.

These statements are so remarkable, and potentially mis-
leading, as to require some response. In support of their claims
quoted above, LK cite six references. We examine each in turn.

– Kolm & Mawardi (1961) study MHD flows in the presence
of a solenoid – there is no claim of dynamo action.

– Shercliff (1965) actually presents an outline proof of Cowl-
ing’s theorem, without qualification. LK refer to p. 48, where
a ‘hydromagnet’ is discussed; there it is explicitly said “the
device cannot be self-exciting”.

– Fearn et al. (1988) highlight the need for a mathematically
more satisfactory proof than provided by Cowling, but they
do not suggest that the theorem may actually be wrong.
Braginskii (1965) provides a more rigorous proof (for the
case∇.v = 0); see also Backus & Chandrasekhar (1956).

– Alexeff (1989) starts by considering the case wherej =
σv × B (i.e. noσE term), and then proceeds to derive an
expression for the conductivityσ ∝ T 3/2, the inclusion of
which in a termσE is then claimed to invalidate the theorem.

This term was, of course, included in the original theorem.
Thus Alexeff’s argument adds nothing that is new.

– Lorrain’s (1991) claim to demonstrate the failure of Cowl-
ing’s theorem rests on a false assumption about the possible
consistent relative configurations of magnetic and velocity
fields in a conducting fluid. His counterexample is actually
explicitly nonaxisymmetric, due to the introduction of baf-
fles in meridian planes!

– Ingraham (1995) claims that the presence of discontinuities
of magnetic fields at sharp physical boundaries renders in-
valid the underlying theorems on partial differential equa-
tions on which the Cowling theorem rests, although he does
not produce a counter example. However, astrophysical bod-
ies do not possess strictly sharp boundaries, and the mag-
netic field can be expected to be continuous everywhere.

Thus, none of the references cited by LK appears to contain
any substantive evidence for the invalidity of Cowling’s theo-
rem. We should also mention at this point a number of other
papers extending anti-dynamo theorems to more general con-
figurations (eg Hide & Palmer 1982, Ivers & James 1986, 1988).
We note also that, whilst Cowling’s theorem can not be extended
to more general physical circumstances, such as curved space-
time near Kerr black holes (Khanna & Camenzind 1996), valid
counter examples have yet to be provided; see Brandenburg
(1996) for the case of Kerr black holes.

2. The sunspot model

LK present what is claimed to be a stationary axisymmetric dy-
namo model for a sunspot. This has three salient features: the
fluid is perfectly conducting, there is zero toroidal field, and the
(steady) fluid flow is wholly in meridian planes. Unfortunately,
LK do not state the boundary conditions on the velocity or mag-
netic field in their model, so it is unclear for example whether
the velocity streamlines all close within the dynamo region, or if
some extend beyond it. The following general statements can be
made. In a perfect conductor, magnetic field lines or flux tubes
are frozen into the fluid, and the magnetic flux in each tube is
constant. In a steady flow with closed streamlines, the magnetic
flux tubes are advected around the streamlines. Magnetic flux
then cannot be created but, ifv andB are not parallel, the field
strength can be increased locally by field line stretching – at
the expense of an ever decreasing length scale across the field.
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(Eventually, of course, the field scale would become so small
that the perfect conductivity assumption was invalid.) In a lin-
ear dynamo (no feedback of the magnetic field onto the fluid
motions) with a steady velocity field, the magnetic flux must
increase exponentially if the dynamo is excited. The field even-
tually adopts the form of the fastest growing eigenfunction, and
the spatial structure does not subsequently vary with time.

If the streamlines are ‘open’, passing to the exterior of the
dynamo region, there is the possibility that magnetic flux can
be advected into the dynamo region from a source at large dis-
tances, more rapidly than it is advected outwards away from it.
However such advection of flux does not constitute dynamo ac-
tion: here flux is being transported, not created. Another possi-
bility is that the boundary conditions may be such as to maintain
a non-decaying magnetic flux on certain of the boundaries, and
in that case the field strength within the region studied may be
amplified (eg Weiss 1966) – again this is not dynamo action. A
self-excited dynamo must be consistent with the condition that
B → 0 at large distances.

Of course, with the assumption of perfect conductivity (as
LK), the magnetic flux cannot decay, although it may be ad-
vected out from the region studied.

In fact, a simpler objection can be raised against LK’s spe-
cific ‘demonstration’ of dynamo action. They examine the ax-
isymmetric equation∂B/∂t = ∇× (v×B), in the case where
∂B/∂t = 0, andv andB lie in meridian planes, and claim that
in their model the productv × B is in such a sense as to drive
the (steady) dynamo. However, with their assumptions,v andB
are necessarily parallel vectors!

Later in their paper LK introduce a finite value of the con-
ductivity. But then Cowling’s theorem certainly applies, for any
appropriate choice of boundary conditions.

Subsequently, Lorrain (private communication) claims that
setting the space charge density to zero introduces a fundamental
error in standard MHD and so dynamo theory. However this is
just the assumption made in LK. In any case, such a situation
would mean that the assumptions of Cowling’s theorem were
there invalid, and hence that the theorem was inapplicable, not
that the theorem was false. Moreover, situations in which charge
separation occurs and contributes to magnetic field generation
are recognized – this is the ‘battery effect’ (e.g. Biermann 1950,
Mestel & Roxburgh 1962, Dolginov 1977).

3. Conclusions

In situations of astrophysical interest there are, of course, now
many examples of fully three-dimensional dynamo action, for
both laminar as well as turbulent flows. Note also that an axisym-
metric laminar velocity field can drive a steadynonaxisymmetric
dynamo (e.g. Gailitis 1970).

Nevertheless, we conclude that Lorrain & Koutchmy’s
(1998) claims, that Cowling’s (1934) theorem is inapplicable in
simple astrophysical situations, and to have found a self-excited
axisymmetric dynamo operating in a sunspot model, are false.
Cowling’s theorem is alive and well!
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