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Nonlocal transport of passive scalars in turbulent penetrative convection
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We present a Green’s function approach for quantifying the transport of a passive scalar~tracer! field in
three-dimensional simulations of turbulent convection. Nonlocal, nondiffusive behavior is described by a
transilient matrix~the discretized Green’s function!, whose elements contain the fractional tracer concentra-
tions moving from one subvolume to another as a function of time. The approach was originally developed for
and applied to geophysical flows, but here we extend the formalism and apply it in an astrophysical context to
three-dimensional simulations of turbulent compressible convection with overshoot into convectively stable
bounding regions. We introduce a novel technique to compute this matrix in a single simulation by advecting
labeled particles rather than solving the passive scalar equation for a large number of different initial condi-
tions. The transilient matrices thus computed are used as a diagnostic tool to quantitatively describe nonlocal
transport via matrix moments and transport coefficients in a generalized, multiorder diffusion equation. Results
indicate that transport in both the vertical and horizontal directions is strongly influenced by the presence of
coherent velocity structures, generally resembling ballistic advection more than diffusion. The transport of a
small fraction of tracer particles deep into the underlying stable region is reasonably efficient, a result which
has possible implications for the problem of light-element depletion in late-type stars.

PACS number~s!: 47.27.2i
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I. INTRODUCTION

The mixing of passive scalars in turbulent fluids is
important problem which occurs in many astrophysical a
geophysical settings. The transport of light elements in s
is a prominent example.

In the simplest treatments of mixing, one prescribes
diffusion coefficient which scales with characteristic sizel
and velocity amplitudev of the turbulence, and is typically
much larger then the diffusivity arising from microscop
processes alone. The derivation of the turbulent diffusivity
based, among other things, on the assumption oflocality,
which means that a particle is carried only a very short d
tance by one eddy before being entrained in a different e
which is completely uncorrelated with the first.

The local prescription fails if the velocity field display
long range correlations or if the dynamics is governed
broad distribution functions@1#. This is just the situation
which is now known to hold in many turbulent flows, includ
ing turbulent convection in stars. Recent simulations of c
vection@2,3# show coherent structures such as strong do
ward plumes, which extend over several scale heights.
validity of the diffusion approximation must be called in
question in such systems. Stull and collaborators@4# have
developed an alternative, nonlocal description of turbul
transport based on Green’s-function-like constructions ca
transilient matrices, and the approach has been applied
study a variety of atmospheric and oceanic systems thro
numerical simulations, empirical measurements, and lab
tory experiments@4–6#. In this paper we extend this meth
odology and apply it for the first time to compressible ast
physical flows. In particular, we emphasize the diagno
capability of transilient matrices and use them to quant
PRE 611063-651X/2000/61~1!/457~11!/$15.00
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tively describe nonlocal transport in numerical simulations
turbulent stellar convection. In the remainder of this intr
duction we place this approach in context.

A passive scalar field, represented by the particle conc
tration per unit massc(r ,t), in a fluid flow v(r ,t) with neg-
ligibly small molecular diffusion~infinite Peclet number!
evolves according to the advection equation

]c

]t
1v•¹c50. ~1!

~The field is characterized as passive ifc does not appear in
any of the equations which determinev.! Equation~1! has
the solution

c~r ,t !5c„r0~r ,t !,t0…, ~2!

wherer0(r ,t) is the position at some initial timet0 of a fluid
particle which is at positionr at timet. In turbulent flow, the
particle paths are so complicated that this exact solutio
not usually desired. In practice, all descriptions of turbule
transport are a compromise between the exact descrip
given in Eq.~2! and a tractable simplification of it.

In the local picture, the turbulent diffusion term is the fir
member of a Taylor series, involving derivatives ofc, in
which the successive terms are ordered by powers of
mean free path~or correlation length! divided by the size of
the system. Turbulent diffusion corresponds to the¹2 opera-
tor acting onc. Higher order terms have been calculated,
example by Ru¨diger @7#, who calculated the¹4 term for
turbulent viscosity and found good agreement with the m
sured profiles in channel flow. However, the convergence
the series itself is open to question, although in specific
457 ©2000 The American Physical Society
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458 PRE 61MIESCH, BRANDENBURG, AND ZWEIBEL
amples such as the related problem of turbulent diffusion
a weakly turbulent medium driven by the Parker instability
was found that the series does converge and that the
approximation is adequate@8#.

When the correlation lengths are large, a nonlocal
scription may be more accurate. The concentrationc may be
written in terms of a Green’s function for the initial valu
problem

c~r ,t,t0!5E dr 8G~r ,r 8,t,t0!c~r 8,t0!. ~3!

@The solution~2! can be written in this manner, with th
Green’s function given by an appropriated function.# If the
Green’s function is sharply peaked aboutr5r 8 then the local
approximation holds. A variety of more general, nonloc
descriptions have been proposed which are often base
integrodifferential or transition-matrix representations of t
particle flux~reviewed by@4,9#; see also@10,11#!. In particu-
lar, Stull and collaborators@4# have suggested a method f
computing a discretized analog of the Green’s functi
which they term thetransilient matrix, from a numerical
simulation of turbulence. A variety of quantitative descri
tors of nonlocal, nondiffusive transport can be obtained
rectly from this matrix once it is computed for a given flow

In this paper we develop a variant of Stull’s technique a
apply it to the three dimensional simulations of turbule
stellar convection presented by Brandenburget al. @3#. These
are fully compressible, MHD simulations which includ
overshoot into stable layers above and below the conv
tively unstable layer. The models employ a rotating cartes
geometry and are tailored to represent the lower parts of
solar convection zone and part of the radiative interior
neath. The boundary conditions in the two horizontal dir
tions are periodic, and the top and bottom boundaries
impenetrable and stress-free. The evolution of the magn
field is governed by the induction equation with a weak se
initial field. The magnetic diffusivity is small enough so th
the amplitude of the field begins to grow exponentially
time ~dynamo action!. At small and intermediate scales th
Lorentz force becomes exceedingly important and leads
sequently to saturation of the dynamo. However, the m
netic energy here is just a few percent of the kinetic ene
and there is evidence that such weak fields do not gre
influence the probabilistic properties of the flow such as
local expansion rates of fluid particles and the topologi
entropy@12#.

We consider data from two different simulations, summ
rized in Table I, that differ mainly in their resolution (633

meshpoints in case 1 and 12623105 meshpoints in case 2!
and Reynolds numbers~300 and 1200, respectively!. The

TABLE I. Descriptive summary of the simulations. The conve
tively unstable layer is always in 0,z,1, and the horizontal exten
is always 2 in nondimensional units.

Case Horizontal Vertical Computational Density
resolution resolution domain contras

1 63 63 0<z<2 11
2 126 105 20.15<z<1.5 92
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flow in the convection zone is turbulent and exhibits a co
plex vortical structure, as demonstrated in Fig. 1.

The velocity field appearing in Eq.~1! can either be a
fixed snapshot at one particular time in the convection sim
lations or a dynamic field which is evolved simultaneous
according to the full MHD equations. We consider both po
sibilities, and solve Eq.~1! using lagrangian particles to rep
resent the concentrationc.

In the following section, Sec. II, we discuss the transilie
matrix method and our implementation of it. In Sec. III w
introduce various matrix moments as quantitative descrip
of nonlocal transport and we describe how such mome
can be used to derive a series of transport coefficients
generalized, multiple-order diffusion equation. Througho
the discussion, applications are made to the stellar con
tion simulations mentioned above, and we summarize
primary results in Sec. IV. A preliminary version of th
work has appeared elsewhere@13#.

II. THE TRANSILIENT MATRIX

A. Basic formulation

Our goal in this paper is to describe the nonlocal transp
of a passive scalar field~i.e., a collection of tracer particles!
in simulations of convective turbulence in a manner ana
gous to Eq.~3!. To this end, we can define a discrete versi
of the Green’s function which describes the transport
tracer particles from one subvolume in the computatio
domain to another as a function of time. Following Stull a
collaborators@4#, we refer to this discrete analogue of th
Green’s function as thetransilient matrix of the flow. Al-
though the system is deterministic, the transilient matrix c
be regarded as describing the set of probabilities that a tr
particle originates in one subvolume and ends up in anot

FIG. 1. Shown is a three-dimensional volume rendering of v
ticity vectors at a particular timestep in the high-resolution simu
tion ~case 2! in regions where their magnitude exceeds four tim
the root-mean-square value. The upper and lower overshoot la
are marked by dotted lines. There are two long vortex tubes, a
ciated with plumelike downflow lanes, extending vertically fro
the top of the convection zone downwards where they merge in
complex vortex tangle just above the lower overshoot layer.
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Indeed, in text books on stochastic calculus@14# this is re-
ferred to as the conditional probabilityP(r ,tur 8,t8) that a
particle at positionr 8 at time t8 ends up at positionr at a
later timet. This probability obeys the forward Kolmogoro
~or Fokker-Planck! equation

]

]t
P~r ,tur 8,t8!1¹ r@v~r ,t !P~r ,tur 8,t8!#50, ~4!

where the effect of particle diffusion has been neglect
This equation is identical to the equation for the parti
concentration per unit volume. Therefore the Green’s fu
tion for the concentration per unit mass, is related toP via

G~r ,r 8,t,t8!5r21~r ,t !P~r ,tur 8,t8!r21~r 8,t8!, ~5!

wherer is the density of the fluid.
The transilient matrix formalism is similar to other di

crete transition matrix approaches~e.g.,@10#! and is closely
related to many analytical models such as nonlocal gene
sations of the more familiar concept of turbulent diffusion,
which the turbulent flux of a passive scalar is assumed to
proportional to gradients in the mean concentration@11#. For
comparisons between transilient turbulence theory and o
transport models, see@4,15#. However, note that many as
pects of these comparisons concern the use of transilient
trices as a turbulent closure model, which we do not in g
eral encourage~see the end of this section!.

When considering thermal convection, it is natural to fi
focus on transport in the vertical (z) direction, parallel to the
direction of the gravitational field. We therefore choose o
subvolumes to be horizontal layers. As a result, the co
sponding transilient matrix will represent the time evoluti
of the horizontally averaged particle concentration, deno
by c̄(z,t), or rather, its discrete analogue,c̄i(t), wherei de-
notes a horizontal layer, or bin. Following Eq.~3! we can
then express the temporal evolution of the mean concen
tion per unit mass as

c̄i~ t !5( Gi j ~ t,0!c̄ j~0!, ~6!

where the subscriptsi and j again refer to vertical bins an
where we have chosen the origin of our time coordinate
correspond to the instant at which tracer particles are
jected. For convenience, we will sometimes refer to
Green’s function in continuous space,G(z,z8,t,0), which is
approximated by the transilient matrix as

G~zi ,zj8 ,t,0!5Gi j ~ t,0!, ~7!

wherezi and zj are the depths about which the destinati
and source bins,i and j, are centered.

The horizontal averaging present in Eqs.~6! and~7! does
not compromise the accuracy of the matrices because
performedafter the full three-dimensional evolution of th
tracer concentration is computed. In other wor
G(z,z8,t,0) can only be obtained by computing the evoluti
of a fully three-dimensional tracer fieldc(x,y,z,t) for all
times between 0 andt. Once computed, the matrix can the
be used to calculate the temporal evolution of other ini
concentrations with different vertical profiles, provided t
.
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horizontal distribution in all initial tracer fields is uniform
within each vertical bin. The prognostic capabilities of tra
silient matrices and the consequences of horizontal avera
will be discussed in more detail at the end of this section

In principle, the transilient matrix for a flow can be com
puted by a series of numerical experiments, each measu
the response of the system to different initial tracer conc
trations~usually resemblingd functions!. However, this be-
comes impractical for turbulence simulations because of
computational expense. A more efficient alternative, used
Stull and colleagues@4#, is to solve a set of differential equa
tions, each describing the time evolution of a passive sc
field with differentd-function-like initial conditions. We in-
troduce here an even more efficient way of calculating
transilient matrix,Gi j , which involves injecting a large num
ber of passive tracer particles, initially uniformly distribute
among the levels, advecting them with the flow, and th
computing the matrix directly from their statistical behavio
This approach is only valid if microscopic~unresolved! dif-
fusion of the tracer field can be neglected, or in other wor
if the associated Peclet number is large. Such an approx
tion is appropriate for the flows we are considering beca
they are reasonably turbulent, with momentum and ene
transport in general dominated by resolved convective m
tions. However, it should be kept in mind that large gradie
can develop in localized, transient regions of the flow wh
diffusion can become important and the advective appro
mation may break down.

In order for the transilient matrix to reflect the evolutio
of the tracer particle concentration per unit mass,c(r ,t), the
‘‘subvolumes’’ or ‘‘bins’’ used to construct it must eac
comprise an equal mass of fluid. Thus, the vertical exten
each horizontal layer must systematically decrease as
density increases toward the bottom of the computatio
domain. Alternatively, bins of equal vertical extent~constant
volume! could be used, but the resulting matrix would d
scribe the evolution of the concentration per unit volume,rc,
and it would no longer strictly correspond to the Green
function for equation~1!. Note that this was not an issue i
previous applications of the transilient matrix techniqu
which were concerned with Boussinesq fluids@4,5#. Bins of
constant mass have been used for the present work ex
where otherwise noted in Sec. II B. The number of bins
consider is to some extent arbitrary, but here we choose
be equal to the number of grid points in the vertical dire
tion, so the width of a bin is larger than the grid spacing n
the top of the computational domain, where the density
low, and smaller near the bottom.

The temporal evolution of the transilient matrix for one
the simulations~case 2!, is exhibited in Figs. 2 and 3. Al-
though the spatial extent of each constant-mass bin incre
with depth, the matrices are plotted with respect toz andz8
@see Eq.~7!# in order to simplify their physical interpretatio
and to compare them with analogous matrices obtained u
bins of constant volume~see Fig. 5 below!. If the mixing
occurred via classical diffusion in an infinite domain, cro
sections through the matrix would yield Gaussians wh
would progressively decrease in amplitude and increas
dispersion with time.

Note in the simulations the asymmetric spread away fr
the diagonal, which is the initial state. Although the pe
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460 PRE 61MIESCH, BRANDENBURG, AND ZWEIBEL
FIG. 2. Shown are contou
plots of the evolving transilient
matrix for case 2@displayed as
G(z,z8,t)#, computed using a
fixed velocity field and bins of
constant mass. The time corre
sponding to each frame is indi
cated ~a convective timescale is
roughly 20 in dimensionless time
units!, and dashed lines mark th
boundary of the convectively un
stable region, which is bounde
above and below by regions o
stable stratification. The sourc
and destination axes indicat
depth, which increases downward
in the direction of the gravita-
tional force. The contour levels
are 0.001, 0.003, 0.006, 0.01
0.03, 0.06, 0.1, 0.3, 0.6, and 1.0.
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concentration arising from a source level is typically a
vected upward, the downward moving particles tend
propagate away from the diagonal more rapidly, reflect
the presence of broad upflows and relatively strong, nar
downflows which are characteristic of turbulent compre
ible convection~e.g., @16#!. This is in stark contrast to nu
merical simulations and laboratory experiments of atm
spheric boundary-layer convection, which generally exh
narrow upflows and broader, weaker downflows, and the
sociated transilient matrices are skewed in the opposite s
as those presented here@4,6#.

FIG. 3. A cross section through the transilient matrix~with bins
of constant mass! for case 2 at the same times as in Fig. 1. T
concentration begins as ad function at the source depth, marke
with a dotted line, and the progressively more disperse curves
respond to later times. Again, dotted lines mark the boundarie
the convection zone.
-
o
g
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-
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The transilient matrix, by its nature, must satisfy certa
constraints@4#. Among them,Gi j must lie between zero an
unity, since it is a fractional measure. Also, particle cons
vation requires that the sum over each column~i.e., over all
destinations for a particular source level! equal unity unless
tracer particles are allowed to escape the computational
main. If the mass flux,rv, is divergenceless, and if bins o
constant mass are used, then the sum of the matrix elem
in each row must also equal unity, provided the tracer p
ticle advection accurately traces the fluid motions. Howev
in a fully compressible, time-dependent flow this need not
the case and particle accumulation in a given mass bi
possible~note that this statement also applies if a snapsho
the velocity field is used to compute the transilient matri!.
Figure 4 demonstrates that there is little accumulation on
level for the simulations presented here, with the nota
exception of the upper overshoot region in case 2.

We emphasize that although the transilient matric
shown in Figs. 2–4 and defined by Eqs.~6! and~7! describe
only vertical transport, the full three-dimensional trajecto
of each tracer particle is computed for all times. Horizon
averaging is only performed afterward in order to conde
the vast amount information contained in the particle traj
tories into a more manageable, reduced form represente
the transilient matrices.

Still, the horizontal averaging has many implications, p
ticularly concerning the prognostic capabilities of the trans
ient matrix approach. First of all, although Eq.~3! is an exact
solution of Eq.~1!, Eq. ~6! is not the solution of the horizon

r-
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PRE 61 461NONLOCAL TRANSPORT OF PASSIVE SCALARS IN . . .
tal average of Eq.~1!, nor is it the horizontal average of Eq
~3! @note that the discretization in Eq.~6! is irrelevant to this
conclusion#. The fact that the average Green’s function w
compute is not a Green’s function for the averaged dynam
means that the Green’s function cannot in general be ‘
started.’’ To illustrate this, consider two timest1 andt2, such
that 0,t1,t2. According to Eq.~6!

c̄i~ t2!5(
j

Gi j ~ t2 ,0!c̄ j~0!5(
j

Gi j ~ t2 ,t1!c̄ j~ t1!, ~8!

where the final equality treatscj (t) as an initial condition.
But, since c̄ j (t1)5(kGjk(t1 ,0)c̄k(0), c.f., Eq. ~6!, we
should have

Gi j ~ t2,0!5(
k

Gik~ t2 ,t1!Gk j~ t1,0!. ~9!

Although Eqs.~8! and ~9! hold if the flow is horizontally
homogeneous~and if the initial tracer concentration is hor
zontally homogeneous!, this is not in general the case. I
fact, Eqs.~8! and~9! are generally not satisfied for our com
putations. The horizontal averaging represents a loss o
formation about horizontal particle positions, so if significa
horizontal inhomogeneities are present, such as cohe
downflow lanes, Eqs.~8! and ~9! are no longer satisfied. In
this context, it is important to point out that transilient m
trices do not provide aprognosticturbulence closure mode
in the usual sense, although they have been used for
purpose@4,5#. Instead, transilient matrices are in gene

FIG. 4. Shown is the sum over each row of the transilient ma

for case 2 at timet521. For uniform initial conditions@ c̄i(0)
51#, this is equivalent to the total particle concentration on ea
destination level, according to Eq.~6!.
s
-

n-
t
nt
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l

most useful asdiagnostic tools, providing ana posteriori
description of average properties of the flow. They also p
vide an efficient way to calculate the temporal evolution o
variety of different~horizontally homogeneous! initial par-
ticle concentrations, using simple matrix multiplication
rather than full three-dimensional simulations for each init
profile.

B. Variations and extensions

When computing the transilient matrix for a dynamic
system such as turbulent convection, one has the optio
either using a single, time-independent snapshot of the
locity field to advect particles~as in Figs. 2–4! or to continue
solving the full fluid equations~or in this case the full MHD
equations! and thus evolve the flow in time while the pa
ticles are being advected. If the fluid has reached a stat
cally steady state then the naive expectation is that there
be little difference between the two approaches. However
pointed out by Vincent, Michaud, and Meneguzzi@17#, a
‘‘frozen’’ or ‘‘fixed’’ velocity field can produce too coheren
an advection and thus overestimate the transport.

Figure 5 demonstrates that the use of a fixed rather t
an evolving velocity field has little influence on the trans
ient matrices computed for the simulations presented h
although there is some indication for slightly enhanced tra
port in the lower overshoot region and at the upper-ridge-l
‘‘advection front.’’ This suggests that the use of a sing
snapshot in order to mitigate the computational requireme
does not significantly alter the results and the subsequ
conclusions. In the remainder of this paper, therefore,
present results obtained primarily with fixed velocity field

Figure 5 also demonstrates another variation in the w
the transilient matrix can be defined and computed. The
trix shown in Fig. 5~a! corresponds to the same fixed veloci
field as in Figs. 2–4, but was obtained using bins of unifo
volume rather than bins of uniform mass. The results
qualitatively similar, although the constant-volume binni
strictly describes the evolution of the concentration per u
volume,rc rather than the concentration per unit mass,c.

A number of more sophisticated three-dimensional b
nings are also possible, producing a more general Gre
function which depends on six spatial dimensionsx, y, z,
x8, y8, andz8. However, computer memory storage and
sualization requirements become prohibitively large at h

x

h

t
al cross
lds,
sing
FIG. 5. Two transilient matrices are compared, the first computed with respect to a fixed velocity field~a! and the second with respec
to a time-evolving velocity field~b!, as discussed in the text. The contour levels are the same as those used in Fig. 2. A horizont
section of each of these matrices is plotted in panel~c!, with the solid and dotted lines denoting the fixed and evolving flow fie
respectively. Both matrices correspond to case 2 att56.3. Unlike the matrices shown in all other figures, these were obtained u
constant-volume bins.
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462 PRE 61MIESCH, BRANDENBURG, AND ZWEIBEL
resolutions unless some substantial coarse graining is im
mented. Alternatively, we can generalize the approach
study horizontal transport without too much trouble if w
simply include the average horizontal particle displacem
as an extra dimension–that is, if we considerGn i j (t), where
n is the root-mean-square horizontal displacement of a
ticle which begins on levelj and ends up on leveli after a
time t. In practice, even this reduced matrix can beco
prohibitively large, so here we select only particular sou
levels, j, and use a more coarse binning for the destinat
levels. Results obtained using theGn i j matrices will be pre-
sented in Sec. III.

An alternative way to describe the time evolution of ve
tical structures~in a rectangular geometry!, which can poten-
tially provide insight into the scale properties of the tran
port, is by introducing a transilient matrix, or equivalently
Green’s function, in Fourier space. For simplicity, we beg
with the continuous analogue of Eq.~6!:

c̄~z,t !5E G~z,z8,t,0!c̄~z8,0!dz8. ~10!

Multiplying Eq. ~10! by exp(ikz), integrating overz, and in-
troducing the equations which define the Fourier transform
tion:

c̃~k,t !5E
2`

`

c̄~z,t !eikzdz ~11!

and

c̄~z,t !5E
2`

`

c̄~k,t !e2 ikz
dk

2p
, ~12!

we obtain

c̃~k,t !5E
2`

`

G̃~k,k8,t !c̃~k8,0!dk8, ~13!

where

G̃~k,k8,t,0!5
1

2pE2`

`

G~z,z8,t,0!ei (kz2k8z8)dzdz8.

~14!

Thus, the Green’s function describing the evolution of Fo
rier components through Eq.~13!, G̃(k,k8,t,0), is given by
applying a Fourier transformation with respect to the de
nation ~first! index of the original Green’s function
G(z,z8,t), and an inverse transformation with respect to
source~second! index. The real~imaginary! diagonal terms,
wherek5k8, describe the decay of individual cosine~sine!
modes, the imaginary~real! diagonal terms describe phas
shifts, and the off-diagonal terms, wherekÞk8, describe
mode mixing.

This spectral approach is most useful when the system
be described is periodic in the dimension which is divid
into subvolumes. This is not the case for the present w
which involves binning in the vertical dimension, where t
boundaries, the stratification and the transition between c
le-
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vectively stable and unstable regions break the symme
We therefore present the method here only for its poten
interest.

Finally, it is straightforward to adapt the transilient matr
approach to study the passive advection of vector fields
which the flux through a material area element is conserv
Applications include the transport and amplification of we
magnetic fields in an infinitely conducting medium, whic
could have relevance for convective dynamos and associ
flux transport. Note that in the case of solenoidal fields su
as this, it is generally more practical to follow the advecti
of the corresponding vector potential in order to guaran
the divergence remains zero.

III. APPLICATIONS

A. Matrix moments

Once the transilient matrix is known for a given flow,
number of quantitative measures of nonlocal transport can
obtained from it directly. In this section we consider th
moments of the matrix with respect to the destination indi
at each source level:

M j
(n)5(

i
~ j 2 i !nGi j . ~15!

Analogous moments can also be defined relative to
source indices. We will restrict attention to the mean, va
ance, and kurtosis, which are the first, second, and norm
ized fourth-order moments, respectively,

m j5M j
(1) , s j

25M j
(2) , and k j5M j

(4)/s j
2 . ~16!

For classical diffusion in an infinite domain,m j50, k j53,
ands j

2 increases linearly with time.
Because of the inherent anisotropy of the vertical tra

port, we generally split the even moments into upwardi
, j ) and downward (i . j ) components and consider the
separately. Furthermore, Eq.~15! can be generalized in a
straightforward way to the transilient matrix for horizont
transport,Gn i j (t) discussed in Sec. II B, to yield momen
with respect to the destination shells:Mi j

(h;n)5(nnnGn i j . In
what follows, when computing the horizontal moments a
similar quantities, we only consider several selected inject
levels for particles,i, and for each only consider destinatio
levels within 5 mass bins of the source (u i 2 j u<5), which
we then combine to yield a matrix that is in effect only
function of horizontal displacement,n, source level,i, and
time, t.

The destination means for a collection of tracer partic
initially uniformly distributed among mass bins are exhibit
in Fig. 6 as a function of depth and time for both simulation
The substantial difference in upward and downward tra
port can be attributed to the effects of density stratificat
on the velocity field and deep convective penetration into
lower stable region. Large-scale horizontal converging flo
near the top of the convection zone sweep particles
strong downflows which persist over several scale heig
and transport particles to deeper layers where the more
bulent conditions and less efficient large-scale upward tra
port make a rapid return trip unlikely. Upward moving pa
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ticles, on the other hand, upon nearing the top of
convection zone, will quickly be swept into strong dow
drafts and rapidly reverse direction in roughly half the tu
over timescale~depending on their initial height!. These ten-
dencies are particularly evident in Fig. 6~a!.

The intersecting curves in case 1 suggest large-sc
overturning motions while the more turbulent simulatio
case 2, suggests less efficient transport, possibly domin
by more localized, less coherent velocity structures. T
mean displacement in case 2 suggests a convergence o
ticles in the lower convection zone, although Fig. 4 abo

FIG. 6. The mean destinationm j is shown as a function o
source depth and time for~a! case 1 and~b! case 2. The initial (t
50) injection of particles is distributed equally among mass b
~not all bins are displayed!. Recall that the convection zone lies
the range 0<z<1 in both simulations and that a convective tur
over timescale is roughly 20 in dimensionless time units.
e

-

le,
,
ed
e
ar-

e

indicates that there is no significant accumulation there. T
relatively inefficient mixing and particle accumulation in th
topmost level in case 2~Figs. 4 and 6! indicates that once
particles are advected into the stably stratified region ab
the convection zone, they tend to remain there.

The square root of the variance is another measure of
typical particle displacement, or mixing length, measured
mass bins if the transilient matrix is so constructed. The
ward, downward, and horizontal variances as a function
time at several depths for both simulations are shown in F
7. The axes are logarithmic so the linear behavior over so
time intervals apparent in the plots implies a power law
lationship of the forms2;tb. A similar power-law behavior
is found for most levels, and the value of the best-fit exp
nents,b, as a function of depth are shown in Fig. 8. The fi
typically yield a value close to two, with the notable exce
tion of the vertical transport in upper half of the convecti
zone.

In many other physical systems as well, the variance
found to scale with time ass2}tb, with b51 corresponding
to classical diffusion. A value ofb greater than 1 is referred
to as superdiffusive orballistic behavior, whileb,1 is said
to be subdiffusive orstagnant@18#. In practice, the value of
b can vary significantly between flows, with turbulent tran
port being generally superdiffusive. For incompressib
three-dimensional, isotropic, homogeneous turbulence,
example, Richardson’s law predictsb53. Bohr and Pik-
ovsky @20# found moderately superdiffusive behavior,b
51.38, for the Kuramoto-Sivashinsky equation, which is
simple, nonlinear field equation exhibiting spatiotempo
chaos. Laminar advection at a constant velocity, from, sa
divergent source, is also superdiffusive, characterized bb
52, although laminar convective rolls are subdiffusive, a
a value of b51/3 has been predicted and experimenta
verified@19#. Lawrence and Schrijver@21# also found subdif-
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FIG. 7. The upward~dotted
lines!, downward ~dashed lines!,
and horizontal~solid lines! vari-
ances, or mean square particle di
placements, are shown for cases
and 2 as functions of time at a
layer within the convection zone
another in the stable region below
it, and another at their interface
The upward and downward vari
ances are the destination momen
s j

2 , and are measured in mas
bins, which become smaller with
increasing depth but are compa
rable to the vertical grid spacing
The horizontal variances are give
in terms of the horizontal grid
spacing.
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fusive transport,b'0.89, for observed magnetic features
the solar photosphere. Our results for the convection sim
tions presented here indicate superdiffusive transport in b
the vertical and horizontal directions, which likely arises p
marily from large-scale, coherent flow structures.

The relatively large value ofb for the downward variance
near the top of the convection zone can be understood if
upper layers are modeled as horizontal flows which conve
into downward plumes. To see this, note that the downw
variance for a collection of tracer particles is given by

sd
25E

0

`

z2Np~z,t !
dz

N0
,

wherez5z2z8, N0 is the~initial or steady state! number of
particles in the source level (z50), andNp(z,t) is the num-
ber of particles located a distancez below the source level
For simplicity, we consider a single downward plume with
characteristic, approximately constant velocityw0. In this
case,Np(z,t) will vanish for z.w0t and will equal R(t
2z/w0) for z<w0t, whereR(t) is the rate at which particle
enter the downflow atz50. This rate is given by the time
derivative of the total number of particles which have e
tered the downflow after a timet has elapsed, which in turn
is given by the~initial or steady state! particle concentration
in the source level,c0, multiplied by the volume of fluid
swept up by each downflow,p(u0t)2Dz, whereu0 is a typi-
cal horizontal velocity scale of the converging flow andDz is
the thickness of the source layer. So, putting this all toget
we have,R(t)52pu0

2Dzc0t, and

sd
2~ t !52pu0

2Dzc0E
0

w0t

z2~ t2z/w0!
dz

N0
~17!

5
pu0

2w0
3Dzc0

6N0
t4, ~18!

FIG. 8. Best-fit power law exponents which satisfys2}tb as a
function of depth. Ab value of two corresponds to advective b
havior, whileb51 implies classical diffusion.
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th
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e
e
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which implies ab of 4. The generalization of this result t
more than one downward plume yields the same temp
scaling. So, converging flows and downward plumes co
be responsible for the increase ofb for downward moving
particles near the top of the convection zone, where s
velocity features may dominate the transport. The small v
ues ofb for the upward variance near the top can be attr
uted to the flattening of thes2(t) curve as particles reach th
top of the convection zone and reverse direction~see Fig. 7!.

While the variance provides a measure of the dispers
of the tracer particle distribution function, the kurtosis pr
vides a measure of its shape. The kurtosis values assoc
with upward, downward, and horizontal transport are exh
ited as functions of depth and time in Figs. 9 and 10. S
prisingly, apart from only a few exceptions, the results a
largely independent of time. The mid convection zone
case 2, for example, exhibits a kurtosis variation of less t
25% ~Fig. 9!, over a time interval in which the variance
increase by three or four orders of magnitude~Fig. 7!. The
kurtosis therefore provides a useful quantitative measure
the shape of the transilient matrix as it evolves away fr
the diagonal. The valuek53 is expected for diffusive pro-
cesses. The larger values exhibited by both simulations,
pecially for downward transport, point to the importance
high-amplitude displacement events, likely produced by
termittent velocity structures such as strong, localized dow
ward plumes. However, horizontal transport, particularly
the more turbulent simulation, case 2, exhibits kurtosis v
ues closer to 3.

The kurtosis associated with downward transport in b
simulations peaks sharply near the base of the convec
zone, with less dramatic kurtosis peaks also occurring
upward moving particles in the lower overshoot regio
These large kurtosis values imply that penetrative convec
can efficiently transport a small fraction of passive trac
particles deep into the underlying stable zone. In late-ty
stars, such mixing processes are often invoked to exp
observed photospheric depletions of Lithium, Beryllium, a
other light elements@22#. Most theoretical models of light-
element depletion rely on chemical transport during
stars’ main sequence lifetimes from their convection en
lopes deep into their stable interiors, where light eleme
are efficiently burned. The results presented here help to
port the idea that penetrative convection can provide suc
transport mechanism.

B. Generalized diffusion equation

As discussed in the introduction, a common approach
the study of transport in fluids centers around a Taylor
pansion of Eq.~3!, which yields turbulent diffusion and ad
vection together with terms involving higher order deriv
tives of the tracer concentration,c. If the correlation lengthl
of the velocity field is small compared to the gradient leng
scaleD of the system, the magnitude of these terms will
general decrease with increasing order as powers ofl /D.
Even if such a convergence occurs, one must still comp
the coefficients of the Taylor expansion up to the order
which they become insignificant.

Transilient matrices contain the information needed
compute such Taylor expansion coefficients, and we n
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FIG. 9. Shown is the kurtosis
in the upward, downward, and
horizontal directions, k, repre-
sented, respectively, by dotted
dashed, and solid lines, for cases
and 2 at three selected levels
the computational domain. The
upward and downward kurtosi
values are the destination mo
mentsk j and are computed with
respect to mass bins. The horizon
tal kurtosis values are compute
with respect to the horizontal grid
spacing. The artificial cutoffs a
early times are imposed becaus
there are initially too few levels
populated (,5) to give a reliable
result.
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proceed to derive them, following a procedure described
Van Beijeren@23#. The first step is to write the Fourier tran
form of the Green’s function@here we use the continuou
version,G(z,z8,t)[G(z,z8,t,0), for simplicity# as

G̃~k,z8,t !5E e2 ikzG~z,z8,t !dz5^e2 ikz&, ~19!

wherez8 and z are again the source and destination dep
@corresponding to levelsi and j in the transilient matrix; see

FIG. 10. The kurtosis in the upward~dotted lines!, downward
~dashed lines!, and horizontal~solid lines! directions are shown as
function of depth for cases 1 and 2 at a timet516.8. The cutoffs for
the upward kurtosis near the top of the convection zone and
downward kurtosis near the base are imposed because at l
closer to the boundaries, there are too few data points to giv
reliable value.
y

s

Eq. ~7!#, z5z2z8 and the angular brackets denote an av
age over all tracer particles. The Green’s function can th
be expanded in the Taylor series for Eq.~19! and written as
follows:

G̃~k,z8,t !5 (
n50

`
~2 ik !n

n!
^zn& ~20!

5expS (
1

`
~ ik !n

n!
xnD , ~21!

where thexn are cumulative moments, which can be fou
by equating like powers ofk in the two series~20! and ~21!
@23#:

x152^z&, ~22!

x25^z2&2^z&2, ~23!

x352^z3&13^z&^z2&22^z&3, ~24!

. . . . ~25!

Taking a time derivative and applying an inverse Four
transformation to Eq.~21! then yields

]

]t
G~z,z8,t !5 (

n51

`

Tn~z8,t !
]n

]zn G~z,z8,t !, ~26!

where the transport coefficients are given by

Tn5
1

n!

]xn

]t
. ~27!

Again, in the spirit of the Green’s function formalism, a
expansion in terms of these transport coefficients yields

e
els
a
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particle fluxes that would arise in terms of local derivativ
of the concentration if the initial concentration were a de
function at levelz8. Thus, the time derivative of the conce
tration for an arbitrary initial condition is again a sum ov
all the individual contributions:

]

]t
c̄~z,t !5E (

n51

`

Tn~z8,t !
]n

]zn G~z,z8,t !c̄~z8,0!dz8,

~28!

and if the Tn are independent of depth, i.e., if the flow
statistically uniform with depth, this reduces to the more
miliar, but less general equation,

]

]t
c̄~z,t !5 (

n51

`

Tn~ t !
]n

]znc̄~z,t !. ~29!

Whether the transport coefficients can be taken outside
integral or not, the right hand side of Eq.~28! is in the form
of the divergence of a generalized flux, as expected fo

FIG. 11. The transport coefficientsT1 , T2, and T3 ~solid,
dashed, and dotted lines respectively! describing vertical transpor
as a function of depth are shown in plots~a! and~b! for cases 1 and
2 at a timet53.36. All are normalized with respect to their max
mum magnitudes. Plots~c! and ~d! show the normalized values o
T2 , T4, andT6 ~solid, dotted, and dashed lines! corresponding to
horizontal transport for the same simulations and time.
-

he

a

conservation law. Similar relations also hold for horizon
transport, but note that the assumption of isotropy inheren
our approach implies that the only nonzero horizontal tra
port coefficients are those withn even.

The first three nonzero transport coefficients in the ve
cal and horizontal directions for both simulations are exh
ited in Fig. 11 as a function of source depth at timet
53.36. Note that, for the horizontal transport, only 13 and
depths were chosen respectively out of the 63 and 105 a
able for the two different runs, so the curves are not co
plete, but do show a definite tendency for the coefficien
especially in case 1, to decrease with depth~with the excep-
tion of the uppermost level in case 2, which is located in
relatively quiescent, convectively stable overshoot regio!.
Some decrease in the efficiency of horizontal transport w
depth is expected because the characteristic horizontal ve
ity decreases with increasing density, although this does
explain the more rapid decrease with depth of the hig
order coefficients. Note also that the hyperdiffusion~fourth-
order! term for horizontal transport is negative in both sim
lations, corresponding indeed to diffusive as opposed to
tidiffusive behavior.

The first-order vertical coefficient can be regarded a
typical advection velocity, and exhibits positive and negat
values in the upper and lower regions of the convection z
respectively. The second and third order coefficients pea
the mid to lower convection zone, where vertical mixing
most efficient. The secondary peaks in several of the coe
cients just below the interface with the stable region indic
a typical scale at which downward plumes penetrate, dive
horizontally, then reverse direction due to buoyancy forc
and transport particles back upward.

The magnitudes of the transport coefficients,uTnu, aver-
aged over depth for the same times as shown in Fig. 11,
plotted in Fig. 12 as a function of order,n. For both vertical
and horizontal transport, the expansion of Eq.~28! is found
to converge exponentially with increasingn. The relative

FIG. 12. The magnitude of each transport coefficient,uTnu, is
plotted for both simulations as a function of order,n, at time t
53.36. Results are averaged over depth and include both ver
~asterisks! and horizontal~diamonds! transport. By construction, the
computed horizontal transport coefficients vanish for oddn values.
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dominance of theT1 coefficient indicates that the vertica
transport is more advective than diffusive, which is cons
tent with Fig. 8 above.

IV. CONCLUSION

In this paper, we have extended the transilient ma
technique@4,5# for describing nonlocal transport and ha
applied it to simulations of turbulent compressible conv
tion in stellar interiors. We have emphasized the diagno
capability of the approach, although we also demonstrate
the transilient matrix cannot be applied recursively, wh
limits its utility as a prognostic turbulence closure model.

We have found little difference in the results obtain
using fixed or time-evolving velocity fields, which sugges
that the flow’s transport properties are governed by its spa
complexity, and that temporal changes are comparatively
important. There are examples of other flows where this
not the case. Turbulent shear flows in rotating astrophys
discs, for instance, show strong converging flow regio
which can lead to persistent particle accumulation, but ti
evolving simulations show that the patterns evolve bef
particles have a chance to accumulate@24#.

In both simulations considered, the turbulent transpor
found to be nonlocal, anisotropic, and more advective t
diffusive. Transport coefficients in a generalized, nonlo
nd
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diffusion equation are found to converge exponentially w
increasing order of the differentiation~Fig. 12!. The advec-
tive nature of transport in the convection zone can likely
attributed to coherent flow structures such as downwa
directed vertical plumes and converging horizontal flow
which lead to ballistic particle trajectories. Advective tran
port in the convectively stable layer could be due to ov
shooting downward plumes and particle trapping in grav
waves@25#.

The destination kurtosis as a function of source depth p
vides a useful measure of how the tracer particles dispe
For horizontal transport, it is'3, but for vertical transport it
is generally larger and more depth-dependent. Both sim
tions exhibit a sharp peak in the kurtosis associated w
downward transport near the base of the convection zo
which may have implications for light-element depletion
stars with convective envelopes~Sec. III A!.
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