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Abstract. Itis shown that ambipolar diffusion as a useful modalon-mirror symmetric turbulence (Brandenburg 2000, herea
for nonlinearity leads to similar behaviour of large scale turbB2000). In those simulations a strong and nearly force-free m
lent dynamos as full MHD. This is demonstrated using botietic field was produced, and most of the energy supply to t
direct simulations in a periodic box and a closure model fdield was found to come from the forcing scale of the turbulenc
the magnetic correlation functions applicable to infinite space. In the absence of nonlinearity, however, the field seen
Large scale fields develop via a nonlocal inverse cascade asttle-simulations of B2000 became quickly swamped by ma
scribed by then-effect. However, magnetic helicity can onlynetic fields at smaller scales. In that seasgurely kinematic
change on a resistive timescale, so the time it takes to orgariamge scale turbulent dynamo is impossibbny hope for an-
the field into large scales increases with magnetic Reynollgtic progress is therefore slim. However, the model of Su
number. ramanian (1997, 1999) is an exception. Subramanian (19
hereafter S97) extended the kinematic models of of Kazant
Key words: hydrodynamics — magnetic fields — Magnetohy1968) and Vainshtein & Kitchatinov (1986) by including am
drodynamics (MHD) — turbulence — stars: magnetic fields bipolar diffusion (in the strong coupling approximation) as
galaxies: magnetic fields nonlinearity. Under the common assumption that the velocity
delta-correlated in time, S97 derived a nonlinear equation f
the evolution of the correlation functions of magnetic field an
1. Ambipolar diffusion as a toy nonlinearity magnetig helicity. Although the models of Kazantsc_ev (196
and Novikov et al.(1983) are usually known to describe sma
In this Letter we test and exploit the idea that the exact type &dale field generation, Subramanian (1999; hereafter S99) fo
nonlinearity in the MHD equations is unessential as far as thigt in the presence of fluid helicity there is the possibility
nature of Iarge scale field generation isconcerned. Atfirst g|artgﬁne|||ng of bound-states Corresponding to small scales to

this may seem rather surprising, especially if one pictures langéunded states corresponding to large scale fields, which
scale field generation as the result of an inverse cascade proggsse-free.

(Frisch et al.1975, Pouquet et al.1976). Like the direct cascade |n this Letter we present numerical solutions to the closu

in Kolmogorov turbulence, the inverse cascade is accomplish@gdel of S99. We stress that we dotadvocate ambipolar dif-
by nonlinear interactions, suggesting that nonlinearity is impGasion (AD) as being dominant over the usual feedback fro
tant. However, a special type of inverse cascade is the strongli [ orentz force in the momentum equation. Instead, our m
nonlocal inverse cascade process, which is usually referredi{@tion is to establish a useftiby modelto study effects of
as the ‘alpha-effect’; see Moffatt (1978) and Krause &er nonlinearity in dynamos. Our numerical solutions may provi
(1980). This effect exists already in linear (kinematic) theoryguidance for further analytic treatment of these equations in

Until recently it was unclear which, if any, of the two effectsameter regimes otherwise inaccessible. We begin however
(inverse cascade in the local sense ordheffect) played the considering first solutions of the fully three-dimensional MH

dominant role in large scale field generation as seen in simuguations in a periodic box using AD as the only nonlinearit
tions (e.g. Glatzmaier & Roberts 1995, Brandenburg et al.1995,

Ziegler & Rudiger 2000) or in astrophysical bodies (stars, galax-
ies, accretion discs). A strong indication that it is actuallydthe

effect (i.e. the strongly nonlocal inverse cascade) that is resp@nBox simulations for a finite system
sible for large scale field generation, comes from detailed anﬁl]I-

. : . : . . this section we adopt the MHD equations for an isotherm
ysis of recent three-dimensional simulations of forced isotropic . . . .
compressible gas, driven by a given body fof¢cen the presence

Send offprint requests 1é. Brandenburg of AD, but ignoring the Lorentz force




o
LUl
—
-
L
-l

L34 A. Brandenburg & K. Subramanian: Large scale dynamos with ambipolar diffusion nonlinearity

-3 -2 -1 O 1 2 3 -3 2 -1 0 1 2 3
z x k

Fig. 1. Images ofB, and.J, in an arbitrarily chosemy plane.120®  Fig. 2. Spectra of magnetic energy (solid lines), kinetic energy (dash-
meshpointst = 400. Note the systematic variation @, in thez- dotted line), magnetic helicity (normalized by2; dashed line) for the
direction and the presence of current filaments elongated preferentially shown in Fid.IL. The inset shows spectra of a run with forcing at

in they-direction. k = 10 and60® meshpoints for different times till = 900.
Dlnp _ V.u @ ae similar to the case with full Lorentz force and without AD

Dt ’ (Figs. 3 and 17 of B2000).
Du " Our main conclusion from these results is first of all that
— =-c2Vnp+=(Viu+ %VV cu)+ f, (2) large scale field generation works in spite of AD, contrary to
Dt p . : )

earlier suggestions that AD might suppress the large scale dy-

0A namo process (Kulsrud & Anderson 1992). Secondly, AD pro-
—- = (u+up) x B —nuod, ®)

vides a nonlinear saturation mechanism for the magnetic field
i ) .. atall scales, except for the scale of the box, where a force-free
where D/Dt = /0t + u - V is the advective derivative, fie|q develops for whichup, vanishes. Like in the simulations

B =V x A'is the magnetic fieldJ = V x B/uo is the ot Bogo0 this provides a ‘self-cleaning’ mechanism, without
current density, and is t_he rand_om forC|_ng function as speciynich the field would be dominated by contributions from small
fied in B2000. The nonlinear drift velocityp due to AD can scales.

be written asup = aJ x B. We use nondimensional units  5ing established the close similarity between models with
wherecs = ki = py = o = 1. Here,c is the sound speed, op yersys full Lorentz force as nonlinearity, we now move on

ky the smallest wavenumber of the box (so its sizer} po IS 4 giscuss the nonlinear closure model of S99 with AD as a ‘toy’
the mean density, and, is the vacuum permeability. Since ADnonIinearity.

is the only nonlinearity in Eq[{3) we can always normali2e
such thatz = 1.
The model presented here is similar to Run 3 of B200

wherey = 7 = 2 x 10~? and the forcing wavenumbér is 5. Under the assumptions that the velocity is delta-correlated

With a rms velocity of around 0.3 the magnetic Reynolds nury time and the magnetic field is a gaussian random field

ber based on the forcing scalefi&*) = 200. In Fig.ll we show S97 derived equations for the longitudinal correlation function

a grey scale representation of a slice of the magnetic field ant{r, t) and the correlation function for magnetic helicity den-

the current density @t= 400. Note the presence of a large scalsity, N (r, t). The velocity is represented by a longitudinal cor-

magnetic field that varies in the-direction with wavenumber relation functionZ’(r) and a correlation function for the kinetic

k = 1. In Fig[2 we show the spectra of magnetic and kinetteelicity densityC(r). We change somewhat the notation of S99

energies. The peak of magnetic energy at 1 shows the de- and define the operators

velopment of large scale magnetic fields. Further, the current 1 o P

density is concentrated into narrow filamentary structures, typ{) = — — (r*), D()==(), 4

ical of AD (see Brandenburg & Zweibel 1994). rt or or
Unfortunately, the severity of the (empirical) diffusiveSO the closure equations can be written as

ot

8. Closure model for an infinite system

timestep limit,6¢ < 0.16622/nap, Wherenap = aB?, pre- 1/ _ oF

vented us from running mu{:h longer at high resolutiv20¢ M =2D(nrDM) +2GM + 4o, ®)
meshpoints). FoB0® meshpoints this limit is unimportant, andN = —2nH + oM, (6)
so we were able to run until = 900, a time when the large - ) ) )

scale field was much more clearly defined. In the inset of Fig.whereH = —DDN is the correlation function of the current
we show the evolution for such a case, but with a forcing Aelicity, G = —DDT is the effective induction,

ks = 10 (giving larger scale separation). Note again the peak of_ ao(r) + 4aH(0,1) @)

E, atk = 1 and also the suppression of magnetic field at the
next smaller scale, correspondingit®> 2. Both these features nt = 7 + no(r) + 2aM (0, t) (8)
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are functions resembling the ususakffect and the total mag-

suppression formula first found by Pouquet et al.(1976). HeresS
andn are scale dependent (increasing until the forcing scale)
and, in addition, both are affected by AD.
We construct’(r) andC'(r) from an analytic approximation 100
of the kinetic energy and helicity spectiBk (k) and Hk (k), e
respectively. Zero velocity at large scales means Bhatk) ~ 0 2 4 6 8 10 12 14

netic diffusivity. Hereao () = —2[C(0) — C(r)] andno(r) = 1.0 ]
T(0) — T'(r). Note that at large scales ol ]
Qoo = ar = 00) = —i7(w-u) + +7ap(J - B)/po, (9) = AN 1
S 06 5

Moo = nr(r — 00) = 27(u?) + £7ap(B?) /100, (10 = ]
, o =04y = ]

where 7ap = 2apg. Expression[{9) is similar to the- < 8 10 12 14 ]

0.0

k* for k — 0. At some wavenumbeér = k; the spectrum turns T
to ak~>/% Kolmogorov spectrum, followed by an exponentiatig 3. Evolution of magnetic correlation functions for different times
cutoff, so we take The correlation function of the magnetic helicity is shown in the ins
=103

Ey (k/ke)* !

Ex(k)= ———F"———~ —k/kq). 11
K( ) 1+(k/kf)17/3 eXp( / d) ( )
1
We use parameters representative of the simulations of B2000, 10 g
so Ey = 0.01, ky = 5 andkq = 25, giving Rk — 200 100L
for n = 0.002. Like in B2000 we assume the turbulence fully
helical, soHx = 2kEx (e.g. Moffatt 1978). The correlation 10 L
functionsT(r) andC(r) are then obtained via = g
o0 Lk < 1072k

T(r) = 2r / Eic(k) 257 a1 = 70 (h)), 12 <

0 kT 1073 L
andC(r) = Z(Hx(k))/4, wherejy (z) = (sinz — x cos x) /22 4 L7
andr is the correlation time. (We use= 4, representative of 10 "~ ¢
the kinematic stage of Run 3 of B2000.) 5 v

We solve Eqs[{5) and{6) using second order finite dif- 10 o1 e 1 0 E— ‘1‘0 0

ferences and a third order time step on a uniform mesh in

0 < z < L with up to 10,000 meshpoints add= 107, which

is large enough so that the outer boundary does not matterfig 4. Evolution of magnetic energy spectra. Note the propagation

the absence of helicitg; = 0, and without nonlinearity; = 0, magnetic helicity and energy to progressively larger scaleskTHe

we recover the model of Novikov et al.(1983). Tdrétical mag-  Slope is given for orientation.

netic Reynolds number based on the forcing scale is around 60.

With helicity this critical Reynolds number decreases, confirm-

ing the general result that helicity also promotes small scale

dynamo action (cf. Kim & Hughes 1997, S99). In our model o o ]

with nonlinearity the exponential growth of the magnetic fiel@nd smallek;, as seen in Figl4, is in agreement with the closu

terminates when its energy becomes comparable to the kin8edel of Pouguet et al.(1976). In the following we shall addre

energy (fora = 1). After that point the magnetic energy conthe que_snon of whether or not the growth of this Iargg scale fi

tinues however to increase nearly linearly. Unlike the case fhich is nearly force-free) depends on the magnetic Reynol

the periodic box (Sedfl 2) the magnetic field can here extendgmber (as in B2000). We have checked that to a very go

larger and larger scales; see Fig. 3. The corresponding magn@@eroximation the wavenumber of the peak is given by

energy spectra,

L Fpear (1) & avoa (1) /11 (1) (14)

Bulkit) = = [ M(t) (br)* k) 13)
T Jo This result is familiar from mean-field dynamo theory (see al

are shown in Fid.14. S99) and is consistent with simulations (B2000, Sect. 3.5). N

The resulting magnetic field is strongly helical and the maghat herek,..x decreases with time becausg, tends to a fi-
netic helicity spectra (not shown) satisfify;| < (2/k)Enm. nite limit and 7, increases. (This is not the case in the bo
The development of a helicity wave travelling towards smallegalculations wheré,c.x > 27/L.)
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10.0 ited rate, see Fif]5. We emphasize that this explanation is anal-
102 ogous to that given in B2000 for the full MHD case; the helicity
@ 0.4 _ constraint is independent of the nature of the feedback!
S 106 ¢
10.8 5. Conclusions
: ‘ ‘ ‘ ‘ 11.0 Our results have shown that ambipolar diffusion (AD) provides
0 20 40 60 80 100 a useful model for nonlinearity, enabling analytic (or semi-
t analytic) progress to be made in understanding nonlinear dy-

namos. There are two key features that are shared both by this
model and by the full MHD equations: (i) large scale fields are
the result of a nonlocal inverse cascade as described hy-the
effect, and (ii) after some initial saturation phase the large scale
field continues to grow at a rate limited by magnetic diffusion.
We reiterate that in astrophysical bodies the presence of open
boundaries may relax the helicity constraint. Furthermore, the
presence of large scale shear or differential rotation provides
a means of amplifying toroidal magnetic fields quite indepen-
dently of magnetic helicity, but this still requires poloidal fields
for which the above conclusions hold.

0 20 40 60 80 100

Fig. 5. aEvolution of(.J - B) for different values of;. The correspond-

ing value ofa., is shown on the right hand side of the ploEvolution  Acknowledgements<S thanks Nordita for hospitality during the

of magnetic energy for the same values;of course of this work. Use of the PPARC supported supercomputers in
St Andrews and Leicester is acknowledged.
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